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ABSTRACT. In this paper, it is shown that the necessary con-
dition for the existence of a holey perfect Mendelsohn design
(HPMD) with block size 5, type A™ and index ), namely, n > 5
and An(n — 1)h% = 0 (mod 5), is also sufficient for A > 2. The
result guarantees the analogous existence result for group divis-
ible designs (GDDs) of type A" having block size 5 and index
4.

1 Introduction

Let ADKny,ng,...,n, be the complete multipartite directed graph with
vertex set X = Uj<i<n Xi, where X; (1 < i < h) are disjoint sets with
| X;i| = n; and where two vertices z and y from different sets X; and X; are
joined by exactly ) arcs from z to y and A arcs from y to z. A holey perfect
Mendelsohn design (briefly denoted by (v, k, \)-HPMD) is an ordered pair
(X,A) where X is a v-set and A is a set of k-circuits (directed cycles
of length k), called blocks, which form an arc-disjoint decomposition of
ADKny,ng,...,n, with the property that, for any integerr (1 <r <k-1)
and any two vertices z and y from different sets X; and X, there are exactly
A circuits ¢ € A such that the directed distance along ¢ from z to y is .
Each X; (1 <7 < h)iscalled a hole (or group) of the design and the multiset
{n1,n2,...,nn} is called the type of the design. For a (v, k, \)-HPMD, we
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use an “exponential” notation to describe its type: a type 1:273% ... denotes
1 occurrences of 1, 7 occurrences of 2, etc.

A (v, k, A)-HPMD of type 1? is referred to as a (v, k, \)-PMD. If we ignore
the cyclic order of the vertices in the circuits, then a (v, k, \)-HPMD of type
h™ becomes a group divisible design with block size k and of group-type h™
having index (k — 1)A. The concept of HPMDs has played an important
role in the discussion of the existence of PMDs. Since a (v, k, A\)-HPMD
of type h™ contains An(n — 1)h?/k blocks, we obtain the following basic
necessary condition for existence:

Mn(n ~1)h% =0 (mod k). (1.1)

The existence question for HPMDs was posed in [11] and the existence
problem has been solved for (v, k, \)-HPMD of type A", where k = 3 and 4
(see [7, 8]).

For k = 3, the following theorem was established in [8].

Theorem 1.1. A (v,3,))-HPMD of type h™ exists if and only if An(n —
1)h2 = 0 (mod 3) except for the type 1% with A = 1.

More recently, the following result was established in [7).

Theorem 1.2. A (v,4,))-HPMD of type h™ exists if and only if dn(n —
1)h? =0 (mod 4) except for the types 2* and 1% with A = 1, and the type
h* where h is odd and ) is odd.

For the existence of (v, 5, A\)-HPMDs of type A", the results have not been
very conclusive to date. Only the case where A = 1 has been thoroughly
investigated and the following results were obtained in [4].

Theorem 1.3. The necessary condition for the existence of a (v, 5, \)-
HPMD of type h™, namely, n > 5 and n(n — 1)h? = 0 (mod 5), is also
sufficient, except possibly for the following cases:

(1) h=1,3,7 0or 9 (mod 10), k # 3, and n € {6,10,15,20, 30};
(2) h=3 and n € {6, 30,56};
(3) the pairs (h,n) € {(5,6), (15, 6), (15, 18), (15, 28)}.

The following results can be found in [5].

Theorem 1.4. Let A be an integer greater than one. A (v,5,)\)-PMD
exists if and only if v > 5 and Av(v — 1) =0 (mod 5).

In this paper, we shall investigate the existence of (v, 5, \)-HPMDs of type
h™ where A > 2 and show that the necessary condition for the existence of
a (v,5,)-HPMD, namely,

n > 5 and An(n — 1)h2 = 0 (mod 5) (1.2)
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is also sufficient for A > 2. It is also worth mentioning that the result of this
paper guarantees the analogous existence result for group divisible designs
(GDD:s) having block size 5, type A™ and index 4.

2 The Construction of (v,5,\)-HPMDs, A =0 (mod 5)

A quasigroup is an ordered pair (Q, -), where Q is a set and (-) is a binary
operation on @ such that the equations

a-z=bandy-a=>b

are uniquely solvable for every pair of elements a, bin Q. The multiplication
table of a quasigroup defines a Latin square, that is, a Latin square can be
viewed as the multiplication table of a quasigroup with the headline and
sideline removed. For a finite set Q, the order of the quasigroup (Q,-) is
|Q|. A quasigroup (Q, ) is called idempotent if the identity

r'=x

holds for all z in Q.

Two quasigroups (Q, ) and (Q,®) defined on the same set Q are said
to be orthogonal if the pair of equations -y = a and £ ® y = b, where a
and b are any two given elements of Q, are satisfied simultaneously by a
unique pair of elements from Q. We remark that when two quasigroups are
orthogonal, then their corresponding Latin squares are also orthogonal in
the usual sense.

Making use of quasigroups, we have the following construction.
Construction 2.1 If there exist three mutually orthogonal idempotent
quasigroups of order n, then there exists a (3n, 5, 5)-HPMD of type 3.

Proof: Let (Q,®;), j = 1,2,3, be the three mutually orthogonal idempo-
tent quasigroups of order n where Q = {1,2,...,n}. The required HPMD
will be based on Z3 x Q having holes Z3 x {j} ( € Q). The block set A
consists of the following 5-circuits:

((0:2)1 (0: .7)» (01 ] ] j)i (ls i ®2 .7): (11 i ®s3 .7)) (mOd 3» _))

((0: i)x (11 .7)1 (0’ i ®1 .7): (l’i ®2 .7): (0, i ®3 .7)) (mOd 3’ —):

((01 7'): (2sj)a (2: i 9] .7)1 (0’7: ®2 .7)» (11 i ®3 .7)) (mOd 3: _):
where (4,7) € Q and 1 # j. a
The next recursive constructions for HPMDs make use of group divisible

designs. A group divisible design (or GDD) of index J, is a triple (X, G, B)
which satisfies the following properties:

(1) G is a partition of a set X (of points) into subsets called groups,
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(2) B is a set of subsets of X (called blocks) such that a group and a
block contain at most one common point,

(3) every pair of points from distinct groups occurs in exactly A blocks.

The group-type (or type) of the GDD is the multiset {|G|: G € G}. As
with HPMDs, the group-type of a GDD will be denoted by an “exponential”
notation. A GDD (X, G, B) will be referred to as a (K,A)-GDD if |B| € K
for every block B in B.

Using our notation, a transversal design (TD) of index A, TD(k, A, m),
can be defined to be a ({k},A)-GDD of type m*. In addition, we can
define a pairwise balanced design (PBD) of index A, B(K,\;v), to be a
(K, A)-GDD of type 1v. Furthermore, a PBD B({k}, ;) is well known as
a balanced incomplete block design (BIBD) with parameters v, k and index
A. When K = {k}, we simply write k for K.

In the recursive constructions of GDDs and PBDs, the “weighting” tech-
nique and Wilson’s Fundamental Construction (see [10]) are quite often
used, where we start with a “master” GDD and small input designs to ob-
tain a new GDD. Similar techniques will be applied in our constructions
of HPMDs, where we either start with an HPMD and use TDs as input
designs or start with a GDD and use some HPMDs as input designs. We
shall make use of the following two constructions. For more details of this
technique, the reader is referred to [6, 11].

Construction 2.2 Suppose that a (v, 5, A\;)-HPMD of type {hy, ho, ..., hn}
and a T'D(5, A2, m) exist. Then there exists a (mv, 5, \; A2)-HPMD of type
{mhy, mhy,...,mhp}.

Construction 2.3 Suppose that there isa (K, A\;)-GDD of type {h1, ko, ...,
ha}. If for every block size u € K there is a (v, 5, A\2)-HPMD of type m*,
then there exists a (v’,5, A\;A2)-HPMD of type {mhy, mhs,...,mh,}.

As a special case of Construction 2.2, we have
Construction 2.4 Suppose that a (v, 5, \;)-PMD and a TD(5, Az, m) exist.
Then there exists a (mv, 5, A\; A\2)-HPMD of type m".

The following construction is a special case of Construction 2.3.
Construction 2.5 Suppose that there is a PBD B(K, \;;v). If for every
block size u € K there is a (v,5, \2)-HPMD of type m¥, then there exists
a (v/,5, A\1A2)-HPMD of type m".

We now list some known results for applying the above constructions.

Lemma 2.6. [2] There exists a TD(5,1,n) for every positive integer n ¢
{2,3,6,10}.

Lemma 2.7. (2] There exists a TD(6,1,n) for every integer n > 5 and
n & {6,10,14,18, 22}.
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Lemma 2.8. [9] For all positive integers r, there exsits a TD(5, \,r) where
A > 2 is an integer.

Lemma 2.9. [9] Let v > 6 and A be positive integers. If » = 0 or 1
(mod 3) and A =0 (mod 5), then there exists a B(6, \;v).

Lemma 2.10. [3] There exist three mutually orthogonal idempotent quasi-
groups of order n for every integer n > 5 and n ¢ {6,10}.

Lemma 2.11. There exists a (18,5, 2)-HPMD of type 3°.

Proof: Let the vertex set of the complete multipartite directed graph
2DKag3, .. 3 be X = Up<i<s X, where X; = {i,i+6 i+12} fori =0,1,...,5.
Then the block set A of the (18,5, 2)-HPMD of type 3% consists of the fol-
lowing 5-circuits:

(0,1,2,4,3) mod 18,
(0,2,1,15,10) mod 18,
(0,3,8,13,10) mod 18,
(0,3,13,11,4) mod 18,

(0,4,11,3,7) mod 18,
(0,7,5,14,9) mod 18.

]

The following result comes from the construction of a (54,5,1)-HPMD
of type 9% due to R.J.R. Abel [1].

Lemma 2.12. There exists a (18,5, 3)-HPMD of type 35.

Proof: Let the vertex set of the complete multipartite directed graph
3DK3g3,... 3 be X = Upgica X, where X; = {i,i+5i+10} fori=0,1,...,4
and X5 = {o0;: j = 1,2,3}. Then the block set A of the (18, 5,3)-HPMD
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of type 3% consists of the following 5-circuits:

(0,14,3,1,00;) mod 15,
(0,4,13,6,001) mod 15,
(0,3,2,14,001) mod 15,
(0,3,7,14,002) mod 15,
(0,14,7,3,002) mod 15,
(0,7,13,11, c02) mod 15,
(0,9,6,8,003) mod 15,
(0,6,8,4,003) mod 15,
(0,11,12,14, co3z) mod 15,
(0,1,9,7,8) mod 15,
(3,3 +u, 7 +2u,j + 3u,j + 4u),

where » € {3,6,9,12} and j € {0, 1,2} and all operations are performed in
Z1s. O

We are now able to present our main result of this section.

Theorem 2.13, For all positive integers h, n and X satisfying n > 5 and
A =0 (mod 5), there exists a (nh, 5, \)-HPMD of type h™.

Proof: From Lemma 2.9, we have a B(6, \;v) for each given value of A
where v >6 and v=0o0r 1 (mod 3). If v > 5 and v =2 (mod 3), we may
delete one point from a B(6,\;v + 1) to produce a PBD B({5,6}, \;v).
Consequently, a PBD B({5, 6}, A;v) exists for each integer v > 5 where
A = 0 (mod 5). We can then apply Construction 2.5, making use of a
(5h,5,1)-HPMD of type h® and a (6h, 5, 1)-HPMD of type h® from Theorem
1.3, to obtain the desired result for all stated values of h except where
h=1,3,7or 9 (mod 10) or h € {5,15}. From Lemma 2.6, we know that
a TD(5,1, h) exists for each of the above outstanding values of h except
for h = 3. Furthermore, for all integers n > 5 and A = 0 (mod 5), a
(n, 5, A)-PMD exists by Theorem 1.4. So, for all integers » > 5 and A= 0

(mod 5), we can apply Construction 2.4 to get an (nh, 5, A\)-HPMD of type
h™ where h = 1,3,7 or 9 (mod 10) and h # 3, or h € {5,15}. It remains
to deal with the case h = 3. Construction 2.1 together with Lemma 2.10
provide us with a (3n,5,A\)-HPMD of type 3" for all stated values of A
and n ¢ {6,10}. Now, for n = 6, we write A = 2s + 3t where s and ¢ are
nonnegative integers determined by A. A (18,5, )-HPMD of type 3% can be
formed by taking s copies of a (18, 5,2)-HPMD and ¢ copies of a (18,5, 3)-
HPMD with type 3% which exist by Lemmas 2.11 and 2.12. For n = 10, we
have a (30, 5,1)-HPMD of type 3!0 from Theorem 1.3 and hence we have a
(30,5, A)-HPMD. of type 31© for all stated values of A\. This completes the
proof. O
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3 The Main Result

In this section, we establish our main result. In view of Theorem 2.13, we
need only to determine the existence of (nk, 5, A\)-HPMDs of type k" where
A # 0 (mod 5). Furthermore, when A > 4, it can be written as A = 2s 4 3¢
where s and ¢ are nonnegative integers determined by A. An (nh,5, A)-
HPMD of type h™ can be formed by taking s copies of an (nh, 5,2)-HPMD
and ¢ copies of an (nh,5,3)-HPMD with type h™. Therefore, it suffices
to establish the result for the case where A = 2 and 3. It is important
to observe that the necessary condition for the existence of an (nh, 5,\)-
HPMD of type A" is the same for A = 1,2 and 3. Consequently, for the
most part, the results have been established in Theorem 1.3. What we need
to do is to tackle the possible exceptions listed in Theorem 1.3; namely,

(1) h=1,3,70r 9 (mod 10), h # 3, and n € {6, 10, 15, 20, 30};
(2) k=3 and n € {6,30,56};
(3) the pairs (h,n) € {(5,6), (15,6), (15, 18), (15, 28)}.

We first deal with the cases (1) and (3) above.

Lemma 3.1. Both an (nh, 5,2)-HPMD and an (nh, 5, 2)-HPMD with type
h™ exist if h and n satisfy each of the following:

(1) h=1,3,7 or 9 (mod 10), h # 3, and n € {6, 10, 15,20, 30};
(2) (h,n) € {(5,6),(15,6),(15,18),(15,28)}.

Proof: From Lemma 2.6, we know that a TD(5,1, k) exists whenever
h =1,3,7 or 9 (mod 10) and ~ # 3, or h € {5,15}. By Theorem 1.4,
we also know that both an (n,5,2)-PMD and an (n,5,3)-PMD exist if
n € {6,10,15, 20, 30}. So, Construction 2.4 can be applied to establish the
conclusion for h = 1,3,7 or 9 (mod 10), h # 3 and n € {6, 10, 15, 20, 30},
or (h,n) € {(5,6),(15,6)}. Now for (h,n) € {(15,18), (15,28)}, note that a
(90,5, 1)-HPMD of type 58 and a (140, 5, 1)-HPMD of type 528 were shown
to exist in Theorem 1.3. Applying Construction 2.2, using a TD(5, 2, 3) and
aTD(5,3, 3) from Lemma 2.8, gives the result. This completes the proof. O

Now we turn to the case where h = 3 and n € {6, 30, 56}.
Lemma 3.2. If A =2 or 3 and n € {6, 30, 56}, then a (3n,5, \)-HPMD of
type 3" exists.

Proof: For n = 6, the constructions are provided in Lemmas 2.11 and 2.12.
For n = 30, we first create a B({5, 6}, 1;30) from a T'D(6, 1, 5). For n = 56,
we first create a B({5,6,11},1;56) by deleting all but one point from a
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group of a TD(6,1,11). We then apply Construction 2.5, using (3n, 5, \)-
HPMD:s of type 3" for n € {5, 6,11}, to establish the conclusion. O

The foregoing can be summarized in the following theorem.

Theorem 3.3. Let A > 2 and X # 0 (mod 5). Then the necessary con-
dition for the existence of an (nh, 5, X)-HPMD of type h™, namely, n > 5
and An(n — 1)h? =0 (mod 5), is also sufficient.

Theorem 2.13 and Theorem 3.3 together give our main result.

Theorem 3.4. Let A\ > 2 be an integer. Then the necessary condition
for the existence of an (nh,5,\)-HPMD of type h™, namely, n > 5 and
An(n —1)h% =0 (mod 5), is also sufficient.

As already mentioned, the existence of an (nh, 5, \)-HPMD of type A"
implies the existence of a GDD having block size 5, type h™ and index
4). However, it should be pointed out that the converse is not necessarily
true. As a consequence of Theorem 3.4, we have essentially established the
following analogous result for GDDs.

Theorem 3.5. Let X\ > 2 be an integer. Then the necessary condition for
the existence of a GDD having block size 5, type h™ and index 4\, namely,
n > 5 and An(n — 1)h? = 0 (mod 5), is also sufficient.
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