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Abstract

The following partition problem was first introduced by R.C. Entringer
and has subsequently been studied by the first author and more recently
by Bollobds and Scott, who consider the hypergraph version as well, using a
probabilistic technique. The partition problem is that of coloring the vertex
set of a graph with s colors so that the number of induced edges is bounded
for each color class. The techniques employed are non-constructive and
non-probabilistic and improve the known bounds in the previous papers.

1. Introduction

We split this paper into two parts. In Part I we restrict our attention
to the case s = 2 and improve the first result [6] that verified the original
conjecture of Erdos. Some useful sets employed in [6] are modified. In
Part IT we use our result from Part I and improve the bound given in [7).
The reader who is familiar with the previous work may skip the following
paragraphs; we make every attempt to be consistent with our previous
notation.

For our purposes, graphs are finite and simple. We use the standard
notation as in [3]. For a given graph G, let (U, ...,U,) denote a partition
of V(G) into s-classes; we also refer to (Us, . .., Uj,) as an s-coloring of V(G),
where U; denotes the vertices colored j. Let e(U;) denote the number of
edges in the induced subgraph G[U;] and let 4,(Uy,...,U,) = 1’2?2‘3{6(11‘)}‘

The problem is to minimize -y, over all partitions (U}, ..., U,); define 7:(G)

= (le,rlelu') Ys(U1,y. .., Us).

Paul Erdds conjectured [5] 72(G) < ﬂf—")- + O(\/e(G)), where €(G) de-
notes the number of edges in G. In [6], the first author verified the con-
jecture and showed it was best possible. Roger Entringer [4] posed the
problem to find 2(G) and proposed a related matrix discrepancy problem.
The solution of the matrix problem, Porter and Székely [9], gives a bound
asymptotic to 7,(G), however it did not lead to a solution of the partition
problem. In (7], the first author gives an upper bound for 7,(G) when s is
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a power of 2, i.e.,, s = 27. In [1], Bollobas and Scott, using a probabilis-
tic technique, give various upper bounds on v,(G) for any s. In [2], they
extend the problem and study the analogous hypergraph model. In this
paper we use a non-constructive, non-probabilistic technique that gives an
upper bound for 7,(G) that depends on the size of G. In {10], Shahrokhi
and Székely show that the computation of v, is N P-hard.

Let e[Uy, - .., Us) = {zizjlziz; € E(G), z; € Uy, z; € U;}|, where i # j,
and define M,(Uh,...,U;) = e[Uy,...,U], and

M,(G) W Inax )Ms(Ul» U)

We refer to M,(G) as the max s-cut of G.
2. Partl

Given a finite and simple graph G, let (U, V) be a bipartition of V(G).
Then, UUV = V(G), UNV = 0. Define y(U,V) = max{e(U),e(V)},
72(G) = min {'y(U V)}. Let e(U,V) = |{uv:uv € E(G), ueU,veV},

and du(.'c) to be number of vertices in U adjacent to z (z € V(G)). Clearly,
e(U,V) = E dv (z).

Theorem 1.
2(G) 8
0 1 (1" 9e(G))'

A series of lemmas will give the proof of the theorem. Define Q
(max{e(U ,V)}, Qisknown as the max cut of G. Let S = {(U,V) : e(U, V)

2}, note S # 0.
Lemma 1. For any (U,V) € S, we have e(U,V) 2> 2¢(U, V).

Proof. Suppose e(U) = max{e(U),e(V)} = v(U,V). Then for any z € U,
dy(z) > dy(z) (otherwise, Izo € U with dy(zo) > dv(zo). Then (U -
x, V +xp) is a bipartition of V(G) with e(U —zo, V +z¢) > e(U,V) =Q
contradicting the definition of §2). Hence,

e(U,V) =) dy(z) 2 Y du(z) = 2¢(U) =2v(U, V).

zelU z€U

O

Define T = {(U,V) : e(U,V) > 29(U,V)}, since S C T, T # 0. Let
a= mTi'n{'y(U, V)}. Let (A, B) € T with e(A) = y(A,B) = aand A =
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e(A) ~e(B) > 0. If A =0, e(A) = e(B). Then
e(4) _ e(A) e(4) _1
e(G)  2e(A)+e(A,B) ~ 1e(A) 4
as e(A, B) > 2e(4). So, B} < L since 7,(G) < e(A).

Following we consider the case of A > 0.
Define

X={x€A|dB(a:)>%A},

3
Y= {vealanm 0w <3a}.
Note e(A4) = e(X) + e(Y) + e(X,Y).
Lemma 2. For any vertezxy €Y, dp(y) > 3da(y).

Proof. Otherwise 3yo € Y, da(yo) < 3da(yo). As e(A — y) = e(A) —
da(Yo); &(B +yo) = e(B) +dp(yo); e(A~yo, B+10) = (A, B) +da(yo) —
dp(yo), then:

e(A - yo, B +yo) = e(A, B) + da(yo) — da(wo)
> e(A, B) + da(yo) — 3d a(yo)
2 e(A, B) — 2da(yo) > 2(e(A) — da(wo))
= 2e(A — yo);
e(A — yo, B + yo) = e(A, B) + da(yo) — d(y0)
> 2e(A) + da(yo) — ds(yo)

1
> 2e(B) +2A + gdB(yO) - dB(yo)

> 26(B) +2- 3d5(u0) + 3da(s0) ~ d(0)
= 2¢(B) + 2dg(yo) = 2¢(B + y),

since dp(yo) < 3A. Therefore e(A — yo, B + yo) > 2v(A — yo, B + 1)
So (A —yo,B+ ) € T. But as da(yo) # 0, e(A — yo) < e(A), and
e(B + o) = e(B) + dp(y) < e(B) + 3A < e(A), hence 7v(A — yo, B +
¥o) < e(A) = o, which contradicts the definition of a. Therefore, Vy € Y,
ds(y) > 3da(y). ]

Define { by € Y da(y) =e(Y) +e(X,Y). Since Y da(y) =e(X,Y)+
YyeEY 34
2€(Y)) 5 <1

Lemma 3. Ife(X) =0, then%%}<;}.
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Proof. e(A,B) = Z dp(y) 2 E dp(y) > 3 Z da(y) by Lemma 2, and,

e(A) = e(X) + e(Y) + e(X, Y) = e(Y) + e(X Y) 13 Z da(y). So, since
3

£<1,

e(4) _ e(A)
e(G)  e(A) + e(A, B) +¢(B)
£ 2 da(y)
e(A)

<1
<3

= @) +eAB) " & Z dA(y) +3 Z da(y) ~

O

For e(X) # 0, let k = |X|. Then e(X) = ﬂ‘ﬂf{—lz for some ¢ < 1. Clearly,
k>2.

Case I: A< gc(k—1):
Since e(A, B) > 2¢(A), e(G) = e(A) + e(B) + e(A, B) 2 ¢(A) +e(4) —
A + 2¢(A) = de(A) — A.

So,
e(4) _ (4) o _ed)
e(G)  e(A)+e(B)+e(A B) ~ 4e(A)-A
e(X)+& X da(y)
_ yEY
de(X) —A+4€ Y daly)’
yeY
Lemma 4.

e(x) <t (46()() A+\/§(4e(X)—A)).

Proof. 1t is sufficient to show that e(X) < 1(4e(X) — $c(k — 1)+
\/-3-(443(){) —4c(k—1))), since A < #c(k — 1). That is, §e(k - 1) <
V3 \fae) — felk = 1) = V& - el = 1)(2k - §), because 4e(X) ~
dc(k — 1) = 2ck(k — 1) — §e(k — 1) = c(k — 1)(2k - 3.

That is, $/c(k - 1) < g\/kTg Since c < 1. O
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Hence, Theorem 1 holds under Case I by the following;:
e(A) =e(X)+£)_ da(y)

yeY

(4e(X) -A+ \/ 5 (4e(X) - A))) +€) da()

yeY

‘Blr—t

(4e(X) A+46) " daly)

yeY

yeY
< (e(G) + \/ge(a)) :

e(G) > de(A) - A =4e(X) = A+4€ > da(y).
yeY

since

O

Case II: A > 3c(k-1)
Notice e(A) = e(X)+e(Y)+e(X,Y) =e(X)+¢& 2 da(y), and e(G)

2¢(A) + e(A,B) — A =2e(X)+ 2¢ Z da(y) + e(X B) +e(A\X, B) —

hence
e(A) e(X)+€y§,dA(y)

e(G)  2e(X)+e(X,B) - A+2 z; da(y) + e(A\X, B)
ye

Lemma 5.

e(X) < & (2e(X) +e(X,B)—A+ \/ 8 (2e(X) + e(X, B) - A)) .

Proof. Since (X, B) > 3Ak, and e(X) = M‘-—'—l then 2e(X) +e(X, B) —
A>ck(k-1)+3 2Ak - A = ck(k— 1)+A(3k 1) Since k > 2, 3k—1 >0,
as A > e(k— 1), 2¢(X) +e(X,B)— A >ck(k—1)+ 3c(k-1)(3k-1) =

c(k — 1)(2k — §). Hence it is sufficient to show e(X) = ?ﬂf—ll < §(e(k-

1)(2k - §) + \/-S-c(k —1)(2k - 4)).
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We need 3c(k—1) < \/gc(k - 1)(2k — §); thatis \/e(k — 1)-3 < ,/§ - 2-

k- %, ie, e(k—1) < /b~ -§-, since ¢ < 1 the last inequality holds.

Since e(A\X,B) > e(Y,B) = Y dp(y) >3 Y da(y) by Lemma 2,
yeY yeY

I3 E da(y) £ y%;,dA(y) 11
e dA(y)+e(A\x B) %S daw)+3 3 daly) =5 1
yeY yeY
Henoe,
e(A) = e(X)+£€ Y da(y)

yeY

< ! {2e(X) +e(X,B)-A+ \/§(2e(X) +e(X,B) - A)}

+ {2 T ) +eta\x,5)}

yeY

< %{ (26000 +2,5) - +26 3 dat) + e(4\X, B))

yeEY

(2e(X) +e(X,B)— A+2¢ ) da(y) +e(A\X, B))}

yeY
1 8
=3 (e(G) + ,/ge(G)) .

Combining Case I and Case II we have Theorem 1, i.e., since

72(G) < 7(A, B) = e(A), 72(((?)) < egg; =4 (1 + V %) '
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Note 1: Comparing with [6], this paper changes the definition of X, Y
from

X= xeAldB(z)>%A},

Y

v € Alda) £0, dalw) < 50} to
X = {meAIdB(z)> %A},
v ={veatdum#0 00 < 34},

Then we sharpen the bound of 2 9 from ;}(1+‘ /;(2@7) tol (l-l- g;?zsy),

which then gives us the following inductive argument that produces the
asymptotically best general result.

3. Part II

Given a graph G, take a partition (U1, Us,...,Us) of V(G) into s classes
with JU; = V(G), U;sNU; = 0 for i # j. Let 4,(Uh,...,Us) = max{e(U1),
e(U),...,e(Us)}, where e(U;) denotes the number of edges in the induced

subgraph G[U;), and 75(G) = min__v,(U1,...,Us).
(U1,y.sUs)

Theorem 2. If s = 2, then 7,(G) < %R + &, /e(G), where k = %(\/5+

;g) = 1.3081.

If p=1, then s = 2. From Theorem 1, 12(G) < %(e(G) + -g-e(G)) =

1e(G) + 2 /3(G). As £ < g(k=§(\/5+ %"’:)), 12(G) < 42 +
2 /e(G) for s=2.

Now we consider p > 2, then s > 4. We consider the following two cases.
Case 1: ¢(G) < ’—;-

Lemma 6. If (Uy,Us, ..., Us) is a maz s-cut of G, then max{e(Uy),...,
e(Us)} =0.

Proof. The proof is by contradiction, i.e., assume e(U;) = max{e(U1, e(Uz),
...,e(Us)} > 0. Suppose ab € e(Uy) wherea,b € V(U,). As (Uy,Us,...,Us)
is a max s-cut, VU;, U; € {Uh,...,U,} (i # j), we have dy,(z) 2 dy,(z),
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Vz € U; (please see the proof in Lemma 1). Thus, e(U;,U;) = Y dy;(z) >
IG i

E du,(:z:) = 2¢(U;). Similarly, e(U;,U;) > 2e(U;). So _Ee(Ul,Ui) >

2(3 —1)e(U1) = 2(s — 1). We first show Vi,5 # 1,1 # j, e(U,, Uuj)2 1
Contrarily, assume there exists such 4,5 # 1, i # j, with e(U;,U;) =
0. Thenlet Ui = U; UU;, U] = o, U] = Uy —a, Uy = Ui (k # 1,
1,j). Thus (U},...,U;) is another s-cut. But, obviously, 3 e(U},U}) >
i#

; e(Ui, Uj) + 1 (because at least ab is a new edge in the cut (U}, U})) and

M,(Uy,...,U}) > My(Uy,...,Us), contradicting that (Uy,...,U,) is a max
s-cut. Hence Vi,j # 1, i # 7, e(U;,U;) 2 1.
Thus,

e(G) = 2 e(U,-) + ZG(U.', Uj)

i=1 i#]

> e(Uy) + ie(Ul’Ui) + Y eU;,U)

i=2 i3 i

21+2(s-1)+(’;1)

2 _
=1+2s—2+-s-$-2-
245  s?
=3 >-2—.

But, since ¢(G) < %, we have our contradiction.

Therefore, max{e(U), e(Uz),...,e(Us)} =0.

So, vs(U1,...,Us) = 0if (Uy,Us,...,Us) is a max s-cut. Thus, 7,(G) =
because 7,(G) = Umm 7s(Uh,...,Us), then, of course, 7,(G) < 9—&@ +

1y o:)

§\/e(G). (]

Case 2: ¢(G) > 92-3
The proof is by induction on p. From the former proof we have v,(G) <

ﬂ,-g"-)-+!2‘-\/e(G) for p = 1. Suppose when s = 2P~1, 7,(G) < 5&-?1+§\/e(0)
holds. Now we consider s = 27.
Let (Un,...,Uszs—1) be a 2P~ 1-partition, which satisfies:

G k
Yor-1 (U1, ..., Usge-1) < ;2(17—)2 + — -1 TV e(G).
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For each U;, let (A;, A}) be a bipartition satisfying

T2(Ai, A}) < i-(e(U.-) + \/ %e(Ui)) (by Theorem 1).

Thus, (A1, A},..., Agp-1,As,_,) is a 2P-partition. Then,
1 2

72P(G) < Yor (A]_, A’lr cery A2P'1:A’2P—l) = 1<“232-7§ . 72(A11A1)

FERHCCRCTY)

<4{e(G) +L «(C)

22p—2

3(53+ v}
Hence, it is sufficient to prove
{52 st S )
< eéf,)
That is, \/ (-2-},,—_),+2,.—_n/€(5') < 551 Ve(G).

That is, 55(,,:)5' +—2?:r\/ e(G -g,,—_; C(G), that is, 2,——_1- < (gkz 1)
m e(G) 2 3.
Ase(G) > & = &7, /e(G) = %, it is sufficient to show zEy <

e(G).

(3K = 1) gz -
That is, k < \/"(91:2 —1),ie, k2 §(V6+ J5). Ask=§(V5+ %),
k < VE(SR? —1). S0 7(G) < 42 + £ /e(0).
Therefore, for any G, when s = 27, 7,(G) < %ﬁl + %’-\/e(_G), k=
4(v5+ ).

Note 2: Let G = K n41, then 75(G) = 51?-)- + 715; - Ve(G).
Hence, our result, v,(G) = _(,.2 + O(@) is the best possible.

sjh; Il

Conclusions

We summarize the known results. For any graph G, there is a partition
(Us,...,U,) of V(G) so that e(Us) < R + R, 1< i < s.
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For s = 27P:
Theorem 3. R = 0(3@) .

For general s:

(Bollobas, Scott [1]) R = min{(Ae(G)logs)?, (4¢(G))¥(logs)3} where A
denotes the largest degree in G.

(8]

10.

: R=4s/e(G).
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