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Abstract

Consider those graphs G of size 2n that have an eigenvalue A -
of multiplicity n and where the edges between the star set and its
complement is a matching. We show that A must be either 0 or 1
and completely characterize the corresponding graphs.
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1 Introduction

Let G be a finite simple graph with an eigenvalue A of multiplicity m. A
subgraph X of G is a star set for A if |V(X)| = m and A is not an eigenvalue
for X = G — X. The subgraph X is called the star complement for .
See [3] for the basic properties of star sets where they are called star cells.

A fruitful approach, taken in [4, 5, 6, 7], has been to fix a graph X and an
eigenvalue A and determine the graphs which have X as a star complement
for A. It was shown in [5] that for each X and A ¢ {—1,0} there are
only finitely many such graphs. Indeed, if A ¢ {—1,0} then X is a location
dominating set for X, that is every vertex of X is adjacent to a unique, non-
empty subset of X. If |[V(X)| = t then |[V(X)| < 2¢. This is strengthened
in [6] to |[V(X)| < (¢ -1)(t+4)/2.
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The central structural result for star complements is:

Theorem 1 ([3] Theorems 7.4.1 and 7.4.4) Let G be a graph with (0,1)-

BT

adjacency matriz B c ) where A has size m x m and X is not an

eigenvalue of C. Then ) is an eigenvalue of G of multiplicity m if and only
if

M —-A=BT\-C)"'B.
The approach taken in this paper is to fix the edges between the star set
and its complement, i.e. fix the matrix B, and determine the corresponding

eigenvalues and graphs. To this end, let F be a family of 0 — 1 matrices.
Let E[F, A] be the set of connected graphs with the properties that:

1. The adjacency matrix of G = X U X has the form

A BT
B C
where A is the adjacency matrix of X and C that of X;
2. B is a member of F;

3. G has the eigenvalue A with multiplicity |V (X)];

4. )X is not an eigenvalue of X.

Note that the connectivity constraint is no real restriction since if two
graphs both have eigenvalue A of multiplicity k then so does their disjoint
union.

In this paper, we take F = {I, : n =1,2,...,}, that is the set of identity
matrices. If G € E[F, A], then the edges between X and X form a matching.
This matching induces a correspondence between the vertices of X and X.

Our first result is Theorem 2.

Theorem 2 The set E[{I,|n = 1,2,...,},\] is non-empty only if A €
{-1,0,1}.

Moreover, for each n we can completely determine the graphs contained in

Theorem 3 A graph G is in E[{I,},\] if and only if one of the following
holds:
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1. A= ~1,n=1 and G is isomorphic to K, where both X and X are
singletons;

2.A=0,n =2 and G is isomorphic to Cy where both X and X are
isomorphic to Ky;

3. A=1 and eithern =1 and G is isomorphic to Ky where both X and
X are singletons,

orn =5 and G is isomorphic to the Petersen graph where both X
and X are isomorphic to Cs.

These last two results are in contrast to those found in [1] where F = {J, —
ILjn =1,2,...,}. It was shown there that for all n > 0, each of the sets
E[{Jn = I, },0], E[{Jan — I2n}, —1], and E[{Jsn — Isn}, —2| is non-empty.
Also, it is shown that X is an integer, -1 —/8+n/2 < A <8+ n/2 and
the cases where at least one of X and X is regular is completely solved.

2 Basic Equations and Proof of Theorem 2

We are taking X and X to be of size n and B = I, so that BT = B. The
equation in Theorem 1 can be re-written as

(A= A,)(C = ML) = I

Let a;x and cix be the (i, k)-th entries of A and C respectively. For any
1 < i,k < n, considering the (¢, k)th entry in this matrix equation gives:

& = Z aijcik — Maix + cix) + 0FA? (1)
j
where 6 = 1 if i = k and 6 = 0 otherwise.
If i # k then this equation reduces to

ZaijCjk = )\(a,-k + Cik). (2)
j

If neither X nor X contain an edge then both are singletons with the
eigenvalue 0, while G is isomorphic to K5 and the corresponding eigenvalue
for G can be A = —1 and also A =1.
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We may now assume that there is some edge (¢,k) in X or X. From (2)
it follows that A is a non-negative number that is either an integer or an
integer plus 1/2. Also equation (1) reduces to

M =1-"aiejs (3)
7

from which it follows that A € {0,1} and so Theorem 2 is proved.

3 Proof of Theorem 3

Part (1), A = —1: In this case, we already know from the proof of The-
orem 3 that both X and X contain no edges, and so are singletons by
connectedness, and that G = K, € E[{];},-1].

Part (2), A = 0: Let both X and X be isomorphic to K, and let G be
isomorphic to Cy4. The eigenvalues of G are 0, 2, and —2 with multiplicities
2, 1 and 1 respectively. The eigenvalues of X are 1 and —1 both with
multiplicity 1 so that G € E[{I;},0].

Suppose now that G € E[{I,|n = 1,2,...},0] and that G is connected.
Then from the equations (2) and (3) we obtain for all i # &

Z aijcjk =0 (4)
J

and fori =k

Za,-,-cj,- =1. (5)
i

Equation (5) implies that for every i there is exactly one vertex j where i
is adjacent to j in both X and X. Equation (4) tells us i and j are not
adjacent to any other vertex of either X or X. The matching given by B
only connects i and j and since G is connected it follows that X and X are
both isomorphic to K3 and that G is isomorphic Cj.

Part (3), A = 1: From the proof of Theorem 3 we already know that
G =K, € E[{1},1].

Let both X and X be isomorphic to Cs and G isomorphic to the Petersen
graph. See Figure 1 in which the dashed edges form the matching corre-
sponding to the matrix B. The eigenvalues of X are 0, (=1 — v/5)/2 and
(=1 + v/5)/2 with multiplicities 1, 2 and 2 respectively, and those of G
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are —1, 1, 3 and —2 with multiplicities 1, 5, 1 and 4 respectively. Thus
G € E[{I5},1].

Figure 1: Petersen Graph

Suppose now that G € E[{I,|n = 1,2,...,},1] and that G is connected.
Equations (2) and (3) become:

for i # k

Eaijcjk = (@i + cik) (6)
J

and for i = k then equation (1) reduces to

Z QiiCji = 0. (7)
J

Since equations (6) and (7) are symmetric in A and C and because of
the matching between X and X we can translate the problem to one of
colouring the edges of the complete graph K, in the following fashion. Let
|[V(G)| = 2n then [V(X)| = |V(X)| = n. Consider now the complete graph
K, where vertex i corresponds to both vertices ¢ of X and X. An edge of
K, is coloured green if it is in neither E(X) nor E(X); it is coloured red
in if it is E(X); it is coloured blue if it is in E(X). Note that the roles of
red and blue could be interchanged because of the symmetry of equations
(6) and (7). Because we are only interested in G being a connected graph
then it follows that between any two vertices of K, there is a path which
contains no green edges.

Clearly, no edge can be assigned the colour green and another colour. If
an edge is assigned both red and blue colours then the left-hand side of (7)
is at least 1 which is impossible. Hence, an edge can be assigned only one
colour.

Note that this also implies that the right-hand side of equation (6) is either
Oorl.

181



We use (4, j,k) = XY to indicate that the edge (%, ;) is coloured X and
that (j, k) is coloured Y where X,Y € {R,B,G}, and R is for red, B for
blue and G for green.

Claim 1: If (i, k) is not a green edge then there exactly two vertices j and
[ such that (¢,7,k) = RB and (3,1,k) = BR.

Proof of Claim 1: If (4, k) is not a green edge then a;;+cx; = 1, so from (6),
Zp aipcpk = 1 and therefore, there is exactly one j for which a;; = ¢z = 1.
Hence, (i,7,k) = RB.

Since the matrices are symmetric, we also have ag;+cix, = 1, so Zp QpCpi =
1 and therefore there is exactly one ! for which ax; = ¢;; = 1. Hence,
(i,l,k) = BR.

Claim 2: If (i,5,k) = RB or (i,j,k) = BR then (i,k) is coloured blue or
red.

Proof of Claim 2: If (¢, j,k) = BR or (i, j, k) = RB then from equation (6)
aik +ci = EP @ipCpk. This sum includes the term a;;c;x = 1 and, since an
edge cannot be assigned both red and blue, then a;x + cix = 1. Therefore
either a;; = 1 or ¢;; = 1 but not both.

We are now ready to prove Theorem 3. Let V(G) = {1,2,3,...,n}.

If n = 1 then there are no edges to colour and so equations (5) and (6)
are automatically satisfied. The graph G is then a K3 with X and X both
being singletons.

(a) (b)
Figure 2: The Edge Colourings for n > 5.

If n > 1 then without loss of generality, let (1,2) be red. Then by Claim 1
there are vertices 3 and 4 such that (1,3,2) = BR and (1,4,2) = RB and
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thus n > 4. Now if there is a vertex i, i > 5 then either (1,7,2) = RR or
(1,4,2) = BB because of Claim 1.

Suppose now that n > 5. We first show that there are no green edges.
Suppose that there is a green edge. To each green edge associate a shortest
path that connects the endpoints of the edge, but that contains no green
edges. Since G is connected such a path exists. Let (i,k) be a green
edge with the shortest associated path and call one such path P. For
j € V(P) — {i,k}, if (i,J) is green then the edge (i,7) together with the
subpath of P from i to j would have been chosen rather than (i,k). If
(i, 7) is not green then there would be a path shorter than P with no green
edges connecting i and k unless V(P) = {1, 4,k}. Now, by Claim 2 (%, j)
and (j, k) have the same colour. We assume that (¢, j, k) = RR. The case
(i,7,k) = BB is similar and is ommitted. By Claim 1 there is a vertex [
with (4,1, 7) = RB. Since (k, j,!) = RB then (k,!) is not green by Claim 2
and it must be red because (i,!, k) cannot be RB by Claim 2 again. From
Claim 1, with (!, §), then there is a vertex p with ([, p, j) = RB and thus p is
distinct from both i and k. (See Figure 2a.) The edge (%, p) cannot be green
by Claim 1 since (i, j,p) = RB. If (i,p) is red then (,p,j) = RB = (3,1, )
contrary to Claim 2. Thus (¢, p) is blue. Also, since (%, k) is green, Claim 2
gives that (p, k) is blue. But now (j,%,p) = (4, k,p) = RB, see Figure 2b,
which contradicts Claim 1. Therefore, there can be no green edges.

Recall that (1,2) = R, (1,3,2) = BR and (1,4,2) = RB.

If (3,4) = R, then by Claim 1 applied to (1, 3) there is a vertex 5 such that
(1,5,3) = RB and since (2,4,1) = BR then (2,5) must be coloured red.
But now (213) = (253) = RB contradicting Claim 1, see Figure 3a.

(a (b)
Figure 3: More Edge Colourings for n > 5.

Thus (3,4) = B. Again, by Claim 1, there must be a vertex 5 such that
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(1,5,3) = BR and also (2,5) = B, see Figure 3b. If (4,5) = B then
(3,5,4) = (3,2,4) = RB contradicting Claim 1 therefore (4,5) = R.

We have just shown that if n =5 then X and X are 5-cycles with G being
the Petersen graph.

For n > 5 we may assume that the edges between the vertices {1,2,3,4,5}
are coloured as in Figure 3a (see Figure 4). Recall that (1,7,2) = XX for
all i > 5. Consider vertex 6. If (1,6) = (2,6) = R then (5,1,6) = (5,2,6) =
BR which contradicts Claim 1. Thus (1,6) = (2,6) = B. Now (2,1,6) =
RB and Claim 1 forces (2,3,6) = RR but now (3,6,1) = (3,5,1) = RB
which contradicts Claim 1.

Figure 4: The Edge Colourings for n = 6.

Therefore it follows that n = 1 or n = 5 and the proof is complete.
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