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ABSTRACT. An edge-colouring of a graph G is egquitable if, for
each vertex v of G, the number of edges of any one colour inci-
dent with v differs from the number of edges of any other colour
incident with v by at most one. In the paper, we prove that
any outerplanar graph has an equitable edge-colouring with k
colours for any integer k > 3.

1 Introduction

Throughout the paper, all graphs are finite, simple and undirected. Let G
be a graph. V(G) and E(G) denote the set of vertices and the set of edges
of G, respectively. Ng(v) denotes the set of vertices adjacent to a vertex
v. A vertex v is called a k-vertex if [Ng(v)| = k. An odd cycle is a cycle in
which the number of edges is odd.

An edge-colouring of G is an assignment of colours to the edges of G.
An edge-colouring with two colours will be called a bicolouring. Given an
edge-colouring of G with k colours 1,2, ..., k, for v € V(G), let ¢;(v) denote
the number of edges incident with v coloured i. An edge-colouring of G
with k colours 1,2,..., k is called equitable if for each v € V(G),

@) — @I <1 (ASi<i<h)

A graph G is called egquitable if G has an equitable edge-colouring with k
colours for any integer k¥ > 1. It is an interesting problem to determine
whether a graph is equitable or not. Hilton and Werra [1] have proved that
if k does not divide d(v) for all vertex v € V(G), then G has an equitable
edge-colouring with k colours. Werra [3] has proved that all bipartite graphs
are equitable. In the paper, we consider the equitable edge-colouring of
outerplanar graphs and obtain the following result.
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Theorem. A connected outerplanar graph is equitable if and only if it is
not an odd cycle.

The theorem implies that the edge chromatic number of any connected
outerplanar graph G is A(G) + 1 if and only if G is an odd cycle.

2 Proof of Theorem

Lemma 2.1. Let G be a 2-connected outerplanar graph of order at least
5. Then one of the following conditions holds:

(1) G has two adjacent 2-vertices u and v;

(2) G has a 2-vertex w such that N(u) = {v,w}, N(v) = {u,w,z},
N(w) = {v,w,y} and zy ¢ E(G);

(3) G has a 2-vertex u such that N(u) = {v,w}, N(w) = {u,v,z},
vz & E(G) and d(z) = 2;

(4) G has two nonadjacent 2-vertices u and v such that N(u) = {z,,z5},

N(v) = {y1,92}, N(z1) = {u, z2,11}, N(%1) = {v, 21,92} and zay, €
E(G);

(5) G has a 2-vertex u such that N(u) = {v,w}, vw € E(G) and 4 <
d(v) # 0(mod 3);

(6) G has a 2-vertex w such that N(u) = {v,w}, N(w) = {u,v,z},
zv € E(G), 6 < d(v) =0(mod3) and 3 < d(z) < 4;

(7) G hasa 6-vertex w such that N(w) = {w1, ws, w3, ws, ws, we}, d(w;) =
d(ws) = 2, d(ws) = d(ws) = 3 and wyws, waws, wswe, wyws, Wswe €
E(G).

Proof: At first, let us give a few definitions. Let G = (V, E, F) be a plane
graph. A face which is not the unbounded face is called an interior face. An
interior edge is an edge incident with two interior faces. An exterior edge is
an edge incident with the unbounded face of G. The degree d(f) of a face
f is the number of vertices incident with f. A k-face is the face of degree
k. Ng(e) denotes the set of faces incident with an edge e. An interior face
f is called pendant if f is adjacent to at most one interior face. A sequence
fifz... fn is an interior face sequence if fy, fa,..., fn are interior faces of
G and f; is adjacent to fi4; for i=1,2,...n — 1.

Let G be a 2-connected outerplane graph of order at least 5 which is a
counter-example. If A(G) =2, G is a cycle. (1) holds. If G has a pendant
interior face f such that d(f) > 4, then there must be an exterior edge
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uwv € E(G) having d(u) = d(v) = 2, which implies (1). So A(G) > 3 and
any pendant face is a 3-face.

Let fifa...f; be a longest interior face sequence of G. Then f; and f;
are pendant interior faces, that is, 3-faces. Since A(G) > 3,1 > 2. If
l =2, then |G| =4 < 5. Sol > 3. Let the vertices incident with f> be
V1,9, ..., Um, Where v192,. .. ,Um—1Vm, Un?1 € E(G), Nf(’l)l‘l)m) = {fz, f3}
and Ny(vavat1) = {f1, fo} for some a(l < a < m). Let u € N(v) N
N(vs+1) and u be incident with f;. Then d(u) = 2. If v4—1v, is an interior
edge of G, then d(v,) = 4, (5) holds. So v,_17, is an exterior edge of G.
Suppose that a + 1 < m. If va41v.+2 is an interior edge of G, then (5)
holds; otherwise, d(v,) = d(vg+1) = 3, (2) holds. So a + 1 = m, that is to
say, Ug+1 = Um. Suppose that m > 5. If z,_oz,_1 is an exterior edge of
G, then d(ve—1) = 2, (3) holds; otherwise, (2) or (5) holds. Suppose that
m =4. If z,_2Z,_, is an exterior edge of G, then (3) holds; otherwise, (4)
holds. So m = 3. Note that d(vs+1) > 4, for otherwise, d(va4+1) = 3 and
m > 4, (2) holds. Hence, Combining these results, we have that m = 3,
d(va41) >4, f1 and fy are 3-faces, and v,v; is an exterior edge ofG.

If 4 < d(vs) # 0(mod3), (5) holds. So we have 6 < d(vs) = 0(mod3).
Since d(vs) > 6, [ > 5. Let the vertices incident with the face f3 be
Z1,%2,...,Tn; Where T1Zs, .. ., Tn—1Zn, ZnZ1 € E(G), N¢(z12n) = {f3, fa},
zp = v; and zp, = vs for some b(1 < b < n). Suppose that b > 1. Then
3 < d(v;) £ 5. If 3 < d(v1) <4, (6) holds. If d(vy) = 5, let {f3, fa} =
Ng(zp—12zs) and {f], f4} = Ny(vivp), where v3 € N(vi)\{zxp-1,v2,v3},
then f]fifs...fi is also a longest interior sequence. So fi and fj are
the 3-faces, (5) holds. Suppose that b = 1. It is easy to prove that
d(vs) = 6. Let {fY, fs} = Ny(@ps1712) and {7, f}'} = Ny(vguy), where
vy € N(vs)\{Zbt2,u,v2,v1}. Then f{'fJ fa... [ is also a longest interior
sequence. So fi and f} are the 3-faces. If n = 3, (7) holds; otherwise, by
the same discussion as the case b > 1, (5) or (6) holds.

Hence, this contradicts the hypothesis and we complete the proof of the
lemma. O

Lemma 2.2. Let G be a 2-connected outerplanar graph of order at least
3. Then one of the following conditions holds:

(1) G has two adjacent 2-vertices u and v;
(2) G has a 2-vertex u adjacent to a 3-vertex v such that N(u) C N(v);

(8) G has two nonadjacent 2-vertices v and v adjacent to a common
4-vertex w such that (N(u) U N(v))\{w} = N(w)\{u,v}.

The lemma is similar with lemma 2.2. Its proof omit here.

Proof of Theorem: In (1] and [3], it was proved that any connected
graph G has an equitable bicolouring if and only if G is not odd cycle. It
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is easy to prove that if any 2-connected maximal subgraph of a graph G
is equitable, G is equitable. So in the following, it is only to prove that
any 2-connected outerplanar graph G has an equitable edge-colouring with
k colours 1,2,...,k for any integer & > 3. We shall prove the result by
induction on |G|, the number of vertices of G.

When |G| < 4, the result is obvious. Now assume that p > 5 is an
integer and that the theorem holds for all 2-connected outerplanar graphs
with less than p vertices, and let G be a 2-connected outerplanar graph of
order p. In the following, we shall obtain a 2-connected outerplanar graph
G* of order less than p. By the induction hypothesis, G* has an equitable
edge-colouring ¢ with k colours. On the basis of ¢, we shall construct
an equitable edge-colouring o of G using the same set of k colours. To
save space, we only give in the following the construction of G* and the
colouring of some edges of G. Any uncoloured edge of G is coloured the
same colour as in ¢ of G*. For each vertex v € V(G*), let ci(p,v) =
{vv' & BG*)lo(wr') = i}| and Cy(w) = {iles(p,v) = min, cs(y, )}
Then |Cyp(v)| > 1.

Case 1 k=3.

According to Lemma 2.1, the proof can be divided into the following
seven subcases.

Subcase 1.1 G has two adjacent 2-vertices v and v.
Let w; € N(u)\v and wp € N(v)\u. Let G* = G —u + vw; and let

o(uw) = p(vwy), ofuw) € {1,2,3}\{o(vw), p(vws)}.

Subcase 1.2 G has a 2-vertex u such that N(u) = {v,w}, N(v) =
{v,w,z}, N(w) = {u, w,y} and zy ¢ E(G).
Let G* = G ~ {u, v} + wz. Then p(wz) # @(wy). Let
o(wy) = o(uv) = p(wy),
o(vw) = o(vz) = p(wz),
o(vw) € {1, 2,3\ {o(wv), o(uw)}.
Subcase 1.3 G has a 2-vertex u such that N(u) = {v,w}, N(w) =
{u,v,z}, vz &€ E(G) and d(z) = 2.
Let G* = G — {u,w} + vz. Then dg-(x) = 2, that is to say, |C,(z)| = 1.
Let {a1} = Cy(z). Then a; # p(vz). Let ap € Cy(v).
Subcase 1.3.1 ap # p(vz). Let

o(w) = o(wz) = p(vz), o(vw) = ag, o(uw) € {1,2, 3}\{o(w), o(vw)}.
Subcase 1.3.2 ay = p(vz). Let

o(w) = o(vw) = a2, o(wz) = a3, o(uw) € {1,2,3}\{o(wv), o(vw)}.

250



Subcase 1.4 G has two nonadjacent 2-vertices « and » such that N(u) =
{.’121,.’.82}, N('U) = {211,3!2}, N(xl) = {u:z%yl}) N(yl) = {'U, xl:y2} and )
ZToY2 € E(G)

Let G* =G — {u,v,z1,51}. Let oy € Cy(z2), az € Cy(y2),

e e 4 Co@Nan, i [Cy(z2)] 22,
3 S 1{L,2,3)\Cy(z2), otherwise.

‘and

o= {Cv@z)\% i Cyun)l 2 2
{11 21 3}\Czp (y2), otherwise.

Then {a1, a3} N {ag,as} # 0. Without loss of generality, assume that
o) = og. Let

o(uza) = o(z1y1) = o(vy2) € a1, o(z122) = a3, o(yy2) = ay,
o(uz1) € {1,2,3}\{a1, a3}, o(vy) € {1,2,3}\{e2, a4}.

Subcase 1.5 G has a 2-vertex u such that N(u) = {v,w}, vw € E(G)
and 4 < d(v) # 0(mod 3).

Let G* = G — u. Then dg.(v) # 2(mod3), that is to say, |C,(v)| > 2.
So let

o(uw) € Cy(w), o(uv) € Cy(v)\o(w).

Subcase 1.6 G has a 2-vertex u such that N(u) = {v,w}, N(w) =
{u,v,z}, zv € E(G), 6 < d(v) =0(mod3), and 3 < d(z) < 4.

Subcase 1.6.1 d(z) = 3. Let y € N(z)\{w,v}.

Subcase 1.6.1.1 vy € E(G).

Let G* = G — {u,w, z}. Since dg-(v) = 0(mod3), |Cy(v)| = 3. Let

o(zy) = o(w) € Cy(y), o(uw) = a(vz) € {1,2,3}\o(zy),
o(wz) = o(w) € {1,2,3}\ {o(vw), o(wv)}.
Subcase 1.6.1.2 vy & E(G).
Let G* = G — {u,z,w} + vy. Then dg+(v) = 1(mod3). So |C,(v)| = 2.
Let

o(zy) = o(wv) = p(vy), o(uw) = a(vz) € C,(v)\o(zy),
o(w) € Cy(v)\o(vz), o(wz) € {1,2,3}\{o(vw), o (wv)}.

Subcase 1.6.2 d(z) = 4.
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Let G* = G — {u,w}. Then dg+(v) = 1(mod3) and dg+(z) = 3. So
|Cp(v)] =2 and |Cy(z)| = 3. Let

o(w) = o(wz) € Cy(v), o(vw) € Cy(v)\o(uwv),
o(uw) € {1,2,3}\{o(uv), o(wv)}.

Subcase 1.7 G has a 6-vertex w such that N(w) = {w;, ws, w3, wa, ws, we},
d(w1) = d(wy) = 2, d(wy) = d(ws) = 3, and wywa, Wows, Wawe, Waws, wswg €
E(G).

Let G* = G — {w, w1, ws, wy, ws}. Let a; € Cy(ws), az € Co(wg),

o {cv(ws)\al, if |Cp ()] 2 2,
{1,2,3}\C,(ws), otherwise.
and
. {Cq:(ws)\az. if |Cy(ws)] 2 2,
{1,2,3\Cy(ws), otherwise.

Then o1 # o3 and a2 # a4. Let o(wws) = o(wiws) = oy, o(ww,;) =
o(wow3) = a2, o(wws) = o(waws) = a3, o(ww,s) = o(wsws) = ay,
U(w2) € {1) 2v 3}\{&1,&2)}, U(w’l.U5) € {1121 3}\{03’ a4)}'

Case 2 k > 4.

According to Lemma 2.2, the proof can be divided into the following
three subcases.

Subcase 2.1 G has two adjacent 2-vertices u and v.

The subcase is similar to Subcase 1.1.

subcase 2.2 G has a 2-vertex u adjacent to a 3-vertex v such that
N(u) C N(v).

Let {w} = N(u)\v and {z} = N(v)\{u, w}. Let G* = G —u. Then
dg+(v) =2. So [Cp(v)| = 2. Let

o(uw) € Cy(w), o(uv) € Cp(v)\o(uw).

Subcase 2.3 G has two nonadjacent 2-vertices u and v adjacent to a
common 4-vertex w such that (N(u) U N(v))\{w} = N(w)\{x,v}.

Let {z} = N(u)\w and {y} = N(v)\w. Let G* = G - {u, v}.
Subcase 2.3.1 C,(z) N Cy(y) # 0. Let

o(vy) = p(wy), o(uz) = o(wy) € Cy(z) N Cy(y),
a(vw) € {17 2, 3,4}\{([)(11):1)), a('wy), U(’”y)},
o(uw) € {1,2,3,4}\{p(wz), o(wy), o(wv)}.
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Subcase 2.3.2 C,(z) N Cy(y) = 0. Let

o(ux) € Cy(z), o(vy) € Co(y),

o (u10) {= o(v), if o(vy) & {w(wa), pwy)},
€{1,2,3,4}\{o(ux), p(wz), p(wy)}, otherwise.

o(wv) € {1,2,3,4}\{p(wz), p(wy), o (ww)}-

From all above cases, it is easy to verify that o is an equitable edge-
colouring of G with k colours. Hence the theorem is true. o
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