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Abstract

If the distance between two vertices u and v in a graph G
is k, then u and v are said to k-step dominate each other. A
set S of vertices of G is a k-step dominating set if every vertex
of G is k-step dominated by some vertex of S. The minimum
cardinality of a k-step dominating set is the k-step domination
number px(G) of G. A sequence s: 43, £s,. .., ¢ of positive inte-
gers is called an orbital dominating sequence for G if there exist
distinct vertices vy, ve, ..., x of G such that every vertex of G
is ¢;-step dominated by v; for some ¢ (1 < i < k). An orbital
dominating sequence s is minimal if no proper subsequence of s
is an orbital dominating sequence for G. The minimum length
of a minimal orbital dominating sequence is the orbital dom-
ination number 7,(G), while the maximum length of such a
sequence is the upper orbital domination number I';(G) of G.

It is shown that for every pair %, j of positive integers with
i < j, there exist graphs G and H such that both p;(G) —
p;(G) and p;(H)— p;(H) are arbitrarily large. Also, there exist
graphs G of arbitrarily large radius such that v,(G) < p;(G) for
every integer i (1 < ¢ < radG). All trees T with 7,(T) = 3 are
characterized, as are all minimum orbital sequences of length 3
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for graphs. All graphs G with I',(G) = 2 are characterized, as
are all trees T with T'o(T) = 3.

1 Introduction

One of the major areas of research in graph theory in recent years has
been domination in graphs. Indeed, the book by Haynes, Hedetniemi,
and Slater [3] is devoted entirely to this subject. A vertex is said to
dominate its neighbors as well as itself. The neighborhood N(v) of
a vertex v in a graph G is the set of vertices adjacent to v; while
the closed neighborhood N[v] is defined by N[v] = N(v) Uv. Thus,
a vertex dominates each vertex in its closed neighborhood. A set S
of vertices in a graph G is a dominating set if every vertex of G is
dominated by at least one vertex of S. The minimum cardinality of
a dominating set in G is called the domination number v(G) of G.

The distance d(u,v) between two vertices v and v in a connected
graph G is the minimum length of a u—v path in G. For a nonnegative
integer k, the k-neighborhood Ni(v) of a vertex v is the set of all
vertices at distance k from v; while the closed k-neighborhood Ni[v]
is defined as Ni[v] = {u € V(G) | d(u,v) < k}. Thus, No(v) =
No[v] = {v}, M1(v) = N(v), and N1[v] = N[v]. The eccentricity e(v)
of a vertex v in G is the distance from v to a vertex furthest from
v. Thus, for every vertex v in a connected graph G, it follows that
Ny [v] = V(G). The minimum eccentricity among the vertices of G
is called the radius rad G of G and the maximum eccentricity is its
diameter diam G.

For a positive integer k, a vertex v in a graph G is said to k-
dominate a vertex u if d(u,v) < k. Therefore, v k-dominates all
vertices in its closed k-neighborhood Ni[v]. A set S of vertices in G
is a k-dominating set if every vertex of G is k-dominated by some
vertex of S. The k-domination number v;(G) of G is the minimum
cardinality of a k-dominating set. A survey of distance domination
in graphs has been written by Henning [4]. If d(u,v) = k, then u



and v are said to k-step dominate each other. A set S of vertices
in G is a k-step dominating set for G if every vertex of G is k-step
dominated by some vertex of S. The k-step domination number
pr(G) is the minimum cardinality of a k-step dominating set for
G. The parameter p;(G) is also referred to as the open domination
number of G. Clearly, 7(G) < p1(G) for every graph G. It was
shown by Hayes, Schultz, and Yates [2] that px(G) is well-defined if
and only if radG > k.

A sequence s: £, . .., ¢ of positive integers is called an orbital
sequence for a graph G if G contains distinct vertices vy,v2,...,U
such that U%_; Ng, (v;) = V(G). Equivalently, s is a orbital sequence
for G if every vertex of G is f;-step dominated by v; for some i
(1 <1 < k). We refer to £; as the step of v; and write step v; = ;.

An orbital sequence s for a graph G is minimal if no proper
subsequence of s is an orbital sequence for G. A minimum orbital
sequence for G is a (minimal) orbital sequence of minimum length.
The length of a minimum orbital sequence for G is called the orbital
domination number, or more simply the orbital number of G, and
is denoted by 7,(G). These concepts were introduced by Hayes,
Schultz, and Yates [2]. :

Obviously, 7,(G) < pk(G) for every graph G and every positive
integer k < rad G. For the graph G of Figure 1a, 7,(G) = 3 while
p1(G) = p2(G) = 4. Figure 1b shows a minimum orbital sequence
for G; while Figures 1c and 1d show a minimum 1-step dominating
set and minimum 2-step dominating set, respectively, for G.

This terminology comes from selecting certain vertices of G, which
we call the planets of G. Each planet has an associated radius and
those vertices whose distance from a given planet is the radius of
that planet, constitute the orbit of the planet. Our goal is to select
appropriate planets with suitable radii so that every vertex of G lies
on the orbit of some planet.
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2 Orbital and k-Step Domination Numbers

First, we show that there is no relationship among the numbers p;(G),
i=1,2,..., in general for an arbitrary graph G.

Theorem 1 For positive integers i,j, and n with i < j, there ezist
graphs G and H such that p;(G) —p;(G) > n and p;(H) —pi(H) > n.

Proof. Let G be the tree obtained by subdividing each edge of the
star K} n42; a total of j—1 times. Thus G is produced by identifying
end-vertices of n+2j paths of length j. Let v be the central vertex of
G. If we assign step j to all vertices of one of these paths (including
v) and assign step j to all vertices = on a second path for which



d(v,z) < j, then we have a j-step dominating set of cardinality 2j;
so p;(G) < 2j. On the other hand, each end-vertex z of G can
be i-step dominated only by the vertex y on that path for which
d(y, z) = i. Consequently, p;(G) > n+27, and so p;(G) — p;(G) = n.

Next let H be the tree obtained by subdividing each edge of the
star Kj on4+2 a total of 35 — 1 times. Let v be the central vertex of H,
and let Q1,Q2,. .., @2.+2 be the 2n+2 disjoint paths of length 37 —1
that do not contain v. Then any j-step dominating set of H must
contain at least 25 vertices from each path Qg, £ =1,2,...,2n+ 2.
(See Figure 2.) Thus, p;(H) > (4n + 4)3, or, equivalently, p;(H) >
P~ (2n+ 2)j — 1 where p = |V(H)|.

J joJ
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H: v J vertices J vertices J vertices
J JjoJ J
cer —9—@— - .. ——0— . .. —0
N — N
J vertices J vertices J vertices
Figure 2.

If 44 > 37, then assign step ¢ to all vertices = at distance at
least 7 but at distance at most 37 (< 35) from an end-vertex of H
to i-step dominate all vertices of H except possibly v (if 4¢ = 3j).
(See Figure 3.) Thus, p;(H) < (dn+4)i+1<4(n+1)(F-1)+1<
pi(H)+1—4n—4,s0 p;(H) — pi(H) > 4n+3 > n.

So we may assume that 4¢ < 3j. Thus 35 = 4ki + r for some
integers k¥ > 1 and 0 < r < 4i. We consider four possibilities.

Case 1. 3i < r < 4i. Assign step ¢ to all vertices z for which
r—3i+1 < d(z,v) < r —1i or for which d(z,v) = (dt+1)i+7r+s
where 0 <t <k —1and 1 < s < 2 to i-step dominate all vertices
of H. (See Figure 4.) Thus, p;(H) < p— (2n+ 2)(r — 2i + 2ki) — 1.
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Hence,

pi(H) —pi(H) 2 (p—2(n+1)j—-1)— (p-2(n+1)r+4ni+ 4
—4(n + 1)ki — 1)

—2nj — 2§ + 2nr + 2r — 4ni — 4i + dnki + 4ki
—2(n+1)j + 2(n + 1)r — 4(n + )i+
(n+1)(3j —r) (since k= (35 —r)/41)
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Case 2. 2i < r < 3i. Assign step 7 to all vertices z for which
d(z,v) < r—i or for which d(z,v) = (4¢t+1)i+r+swhere0 < t < k—1
and 1 < s < 21 to i-step dominate all vertices of H. (See Figure 5.)

Thus, p;(H) < p— 2(n + 1)(¢ + 2kz). Hence,

pi(H)—pi(H) = (p—2nj—2j—-1)—(p—2ni— 2 — 4dnki — 4ki)
= =2nj —2j — 14 2ni+ 2i + 4dnki + 4ki
= =2n+1)j—-1+4+2(n+1)i+(n+1)3j—-7)
= (n+1)j+2n+1)yi—(n+1)r-1
= (n+1)(j+2i-r)-1
> (n+1)(Bi+1-7)-1
> 2n+1>n.

Figure 5.

Case 3. i < r < 2i. Assign step i to all vertices = on the path Q;
for which d(z,v) < 3¢ —r — 1, and step i to all vertices 2 not on Q;
for which d(z,v) < r — 4. Furthermore, assign step ¢ to all vertices
z for which d(z,v) = (4¢+1)i+7+ s where 0 <t < k-1 and
1 < s £ 2i. (See Figure 6.) This produces an i-step dominating set
of H. Thus, p;(H) < p— (2n+1)(i+2ki) — [(k—1)2%+(2r —i+1)] =
P — (2n 4+ 1)(% + 2ki) — (2ki + 2r — 3i + 1). Hence,



pi(H) —pi(H) 2 (p—2nj—2j-1)—[p— (2n+1)(i + 2ki)—
(2ki + 2r — 3i + 1)]

—2nj — 2j + (2n + 1)(% + 2ki) + (2ki + 2r — 39)
—9(n +1)j + 2(n + 1)i + 4(n + 1)ki + 2r — 4
—2m+1)j+2(n+1)i+(n+1)3j—7)+2r —4i
(n+1)j+2(n+1)i—(n+1)r+2r—4i
(n+1)(§+2—-7)+2—-2i (sincer>i+1)
m+1)Bi+1-7)+2-2i
(n+1)(i+2)+2—2

2n+4+in-1)

2n+4>n.

=
=
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=

Figure 6.

Case 4. 0 < r < i. Assign step 7 to exactly one vertex at distance 7
from v, and step 4 to all vertices = for which i +1 < d(z,v) <r+14
or for which d(z,v) = (4t + 1)i + 7+ s where 0 <t < k—1 and
1 < s < 2i to i-step dominate all vertices of H. (See Figure 7.)
Thus, p;:(H) < p — 4(n+ 1)ki. Hence,
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We now have an immediate consequence of this result.

Corollary 2 For every positive integer n, there erists a graph G
such that

max{p;(G) | 1 £¢ < 1adG} — 7,(G) > n.

Therefore, the orbital number of a graph G can be arbitrarily
smaller than an i-step domination number of G. Next we show that
the orbital number of a graph can be distinct from and consequently
less than all i-step domination numbers of the graph.

Theorem 3 There exist graphs G of arbitrarily large radius such
that 15(G) < pi(G) for every integer i (1 < i < radG).
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Proof. Let k > 2 be an integer. For j = 1,2,...,2k — 2, let Q;
denote a path of length 1; while for j = 2k — 1,2k,...,4k — 3, let
Q; denote a path of length j — 2k + 3. Select an end-vertex of each

path Q; (1 £ j < 4k — 3), and let T be the rooted tree obtained
~ by identifying these end-vertices resulting in a root v. Thus, T is a
subdivision of the star K 4x—3 whose root v has degree 4k — 3. The
rooted tree T has radius and height 2k. The vertices at distance £
from v (0 < ¢ < 2k) are said to lie in level £. The tree T is indicated
in Figure 8.

level 0

Var-3 level 1

level 2

41: level &

level 2k -1

level 2k

Figure 8.

We now assign step 1 to the root v of T' and steps 3,4,...,2k
to the 2k — 2 end-vertices at level 1. In addition, step k is assigned
to the vertex of Q4x_3 belonging to level k, which k-step dominates
both v (the only vertex at level 0) and the only vertex at level 2k.
The end-vertex assigned step 7 (3 < i < 2k) i-step dominates all
vertices at level 2 — 1; while v 1-step dominates all vertices at level 1.
Hence, every vertex of T is i-step dominated by one of the 2k vertices
assigned steps for some 7 (1 < i < 2k). Therefore, 7,(T) < 2k.

12



It remains to show that p;(T") > 2k + 1 for every integer 7 (1 <
i < 2k). Let ¢ (1 < ¢ < 2k) be a fixed integer. Suppose that
step 7 is assigned to a vertex x at level £ belonging to the path Q;
(2k-1<j<4k—-3). Ifi+£ < j—2k+3, then z i-step dominates
a unique vertex at level ¢ + £, namely, the vertex of Q; at level 7+ £.
Unless i + £ = 2k, there are vertices of T at level ¢ + ¢ that are not
i-step dominated by z. If £—% > 0, then z i-step dominates a unique
vertex at level £ — 4, namely, the unique vertex of Q; at level £ — 3.
Unless £ — i = 0, there are vertices of T at level ¢ — ¢ that are not
i-step dominated by z. If £ — ¢ < 0, then z i-step dominates all
vertices of T not on @Q; that are at level 7 — £. In any case, a vertex
assigned step ¢ cannot i-step dominate all vertices on more than one
level unless it i-step dominates both v and the unique vertex of T
at level 2k. However, then, 7 = k; but, in this case, no single vertex
of T can i-step dominate all vertices at level 1. Since T has 2k + 1
levels, p;(T) > 2k +1. O

A set S = {v;,vs,...,v:} of vertices in a graph G is a step dom-
inating set for G if there exist nonnegative integers ki, kz,...,k,
where k; is called the step of v; (1 < i < t), so that each vertex in
G is k;-step dominated by v; for exactly one ¢ (1 <% < t). The step
domination number v5(G) of G is the minimum number of vertices
in a step dominating set for G. We now show that the orbital dom-
ination number of a graph is bounded above by its step domination
number.

Theorem 4 If G is a connected graph, then v,(G) < 7s(G).

Proof. Let S = {v;,vs,...,v:} be a step dominating set for G of
minimum cardinality with corresponding step sequence k3, ks, . . ., k;.
If this sequence has only nonzero terms, then kj,ko,...,k: is a or-
bital sequence and 7,(G) < 7s(G). Assume then that some k; = 0.
If t < |V(G)|, then let u be a vertex of G not in S and suppose that
d(u,v;) = k. Then ky,ko,...,ki-1,k}, kit1,...,kt is a orbital se-
quence for G. Repeating this procedure produces a orbital sequence

13



for G. If t = |[V(G)|, then by definition, 7,(G) < t. In either case,
%(G) £ 7%(G). O

With the aid of Theorem 4, we can determine the orbital number
of each cycle.

Theorem 5 For an integer n > 3, 7(Cn) = (n+ 2)/2 if n =
2 (mod4), and Yo(Cr) = [n/2] if n # 2 (mod4).

Proof. Since |N;(v)| = 2 for every integer ¢ with 1 <7 < |n/2] and
for each vertex v € V(Cy), it follows that v,(Cn) > [n/2]. It was
shown in [1] that if n # 2 (mod4), then v5(Cy) = [n/2]. Therefore,
by Theorem 4, 7,(Cr) < 75(Cr) = [n/2]. This establishes the result
if n # 2 (mod4).

Now, assume that n = 2 (mod4). Since 11(Cr) < (n + 2)/2, it
follows that n/2 < 75(Cr) < (n +2)/2. Assume that 7,(Cr) = n/2.
Let £1,£2,...,£y 2 be a orbital sequence for Cy, and let v1,2,...,Vn/2
be the corresponding vertices. Thus, | N, (v;)| =2 foralli (1 <4<
n/2) and {v1,v2,...,Vn/2} is a step dominating set for C,,. However,
75(Cr) = (n + 2)/2, producing a contradiction. Therefore, 7,(Cr) =
(n+2)/2.0

38 The Orbital Numbers of Trees

The orbital sequence of any connected graph G can never consist of
exactly one term, so 7,(G) > 2. Hayes, Schultz, and Yates [2] showed
that the only orbital sequence of length 2 is 1,1. An immediate
consequence now follows.

Theorem A (Hayes et al. [2]) For a nontrivial tree T, v,(T) = 2 if
and only if T is isomorphic to a rooted tree of height at most 2 and

of diameter at most 3.

The orbital number of paths was given in [2].
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Theorem B (Hayes et al. [2]) For any integer n > 3, 7,(Pa) =
(n+2)/2 if n=2(mod4), and 7o(Pp) = [n/2] if n # 2 (mod4).

For a subset S of vertices in a connected graph G, the Steiner
distance d(S) of S in G is the smallest number of edges in a connected
subgraph of G that contains S. Such a subgraph is necessarily a tree,
called a Steiner tree for S.

A tree is a double star if it has exactly two vertices that are not
end-vertices.

s: 1,2,3 s: 1,1,4

Figure 9.

Theorem 6 Let s:¢,,40s,¢3 be a minimum orbital sequence of a tree
T. Then,

(@) s is 1,1,1 and T is a caterpillar of diameter 4, or

() s i5 1,1,3 or 1,2,3 and T is a rooted tree of height 2 and of
diameter 4 with at least one leaf at height 1, or

(c) sis 1,1,4 and T is a rooted tree of height 2 and of diameter 4.
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Proof. Let vy, vz, v3 be vertices in 7" such that U3, Ny, (v) = V(T).
Let S = {v1,v2,v3} and let Ts be the Steiner tree for S. We consider
two cases.

Case 1. d(S) = 2. Without loss of generality, we may assume that
T is the path vy, v2,v3, and that v is 1-step dominated by v1. The
vertex v must then be 1-step dominated by vg, so & = €3 = 1. If
¢5 > 5, then a vertex at distance 4 from v3 in T is not step dominated.
" Hence ¢35 < 4. If £3 = 1, then T must be a caterpillar of diameter 4
(possibly, degvg = 2). If £3 = 2, then T must be a double star with
v; and vy as central vertices. However, the sequence s:1,1,2 is then
not minimal since 1,1 is also a orbital sequence of T. Thus, {3 # 2.
If 43 = 3, then T must be a rooted tree (with root vg) of height 2
and of diameter 4 with at least one leaf (namely, v3) at height 1. If
3 = 4, then degvz = 1. Furthermore, the component of T' — v1ve
containing v; must be a rooted tree of height 2 with root v;. Hence
T is a rooted tree (with root v;) of height 2 and of diameter 4.

Case 2. d(S) > 3. First we show that T must be a path. If this
is not the case, then Ty is obtained from a star K3 3 by subdividing
edges, if necessary. Let v be the vertex of degree 3 in Ts. If d(S) = 3,
then T & K; 3. Without loss of generality, we may assume that vy
1-step dominates v, and that vs 2-step dominates vy; so f;=1and
{5 = 2. Thus, vz must 2-step dominate vg; so £3 = 2. It follows that
T must be a double star with v; and v as central vertices. However,
the sequence s: 1,2, 2 is not a minimum orbital sequence for a double
star, producing a contradiction. Hence d(S) > 4. Without loss of
generality, we may assume that d(vi,v) = 2 and that vz £o-step
dominates v1; so £2 > 3. If vy (respectively, vs) £1-step dominates
vo, then v (respectively, v1) must /3 -step dominate all vertices on
the v—v; path different from vy, which is impossible. We deduce,
therefore, that T must be a path.

Without loss of generality, we may assume that Tg is a v1—v3
path and that d(vy,v2) > 2. If d(ve,vs) > 2, then, without loss
of generality, we may assume that vy ¢1-step dominates vs. If vy
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{2-step dominates vy, then vz must f3-step dominate the vertices
immediately following v; and vz on the v1—v3 path, which is impos-
sible. Hence v3 must {3-step dominate v;. But then v must £p-step
dominate every vertex on the vo—v3 path different from vy, which is
impossible. Hence d(vg,v3) = 1.

Let v] be the vertex of Ts adjacent with v;. If vy fo-step domi-
nates v1, then £ > 2 and v; must then ¢;-step dominate v3. Thus, v3
must {3-step dominate both v} and vy, which is impossible. Hence,
v1 must be £3-step dominated by vz. Thus, vy is £;-step dominated
by vy. It follows that vz must £o-step dominate v3 and every internal
vertex of the v;—vz path. Consequently, Ts is the path vy, v}, vo,v3
and {; = 2, {3 = 1, and {3 = 3. Hence in T, degv; = degvs = 1
and N3(vy) = N(v2) — {v}}. Since s is a minimum orbital sequence
of T, it follows that T' cannot be a double star; so the component of
T — {vjvs,vov3} containing v must be a rooted tree with root vg of
height 2. Consequently, T is a rooted tree with root vs of height 2
and of diameter 4 with at least one leaf (namely, v3) adjacent to the
root. This completes the proof of the theorem. O

As an immediate corollary of Theorem 6 we have the following
results.

Corollary 7 For a tree T, 7o(T') = 3 if and only if T is isomorphic
to a rooted tree of height 2 and of diameter 4.

Proof. The necessity follows immediately from Theorem 6. For the
sufficiency, let T" be a rooted tree of height 2 and of diameter 4. By
Theorem A, 7,(T") > 3. However, 1,1,4 is a orbital sequence of T
as may be seen by assigning a step of 4 to any leaf at height 2, a
step of 1 to its parent, and a step of 1 to the root. Hence v,(T") < 3.
Thus, 7,(T") = 3. O

Corollary 8 The only minimum orbital sequences of length 3 in a
tree are (1,1,1), (1,1,3), (1,1,4), and (1,2,3).

17



Corollary 8 shows that if (£1, £2,¢3) is a minimal orbital sequence
with #; < €y < €3, then £3 < 4. This illustrates the following result.

Theorem 9 IfT is a tree with minimal orbital sequence ¢;,%s, ..., 4,
with € <€ <--- <4, (r > 3), then

< 2r—2 ifr is odd
"= 2r—3 ifr is even

Proof. Let v; be assigned step £ (1 < i < r) so that every vertex
of T is ¢;-step dominated by v; for some i (1 <4 < 7). Let P:v, =
ug, U1, . . - , Ug, be a path of length £ in T'. Thus u,, is step dominated
by vr, but no other vertex of P is step dominated by vr. Hence each
of the ¢, vertices ug,ui,...,%,—1 is step dominated by some vertex
v; (1 < i < r—1). However, each such vertex v; can step dominate
at most two vertices of P; so £, < 2r — 2.

Assume now that r is even and suppose, to the contrary, that £, =
97 —9. Then Theorem B implies that for the path Py :up,us,...,us,,
we have 7o(Ps,) = Yo(Par—2) = 7, which in turn implies that v,(T) 2
r+1. This contradicts the fact that ¢, %,...,¢ is a minimal orbital
sequence. Hence, when 7 is even, L <2r-3.0

g 1 1 11
B: ¢—e—e—0—0—e—8—0—>0

9 1 1 11 i
Py: @—@—8—0—O0——8—8—0—0—@

Figure 10.

To show that the bound presented in Theorem 9 is sharp, we
note that when 7 is odd the sequence £1,¢2,...,% (r > 3) defined
byl =1forl1 <i<r—1 and ¢4, = 2r — 2 is a minimal orbital
sequence for the path Py-_;. This is illustrated in Figure 10 for
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r = 5. To see that the bound is sharp when 7 is even, we note that
the sequence ¢,4¢z,...,¢ (r >4) definedby {;=1for 1 <i<r—1
and 4. = 2r — 3 is a minimal orbital sequence for Ps,._3. This is
illustrated in Figure 10 for r = 6.

Theorem 10 The only minimum orbital sequences of length three
fO'I" g’r‘aphs are (17 11 1): (17 1:2)7 (11 1)3); (1) 1$4): (1,2’2): (1,233)7
(2,2,2), (2,2,3), (2,3,3), and (3,3,3).

Proof. If s is one of the ten sequences in the statement of the
theorem, then s is a minimum orbital sequence for some graph, as
illustrated in Figure 11.

1 11 12 1 1 3 4 1 1
1

aLn (1,1,2) (1,1,3) (1.1,49

2

) 2 13
z 2 g 2 2
12,2 (1,2,3 2,2,2)
3 3 3 3
2
2
3 . 3
2,2,3) 2,3,3) 3,3,3)
Figure 11.
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Conversely, let s:£;,%,¢3 be a minimum orbital sequence in a
graph G with £; < £y < {3. Let v, v9,v3 be vertices in G such that
U2, Ne, (v:) = V(G). So every vertex of G is ¢;-step dominated by v;
for some i (1 <% < 3). The following lemma will prove to be useful.

Lemma 11 If ¢, > 2 and &4 > 4, then d(vi,v2) = 4.

Proof. Suppose that d(v,v2) # ¢1. Then, vz must be {3-step dom-
inated by vs. Let = be the vertex at distance 2 from vz on a short-
est vo—vs path (of length £3 > 4). Then, d(z,v2) = 2 < {2 and
d(z,v3) = €3 —2. Thus, z must be £;-step dominated by v;. Let y be
the vertex adjacent to z on a shortest z—v; path (of length £; > 2).
Then, d(vi,y) = &1 — 1, d(v2,y) € 3 < &y, and d(v3,y) < €3 — 1.
Thus, y is not step dominated, which produces a contradiction. O

Before proceeding further, we prove four claims.
Claim 1 ¢, <3.

Proof. Suppose that £; > 4. By Lemma 11, d(v;,v2) = £;. Let
x be the vertex at distance 2 from v; on a shortest v;—ve path (of
length £;). Then, d(z,v1) = 2 and d(z,v2) = &1 —2 < o — 2. Thus,
'z must be £3-step dominated by v3. Let y be the vertex adjacent to
z on a shortest z—v3 path (of length ¢3). Then, d(y,v1) < 3 < 41,
d(y,v2) < £2—1, and d(y,v3) = £3—1. Thus, y is not step dominated,
which is a contradiction. O

Claim 2 If¢; =1, then £ < 2.

Proof. Suppose that £5 > 3. If d(v1,v2) = 1, then v; must be £3-step
dominated by v3; so d(vi,v3) = £3 > 3. But then v3 must be £3-step
dominated by vs. Let x be the vertex adjacent to v3 on a shortest
vo-vz path (of length £). Then d(z,v2) = £2 — 1 and d(z,v3) = 1.
Thus, z must be £;-step dominated by v, that is, d(z,v1) = 1. But
then,

d(vy,v3) < d(v1,z) +d(z,v3) =2 < {3,
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producing a contradiction. Hence d(v1,v2) > 1. Now v must be £3-
step dominated by v3. Let Q be a shortest vp—v3 path (of leagth ¢3),
and let = be the vertex adjacent to v on Q. Then z must be £;-step
dominated by w3, so d(v1,z) = 1 and therefore d(v;,v2) = 2. Thus
v, must be £3-step dominated by vs, so d(v1,vs3) = £3. However, the
vertex y at distance 2 from vz on @ must also be £;-step dominated
by v1; so d(v1,y) = 1 and therefore d(v;,v3) < €3 — 1, producing a
contradiction. O

Claim 3 If ¢ = 2, then £3 < 3.

Proof. Suppose that ¢, > 4. By Lemma 11, d(vy,v2) = 2. .Thus v;
- must be {3-step dominated by v3. But then the vertex adjacent to v;

on a shortest v;—v3 path (of length £3) is at distance at most'3 (< £)

from v, and is therefore not step dominated, a contradiction. O

Claim 4 If ¢ = 3, then {3 = 3.

Proof. Suppose that £2 > 4. Lemma 11, d(vy,v2) = 3. Thus"vl must
be £3-step dominated by vs; so d(v1,v3) = €3 > 4. Hence v3 must be
£3-step dominated by vs. Let = be the vertex at distance 2 from vy
on a shortest va—v3 path (of length £, > 4). Then d(z,v3) =2 < £,
and d(z,v3) = £3 — 2 < £3 — 2. Thus, £ must be ¢;-step dominated
by v1. But then the vertex adjacent to z on a shortest z—v; path (of
length ¢,) is not step dominated, producing a contradiction. O

We now return to the proof of Theorem 10. By Claim 1, ¢; is
1,2, or 3. We consider each case in turn.

Case 1. Suppose that £; = 1. Then, by Claim 2, ¢2 < 2. Suppose,
first, that £, = 1. Then, v3 is 1-step dominated by v or v, say vy. If
d(v1,v2) > 1, then v, is £3-step dominated by v3; so £3 = d(vy,v3) =
1. If d(v1,v2) = 1, then d(vq,v3) < 2. Now if £3 > 5, then a vertex at
distance 4 from v3 is not step dominated. Hence if s is the sequence
1,1, 43, then 43 < 4.
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Suppose, next, that f2 = 2. If d(v;,v2) > 1, then v; must be £3-
step dominated by vs; so d(ve,v3) = £3. Thus, v3 is 1-step dominated
by v;. Now let z be the vertex adjacent to v on a shortest va-v3
path (of length £3). Then z must be 1-step dominated by v;. Thus,
d(v,v2) = 2 and so £3 = d(v2,v3) < d(v1,v2) +d(v1,v3) = 3. On the
other hand, if d(v1,v2) = 1, then v; must be /3-step dominated by
v3; so d(vy,vs) = €3 > 2. Thus, v3 must be £2-step dominated by vs,
so d(vg,v3) = 2. Hence,

£3 = d(v1,v3) < d(v1,v2) + d(ve,v3) = 3.
Thus, if s is the sequence 1,2,¢3, then 2 < £3 < 3.

Case 2. Suppose that £ = 2. Then, by Claim 3, £2 < 3. Suppose,
first, that £2 = 2. Then v3 is 2-step dominated by v; or vz, say v1.
Thus, d(vy,v3) = 2. If d(v1,v3) # 2, then v; is £3-step dominated
by vs; so £3 = d(vy,v3) = 2. If d(vy,v2) = 2, then v3 must £3-step
dominate every vertex z adjacent to both v; and vz. Thus,

£3 = d(z,v3) < d(z,v1) + d(v1,v3) = 3.

Hence if s is the sequence 2,2, #3, then 2 < £3 < 3.

Suppose, next, that £o = 3. If d(v1,v2) # 2, then vy must be
{3-step dominated by vs, so d(vg,v3) = f3. Now if v3 is £o-step
dominated by vz, then ¢3 = fo = 3. If v3 is £;-step dominated by
vy, then d(v1,v3) = &1 = 2. Thus, v; must be £3-step dominated by
vg; 80 d(vy,v2) = fo = 3. Let z be the vertex adjacent to v; on a
shortest v;—v2 path (of length 3). Then z is £3-step dominated by
V3, SO

{3 = d(z,v3) < d(z,v1) + d(v1,v3) = 3.

Hence if d(v1,v2) # 2, then £3 = 3. On the other hand, if d(vy,v2) =
2, then v; must be £3-step dominated by v3, so d(v1,v3) = £3 > 3.
Thus, v3 must be £2-step dominated by vg, so d(vz,v3) = 3. Let =
be the vertex adjacent to vs on a shortest vz—vs path (of length 3).
Then = must be 2-step dominated by v;; so

£3 = d(n,v3) < d('U1,.'B) + d(z,v3) = 3.
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Thus, if s is the sequence 2,3, {3, then #3 = 3.

Case 3. Suppose that {3 = 3. Then, by Claim 4, {2 = 3. Hence
v3 is 3-step dominated by v; or v, say v1. Thus, d(v1,v3) = 3. If
d(v1,v2) # 3, then v; is £3-step dominated by vs; so £3 = d(v1,v3) =
3. If d(v1,v2) = 3, then let = be the vertex adjacent to v; on a
shortest v1—v3 path (of length 3). Then z must be 3-step dominated
by vy. Let y be the vertex adjacent to z on a shortest z—v; path
(of length 3). Then d(v1,y) < 2 and d(v,y) = 2. Thus y must be
£3-step dominated by vs; so

f3 = d(v3,y) < d(v3,%) +d(z,y) =3.

Hence if s is the sequence 3, 3,43, then 3 = 3. This completes the
proof of Theorem 10. O

4 The Upper Orbital Domination Number of
a Graph

The maximum length of a minimal orbital sequence for a graph G
is called the upper orbital domination number or, more simply, the
upper orbital number I',(G) of G. Consequently, for every integer ¢
(1<i<radQG),
Y(G) < pi(G) < To(G).

The only minimal orbital sequence for K,,, n > 2, is 1,1; 50 7,(K,) =
To(Ky) = 2. For the path Py, 7,(Ps) = 2 and T',(Py) = 4. The min-
imal orbital sequences 1,1 and 2,2,2,2 are illustrated in Figure 12.
Indeed, I'o(T) = 4 for every double star T'.

Oo—e—e—O *—e *—o
11 2 2 2 2

Figure 12.
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The difference between the upper orbital number and the or-
bital number of a graph can be arbitrarily large. We have seen that
7o(C4k) = 2k. Since px(Cax) = 2k, it follows that T'5(Cax) = 4k and
50 To(Car) — 7o(Cax) = 2k. The values of I'o(Cox+1) are not known
in general. The next result appears in [2].

Theorem C (Hayes et al. [2]) For any integer n 2 2,

n for n even
<
To(Pn) < { n—1 forn odd
In the next result, we characterize those graphs having upper
orbital number 2.

Theorem 12 A connected graph G of order n > 2 has upper orbital
number 2 if and only if edG =1 and §(G) > n —2.

Proof. First, assume that G has radius 1 and minimum degree at
least n — 2. If 6(G) = n — 1, then G = K, and certainly the only
minimal orbital sequence of G is 1, 1; thus I',(G) = 2. Hence we may
assume that §(G) = n—2. Let u be a vertex of degree n—2 and let w
be a vertex of eccentricity 1; so degw = n — 1. If we assign step 1 to
u and w, then every vertex of G is 1-step dominated. Consequently,
1,1 is a (minimal) orbital sequence of G.

Now let s be an arbitrary minimal orbital sequence of G. Since
degw = n — 1, it follows that w can only be step dominated by a
vertex with step 1. Thus, without loss of generality, assign step 1 to
a vertex  (# w). If degz = n—1, then z can only be step dominated
by a vertex with step 1. Assigning step 1 to any vertex adjacent to
produces a (minimal) orbital sequence of G. Thus, s:1,1. Suppose,
then, that degz = n—2 and s is not 1,1. So there is a unique vertex
y (# z) that is not adjacent to z, and so degy = n — 2. Hence if
step 1 is assigned to z, then all vertices of G are step dominated
except z and y. Since s is minimal, no other vertex of G can be
assigned step 1. However, since £ must be step dominated, y must
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be assigned step 2. However, then, y cannot be step dominated since
z has already been assigned step 1 and no other vertex of G can be
assigned step 1.

For the converse, assume that I',(G) = 2. First, suppose, to the
contrary, that rad G > 2. Then p2(G) is defined. If some vertex v
of G is assigned step 2, then no vertex assigned step 2 can simulta-
neously 2-step dominate v and all its neighbors. Thus p2(G) > 3,
which implies that I',(G) > 3, producing a contradiction. Therefore,
radG = 1.

Next, suppose that §(G) < n — 2. Let w be a vertex of eccen-
tricity 1 and let z be a vertex with degz < n — 2. Hence there exist
two vertices ¥ and z distinct from z that are not adjacent to z. If
we assign step 1 to y and step 2 to = and z, then every vertex of G
is step dominated. Thus, s:1,2,2 is a orbital sequence of G. Since
1,1 is the only orbital sequence of length 2, it follows that s must be
minimal, completing the proof. O

As a consequence of Theorem 12, the only trees with upper orbital
number 2 are K3 and P;. Next we characterize those trees with upper
orbital number 3.

Theorem 13 Let T be a tree. Then T'o(T) = 3 if and only if T =
K\ for some integer n > 3.

Proof. Assume, first, that T = Kj,, where n > 3. Then the
assignment of step 1 to an end-vertex of T and step 2 to two other
end-vertices of T" shows that 1,2, 2 is a minimal orbital sequence for
T. Since diam T = 2, every term of a orbital sequence for T is 1 or
2. The assignment of step 1 to the central vertex and an end-vertex
of T shows that 1,1 is a minimal orbital sequence for . Hence any
orbital sequence s for T of length 4 or more contains 1,1 or 1,2,2 as
a subsequence and thus s is not minimal. Therefore, I'o(T') = 3.

Conversely, assume that T" is a tree with I'x(T) = 3. Thus,
Yo(T) = 2 or 7(T) = 3. Thus, T is a star or a rooted tree of
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height 2 and diameter 4. If T is a rooted tree of height 2 and diame-
ter 4, then T contains Py as an induced subgraph. Since pz(P;) = 4,
it follows that po(T") > 4, and so I'o(T") > 4. Therefore, T is a star. O
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