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Abstract

A t-partite number is a t-tuple # = (n,,...,n:), where ni,...,n, are
positive integers. For a t-partite number 7, let f;(7) be the number of
different ways to write 7 as a product of ¢-partite numbers, where the
multiplication is performed coordinate-wise, (1,1,...,1) is not used
as a factor of 7, and two factorizations are considered the same if they
differ only in the order of the factors. This paper gives the following
explicit upper bound for the multiplicative partition function f;(7):

fe(n, ... ne) € M¥®), where M = ITi_n; and w(t) = 28{EE0N,
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1 Introduction

A t-partite number is an ordered t-tuple (ni,...,n;), where each n; is a
positive integer. A multiplicative partition of the t-partite number 7 #

(1,1,...,1) is a representation of 7 as a product of ¢-partite numbers

(al,l, seey al,t)(a2,lx .. ,az,t) RN (ar,h veey ar,t)a

where n; = II}_a;; for each i, 1 < ¢ < t (i.e., the multiplication is
performed coordinate-wise), and (1,1,...,1) is not used as a factor. Let
fi(ni,...,ns) denote the number of different multiplicative partitions of
(n1,...,m). Two multiplicative partitions are considered the same if they
differ only in the order of the factors. Thus, (2,2)(2,1)(1,2) and (1,2)(2,2)(2,1)
are considered to be the same multiplicative partitions of (4,4), while
(2,1)(2,1)(1,4) and (1,2)(1,2)(4,1) are considered different. For exam-
ple, f3(4,3,2) = 11, since the eleven multiplicative partitions of (4,3,2)

are:

(4’ 3,2) (4,3, 1)(1: 1, 2) = (4: 1, 2)(17 3, 1) = (4» 1,1)(1,3, 2)
(4,1,1)(1,3,1)(1,1,2) = (2,3,2)(2,1,1) = (2,3, 1)(2,1,2)
(2,3,1)(2,1,1)(1,1,2) = (2,1,2)(2,1,1)(1,3,1)

(2,1,1)(2,1,1)(1,3,2) = (2,1,1)(2,1,1)(1,3,1)(1,1,2).

It is clear that for all n > 1 and ¢ > 1, fi(n) = fi(n,1,1,...,1) and, more
generally, that if 7 < ¢ then fi(ny,...,n.,1,1,...,1) = fr(n1,...,n.).

The multiplicative partition function f; was introduced by MacMahon
[9). Hughes and Shallit [7] proved that f;(n) < 2nV™ for all n. Dodd and
Mattics [4] improved the bound to fi(n) < n; and later they lowered it
further, showing that

i) < o
for all n > 1, n # 144 (see [5]). Asymptotic results involving fi(n) were
studied by Oppenheim [10] and Canfield, Erdés, and Pomerance [3].
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Landman and Greenwell [8] generalized the notion of multiplicative par-
titions to bipartite numbers and proved

(mn)1.516

fz(m,n) S W

This was improved by Hahn and Kim [6] who showed that
f2(m,n) < (2160)(mn)!-143,

In this paper we obtain a general upper bound for the multiplicative
partition function f;(7). We prove that

ft(nlv v .,’I’Lg) S Mw(t)a

where M = II{_, n; and w(t) = %{;’;—;m (note that for ¢ = 1 this reduces
to the result of Dodd and Mattics that fi(n) < n). We also show that the
function w(t) is essentially the best possible such that M*(® is an upper
bound.

Throughout the paper we use the following notation. Let N denote the
set of all positive integers, and let p, = 2, p» = 3, ... be the sequence of
primes. If 7 = {r;}$2, is a nondecreasing sequence of real numbers with

r; > 1, the arithmetic function F is defined by

- 1 . ] ln L] 2
F(r,n)—§grj_1+\f(§grj_l) +1

for each nonnegative integer n. For a sequence of real numbers 7 = {r;}2,,

the completely multiplicative function h(7, -), whose domain is N, is defined

as follows:
h(7,1) = 1; h(F,p:i) = ri; h(F,ab) = h(7,a)h(F,b) for all a,b € N.

Let B, = fi(pip2...pn) be the nt® Bell number, that is, the number of

partitions of an n-element set (see, for example, [2], page 277).
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2 Bounds on the Number of Multiplicative
Partitions
To get an upper bound for f;(7@), we first estimate, in the next theorem,

the upper bound for f;(m). We will need the following two lemmas.

Lemma 1 Let p be a prime and assume p?|s. Let a be the greatest integer
such that p*|s. Then

(@), B0 @) ) 2 @)

Proof. Note that if dl%, but d |4, then d = rp where r|%. Thus, for such
ad, fi (%) = fi (). Thus
s s s
S h (—) = Zfl <—)+Zf1 (—) (1)
s dp an dp? vk dp
Substituting the identity
s s s
Sa(z)= T a(am)+n(3)
d| % dp d|45 ,d>1 dp? »

into (1) yields the result. [ |

Lemma 2 Leta > 2 be a positive integer, and let ¥ = {r;} be a sequence of

real numbers with r; > 1. Let n = p{'p3? ...p%» and y = [;" L. Then

L NPy . y
DB =) < A nph)
din Tm+1

Proof. Since

W7 np;‘n“) _ M7 np‘,‘.:ﬂ),
d Tm+1h(7;d)

it suffices to show that 3=, zry < ¥- Now,

1 O 1 1 1 T — 1%
— = 1+—F+F-db——)=]2——<
%h(i“;d) [0+ S+ gt rm=11""r <

i=1 4 i=1
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as desired. [ ]

In (2], Dodd and Mattics use the fact that, for p a prime not dividing
n, fi(np) = de f1(d). We will make use of this same fact in the proof of

the following theorem.

Theorem 3 Let 7= {r;}{2, satisfy

ron 2 F(Ri) = 5+ /(%)2 41 )

Jor all i > 0, where y; = Hk—1 = is for k > 0. Then fi(z) < h(F,z) for

each positive integer x.

Proof. The desired inequality obviously holds for z = 1. Let n = []i-, p%
and n' = np}, ;. By inductive assumption, we may say f;(z) < h(7; z) for

all z, 1 < z < n’. We may assume a > 2 since

[pmer) = Y fild) < D A =[[A+ri+ -+ +78) = h(Fn)ym

din din i—1
< h(Fn)rmyr = MFnpm4s).

For z a positive integer, denote by M(z) the number of multiplicative
partitions of x which have pp, 41 as a part, and let N(z) denote the number

of multiplicative partitions of z which do not have p,, as a part. We then

have
A@)) = M(n')+ N(®n')
< M@+ N
< M@+ ‘dp,,.+1’
d| 52 d>1
nl
= Ao+ T fl(d ) -
Pm+l N Pm ’
alpﬂ“ d>1 a|,,ﬂ+l d>1
< > fl(d )- > M(5
' Pm pm+1
A5 dlzF a1
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_n'
d
pm+1 m+l

= Zfl( -) - filsz—).
dpmy 'Zd>ll pm+

Hence, by Lemma 1,

Hn) < fi( )+ > Al ). (3)
p’ rl dpm
By (3) and the induction hypotheses, we have
Ay < BB | 5 2 @

m+1 din

Note that (2) implies that 1+ rmym < 2, ;. Thus, by (4) and Lemma
2, we have

+Im ) < w7,
Tm+1

fitn') < h(Fn

completing the proof. [ |

We now present three examples which result from Theorem 3. These
will be used later in the paper.
Example 1. Let r; = r; = r3 = 2.88 < 24§, Tit1 = J.M_(l%;"l.lﬂ for
3 <i <15, where | | is the floor function, and r; =% + 2 for i > 17. Then
since F(71) < ri41 < i+ 2 for i <15 and, for i > 16,

2
. 16
o _ 1+2 Tj i+2 Tj
Fre) = 218 -1 (2 18 4 r,—1) 1

< 37718 2 18

< t4+2=ri,

1+117.99 (z+1 17. 99) 1

we have fi(n) < h(F,n).

Example 2. We have that fi(n) < n, since

i+1 i+1

F({j+1}?i1ii)=T+ 5 <i+2< piys fori > 0.
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Example 3. Let r;, = /5.5, ro = V5.5, 13 = 3.34, r4 = 4.56, and r; =
i+ 1.6 for i > 5. Then we notice that f;(n) < h(F,n), since F(7,i) < riq1
for 1 <4 and

Fri) = _55:334:456-(i+16) ( 174515 - (i + 1.6) )2 1
’ 2(v/5.5 — 1) -2.34-3.56 - 5.6 194676(v/5.5 — 1)?

i+ 1.6 i+1.6\°
1
10, ( . )+
1+26=ri

A

A

for ¢ > 5.

The next three lemmas show how to obtain upper bounds for f; from

the upper bounds for f;.

Lemma 4 For each i = 1,...,t, let {gi1,...,qi;m;} be a set of distinct

primes. For each i, let

m; 3

ai, —

zi=[[ ey, si=) mu, and
j=1 k=1

my m2 mg me
l' ’. a. 0. "
y=|[Io5*7 | | TLo53d ) { I 2530 | - | TD P, ) »
j=1 j=1 J=1 j=1

where all of the a; ;’s are positive integers. Then fi(z1,...,2¢) = fi(y).
Proof. With each factorization of y:
y= (1 P53 ot ) (BT e par ™) -+ (TP - Pe ™),
we associate the following factorization of (z,,...,z):
(Z1y..yxe) = (01,152 b1,e) - - (bray- -, brg)s

where b;1 = ¢f'f’ - gf';7 and, for 2 < j < ¢, bij = [[52, o5~ **. This
association gives a one-to-one correspondence between the set of multiplica-

tive partitions of y and those of (z1,...,z:). |
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As an example, according to Lemma 4,

f4(6,4,2,2) = f1(2%-3-5-7-11) = £,(60,6) = f5(4,2,2,2,2).

Lemma 5 If fi(m) < h(7,m) for all positive integers m where 7= {r;}2,
is a non-decreasing sequence of positive real numbers, then for all t-partite

numbers (ny,...,ng),

t
filny,...,m) < Hh(.‘}',ni), where 8; = HZ_(, —1)e+1 T for] >1.

i=1
Proof. By Lemma 4 we may assume that for each i = 1,2,...,t, n; =
Hf;l p;' 7, where a;; > 0 and {a,,,} i, is a non-increasing sequence of
positive integers. Let k = max;<i<:{ki}, and let
oo Jai; H1<j<k
iVl 0 ifki<j<k
For fixed j, let {d; j }1<i<t be a rearrangement of {c; ;}1<i<¢, where {d; j}1<i<:

has non-increasing order. By Lemma 4,

ft(nl, ceey nt) f ((pcl ! p:t'l) :-ll-'i p;ttz) vt (p‘(:]lc':nt.'.l v 'p;‘t'k))

d d d d d
fl((P b Ptt'l)(Pt-:.'f . -pzi") e (P(;fl)g.,.] . 'Pk;'k))

d d dy, de2y- dyg - d,
S (7- 1.1 Y "l)(rt_:_: . .1'2; 2) cos (1'(,: kl)t+1 . .rk;")
< d11 .. d: 1)( diz sgz,z) (sdnh ._szt.k)
< (si1.1+"~+01.1)(slz::.2+"'+ct,2) .. (SZI.A+"'+C1.I¢)
t
= [[AGEn).
=1

Lemma 6 If fi(m) < h(7,m) for all positive integers m, where ¥ = {r;}32,
is a non-decreasing sequence of positive real numbers, and « is a real number
such that [T'e, 75 < (ITj=y p5)'e fori > 1, then fu(ny, ..., ne) < M@, where
M= Hi:l n;.
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k : . . .
Proof. Let m = [[;_, p¥, where {a;}%, is a non-increasing sequence of

positive integers. Then

i=1 i=1 \j=1

k k[ i b
h(s,m) = [[ s < H(Hm) =m?,

where s; = Hf;(j—l)t+l r:/‘ for § > 1, by = ax, and b; = a; — ai41 for

1 <i < k—1. The lemma follows from Lemmas 4 and 5. |
From the above lemma, we have
Proposition 7 fo(m,n) < (mn)!-2%.

Proof. Let r; be defined as in Example (3). Since rz;_172; < (2i+1.6)% < p?
for i > 7 and [[2, rj < ([T}, P)'2%8 for i < 6, we see that

2% i
IIri < (I A" fori>1.
i=1 j=1

The desired conclusion follows from Lemma 6. | |

We need the following well-known formula (see, for example, (7, page

200]) to prove the next lemma.

Theorem 8 (Stirling’s formula)
7 1
g <log(n!) — (n + E)logn+n <1
forne N, n2>2.
From now on, we use w(t) to denote '35{%)—!.

Lemma 9 Let t > 11 be an integer. Then

S log(2t + 1)! — log(t + 1)!

t) tlog3 (5)

That is, 3°® > ]2, (i + 1)/%.

167



Proof. Tt is enough to show that

log 6 | !
fog 2 log(t + 1)! — log(2¢t + 1)! > 0.
By direct calculation, one can see that (5) holds for all ¢, 11 < ¢t < 42. By

Theorem 8, we have

}%E-S log(t + 1)! — log(2t + 1)!
> 2.5((t +3/2)log(t + 1) — (t + 1) + 7/8]—[(2t + 3/2) log(2t + 1) — (2t + 1) + 1]

>t[mt—"2'l-);l-—210g2] + (48 = 3)log(t + 1) — 35 — lou2

4 2 2
> 42 ['25% —2log2] + (% — 2)log44 — 38 _ 3182
>0
for t > 43. |

Lemma 10 Let t and ! be positive integers. Then we have

log(lt + 2t + 2)! — log(lt + t + 2)!
tlog(2! + 3)

That is, (2 +3)¥® > [T, (i +2)1/¢ for t > 3.

w(t) > fort>3.

Proof. Fix t > 3. Let H(z) = 2t for 5 > 1. Then H(z) is a
decreasing function of 2 since

t 2 t 2

ooy _ _
log(22+3)H'(2) = 53 " 2e 43 mratr2 2+3 -

0.

Therefore we have

log(3t + 2)

w(t)— =t BEE R 24D o s ey H (1) = w(e)- =

tlog(2z + 3)
Let G(t) = w(t) — ]35%‘—'5"—21. It is enough to show G(¢) > 0 for ¢ > 3.
For t > 56,

log(3t + 2
Gl = wit)- —%g—s—)
S log(t+1) —1 log(3t +2)
log 2 log 5
1 1 1 3
log(t +1) [log2 - log5] B log 2 B log 5
> 0.
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Moreover, by direct calculation, one can prove G(t) > 0 for ¢, 3 < ¢t < 55.

Hence the lemma is proved. [ |

Theorem 11 Let ny,ng,...,n; be positive integers. Then
ft(nla'“ant) SMw(t)) (6)
t
where M = [, ni.

Proof. From Example (2) and Proposition 7, we may assume t > 3. First,
let t >11and r; =i+ 1 for ¢ > 1. From Lemmas 9 and 10 we have

t
T/t = 22 and [I4H" i/t < @20+ 1)@ < p2 forall 1> 1.

By Lemma 6 and Example (2), inequality (6) holds for ¢ > 11.
Now fix ¢, 3 < ¢t < 10. Let {r;} be the same sequence defined in Example

(1). By direct computation, one can show

t
[ <2 and [T, < 600,

i=1

By Lemma 10, we have

H,r < 6tw(t) ]:[ ri < 6tw(t) H (1.+2) < Gtw(t) H(2] 1)t1u(t) < Hptw(t)

=1 i=2t+1 i=2t+1
for [ > 3. Hence, by Lemma 6, inequality (6) holds for ¢, 3 < ¢ < 10. The

theorem is proved.

In the next theorem we show that the bound given by Theorem 11
cannot be significantly improved. We need the following lemma. Recall
that B,, denotes the nth Bell number.

Lemma 12 Let ¢ be any real number such that 0 < ¢ < 1. Then
1c
fim DY

n—soo By

=0.
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Proof. For a fixed ¢, 0 < ¢ < 1, we can choose k such that ¢ < ',2% <1
Then for any positive integer ¢, with t < k,

kn+-t—
kn+t-1 kn+t-1 e
Binyt = z ( " ; ) B; > ( nk 1 )Bkn-—k+t > 157! Brno kgt
i=0

2 (n!)k_lBt’

since the m** Bell number can be expressed as
~(m
(see [1], Chapter 13).
Hence we have

(b +8)tc R+ DM [+ D2 Kok )42
Bin+t (nh)k-1 (nh)*-1 n!

=0

as n — o0.

Theorem 13 Let u(t) < w(t) for all positive integers t, and assume
ft(nl, v ant) < Mu(t)a

for all t-partite numbers (ny,...,n;), where M = H§=1 n;. Then
u(t)

=0 w(t) =1
Proof. From the fact that B, = f;(2,2,...,2) < 2t*(8), we have

u(t) _ logB; tlog2 log B
> = .
w(t) ~ tlog2log(t+1)! log(t+ 1)!

12

By Lemma 12, lim;—,o0 ﬁﬁfv > 1, and the theorem follows. [ |
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