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Abstract

We enumerate the 2-(9,4,6) designs and find 270,474,142 non-
isomorphic such designs in a backtrack search. The sizes of their
automorphism groups vary between 1 and 360. Out of these designs,
19,489,464 are simple and 2,148,676 are decomposable.

1. Introduction

A t-(v,k, ) design is a family of k-subsets, called blocks, out of a v-set of
points, such that each t-subset of the v-set is contained in exactly A blocks.
A design with ¢t = 2 is called a balanced incomplete block design (BIBD).
The number of blocks of a design, denoted by b, and the number of blocks
in which any point occurs, denoted by r, can be determined from the values
of the other parameters:

vr = bk,r(k - 1) = AMv —1).

A 2-(9,4, 6) design can be constructed easily by taking a 2-(9, 4, 3) design
twice. It is much more difficult to enumerate all nonisomorphic 2-(9, 4, 6)
designs. Two designs are said to be isomorphic if there is a permutation of
the points and a permutation of the blocks that map one design onto the
other. If there are such permutations that map a design onto itself, then
all permutations of the points constitute a group, the (full) automorphism
group of the design.
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We shall now briefly discuss our enumeration of the nonisomorphic 2-
(9,4, 6) designs.

2. The Search and Results

Orderly algorithms [7] have the property that they enumerate all noniso-
morphic structures without having to test these pairwise for isomorphism.
To enumerate the 2-(9,4,6) designs, we use such an orderly algorithm to
obtain all nonisomorphic incidence matrices of the designs. An incidence
matrix is a (0,1)-matrix of size v x b with the rows indexed by the points
and the columns by the blocks, and where the ones express incidence.

Algorithms for enumerating designs have been considered in several
studies in the literature; published results include [1, 2, 3, 6, 8]. We use the
common approach of constructing the incidence matrices row-by-row and
only considering one representative from each isomorphism class of partial
incidence matrices on each level of the search tree. For example, on level 1
of the search tree there is only one isomorphism class consisting of all 1 x b
matrices with r ones and b — r zeros.

The matrices must fulfill the following requirements: each row must
contain r ones, each column must contain at most k ones, and every pair
of rows must have exactly A ones in common (that is, have inner product
A). To reject isomorphs, we require that every partial incidence matrix to
be considered further must be in canonical form (cf. [1, 7, 8]).

The labelling of a partial incidence matrix is defined to be the binary
number obtained by concatenating the rows of the matrix. A partial inci-
dence matrix is in canonical form if every permutation of the rows and the
columns gives a smaller labelling (by normal comparison of binary num-
bers) than the present one. The algorithm used to check whether a partial
incidence matrix is in canonical form is taken from [1].

In appending new rows to the partial incidence matrix, we make use of
the observation that for the leftmost 1, we may restrict its placement to a
single position: the first possible column (that has less than k ones) [1].

By using orderly algorithms, the enumeration is not restricted by the
memory size—unless one wants to save all the designs. With the amount
of CPU time available being the only restriction, enumerations of hundreds
of millions and even billions of nonisomorphic designs are possible today.

Using the above mentioned approach, it took about three months of
CPU time on 233-500 MHz PC computers to enumerate the 2-(9,4,6) de-
signs; there are 270,474,142 nonisomorphic designs, 19,489,464 of which are
simple. This settles an open question for design number 150 in [4]; previ-
ously, it had been shown that there are at least 1.25 x 108 nonisomorphic
designs. The search was completed in about one week by distributing it
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Group size Nd Ns Nc

1 270340858 19477172 2137845
2 128851 11234 10355
3 1673 697 32
4 2239 220 331
6 254 95 21
8 174 15 59
9 9 6 3
10 1 1 0
12 27 7 4
16 26 5 15
18 4 1 1
24 8 3 0
27 1 1 0
32 6 0 5
40 1 1 0
54 1 1 0
60 1 1 0
64 3 1 2
120 1 1 0
128 1 0 1
144 2 1 2
360 1 1 0

Total 270474142 19489464 2148676

Table 1: Properties of 2-(9, 4, 6) designs.

over a network of computers using the program autoson [5].

For each design encountered, we registered the size of the automorphism
group and checked whether it is simple or not. We also counted the num-
ber of 2-(9, 4,6) designs that are decomposable into two 2-(9, 4, 3) designs.
This was done by combining the 11 nonisomorphic 2-(9, 4, 3) designs in all
possible ways, where the automorphism groups of these designs can be used
to reduce the number of combinations to be considered. This data of the
designs is presented in Table 1, where Nd is the number of designs, Ns is the
number of simple designs, and Nc is the number of decomposable designs.

Finally, in Figure 1, we give the canonical incidence matrix of the unique
2-(9,4,6) design whose automorphism group has the largest size, 360. As
can be seen, it is formed around three copies of the 2-(6, 3, 2) design.
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1111111111111111000000000000000CC000
111111000000000011111111110000000000
111111000000000000000000001111111111
100000111110000011111000001111100000
0100001100011100110001110011000111C0
001000101001001110100100111010010011
000100010100101101010010110101001011
000010001010111000101011100010101110
000001000111010100011101010001110101

Figure 1: The 2-(9, 4, 6) design with the largest automorphism group.
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