AN AUTOMORPHISM-FREE 4-(15,5,5) DESIGN
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Abstract

Employing trading signed design algorithm, we construct an automorphism-free

4-(15,5,5) design.

1. Introduction

The family of 4-(15, 5, A) designs offers some challenging problems to design

theorists. A summary of information on the family is as follows:

e for A = 1, the design does not exist [7];

e for A = 2, the existence is unknown;

e for A = 3, there are designs as the derivatives of 5-(16,6,3) design
constructed by Brouwer [2]. Also, Brouwer, using a group of order

42, has constructed a 4-(15,5,3) design directly [2].
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e for A = 4, employing a group of size 60, Brouwer again has con-
structed a design [2].

e for A =5, there is a design as a derivative of 5-(16, 6,5) by Brouwer-
[2], and another one by Kreher, using a group of order 39 [5).

In this paper after introducing some notations and a brief description
of the underlying algorithm, we present a design and demonstrate that it
is in fact automorphism-free.

2. Definitions and Preliminaries

Suppose that ¢, k,v are positive integers such that v > k > ¢, and A is a
nonnegative integer. Let X be a v-set. The set of all i-subsets of X is
denoted by P;(X). The elements of Pi(X) are called blocks. We impose
some ordering on Py(X) and Pi(X). Let P, = [pap] be a (0,1) matrix
of size (¥) x (}) whose rows and columns are indexed by the elements of
Py(X) and P(X), respectively, and for every A € P,(X) and B € Pi(X),
paB is defined as follows:

{ 1 AcC B,
PAB =

0 otherwise.

Now, we consider the following system of nonhomogeneous linear equa-
tions: '

P4F = )e, (%)
where e = (1,1,...,1)*. The solutions of (*) have different names:
- every integral solution of (), F, is called a t-(v, k, A) signed design;

- every nonnegative integral solution of (¥), F, is called a t-(v,k, )
design; and
- every t-(v, k,0) signed design is called a t-(v, k) trade.
We note that the necessary and sufficient conditions for the existence
of a t-(v, k, A) signed design is A%-i:—'%, fori=0,...,t — 1, to be integers.

te—1
From the definition of {-(v, k, A) signed design F, and t-(v, k) trade T, it
is clear that F+T is again a signed design. This is the essence of a method
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called “trading signed design” algorithm. For more on this algorithm one
can consult [3,4].

Let B € P¢(X) be a block of a t-(v,k, ) design. Then, for 0 < i < k,
let z; be the number of blocks which intersect B in ¢ points. The following
relations among z;’s are known as the block intersection equations [1]:

| Xk;(;)xi=('\j-1)(§), 0<j<t

i=j

In the case at hand, namely 4-(15,5,5) design, the intersection equations
have a unique solution:

(zo, 71, , zs) = (114,480,540, 210, 20, 0).

Since the elements of Pi(xz) are ordered, every component of F' corre-
sponds to the frequency of a block, and hence every t-(v, k, A) design could
be considered as an incidence structure (X, B) in which B is a collection of
blocks with nonzero frequencies.

A mappings ¢ between two designs D = (X,B) and D' = (X',B') is an
isomorphism if ¢ : X — X' is a one-to-one correspondence and ¢(B) = B'.
Every isomorphism of a design D to itself is called an automorphism and
the set of all the automorphisms of a design with the natural composition
rule among mappings form the automorphism group of the design, and is
denoted by Aut(D). Let f be an automorphism of a design D = (X, B),
then fix(f) = {z € X|f(z) = =}.

Let D = (X, B) be at-(v, k, A) design, and z € X. If B*) = {B\{z}|z €
B € B}, then D, = (X\{z},B®)) is (t — 1)-(v — 1,k — 1, ) design. Dqy
will mean (D;),.

3. A Design

Employing the trading signed design algorithm, we have constructed a D =-
4-(15,5,5) design. Below we represent D in hexadecimal representation
(high order bit first) as a (0,1) vector of size 3004 with 1365 ones. Note
that all the 3003 blocks are ordered lexicographically and a 0 has been
added to the end of the vector to make it divisible by 4. Here 10-15 are
represented by A-F.
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60F360A 56B70B2D071 A30937C5625C44A85CBA3496B0BF44A38CCE4D4724
00EA1C1FA71578784C1535C49956955A 41 A 5BA991445B520E3B89B80DIFC
017851D582798B32949E2F016CBC8DE1151066CE50B29CD5A918CD8B3232
565A49BC2E90DB023C46289E5E701A0A9F59E80A AD35C630C713252CB8DC
C885AF88953A88770539325CD105B4A A075BAODB616A 7309895B21650BD0
D3E16165525C0F81E7591 DA 4487F032A4D9304537321AE42F52AD593A17C
630324AD6C48D8C5B133243740CD8A20D73C5A441E51 A9A 576A 249CF5F49
4D8718813C7410955EC4F0822EBD4441B27F6D3CC75050891C8CC38F 5915
4F268E58C746036C4ED41C5142BEAEA 2A2D82364C947967B24B41A0A846B
8A470597EB498CA 72389A8CEC64E2B4E22C2E2C439A B128D29DB1432E445
E12FC124D1AA78ACC88139BA 568E5D19A 522BD0D49235C84D5C4183B8782
B832B1C71979A8164CBO6ED1DA507C5A170D3175C48054D57B3CC6A 63089
F88D51256C05D25ABA1F32062B2605E

4. Aut(D)

In this section, we determine the automorphism group of our design. Clearly,
if f € Aut(D) is of prime order, then o(f) € {2,3,5,7,11,13}.

Let f € Aut(D), and o(f) = 13, so [fix(f)| = 2. Suppose that fix(f) =
{z,y}. Thus Dy has f as an automorphism. By Nauty [6], we have found
that the automorphism groups of all the Dgy’s, are trivial. Therefore,
13 f |Aut(D)|.

Now, let o(f) = 2, so [fix(f)| > 1. If = € fix(f), then f € Aut(D;).
Again by Nauty [6], we have found that the order of the automorphism
group of all the D;’s, are not even. So 2 f |Aut(D)|.

If f € Aut(D), and o(f) = 3, then f = 010, - - -, where g;’s are cycles of
lenght 3. Clearly |fix(f)| # 12. Let the pointsin cycle o; be the set {z, y, z}.
So for! € Aut(Dyy;). We have o(fo~1) =1 or 3. If o(fo~!) = 1, then
f = o1, and [fix(f)] = 12. This is a contradiction. Hence o(fo~1) = 3.
But for all z,y,and 2z, 3 f |Aut(Dzy:)|, and so 3 [ |Aut(D)|.

Now suppose that f € Aut(D), and o(f) = 7. So [fix(f)] = 1 or 8.
First assume that |fix(f)] = 8. Let z,y,2,w € fix(f). So the five blocks
By, Bs,---,Bs € B which contain z,y,z,w must be fixed by f. Since
|B1UB;---UBs| =9, so there is an element z ¢ fix(f), z € B;, for some
1 < i < 5. Therefore |B;| > 11, and this is a contradiction. So [fix(f)| = 1.
Thus f is in the automorphism group of the derived 4-(15,5,5) design,
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through the fixed point of f. But all the derivatives of D have trivial
automorphism group. Therefore 7 / |Aut(D)|.

Now we show that for any 4-(15,5,5) design D, 5 J|Aut(D)|. Let f €
Aut(D) and o(f) = 5. Hence [fix(f)] = 0, 5 or 10. To show this, first we
observe that f must move all the blocks of D. Now suppose that [fix(f)] =0
and hence f = 010203 where o;’s are cycles of lenght 5. We denote the
points in the cycle o; by point(c;), and for any B € B, |point(o;) N B < 4.
Now from the following intersection equations, it follows that there are 115
blocks B € B such that point(e;) N B = @, for each 1 < < 3.

no+ni1+ na+ nz+ ng= 1365,
n1+2n94+3ng+4ns= 5 x 455,
ny+3nz+6na= 10 x 130,
n3+4n4= 10 x 30,
ng=9%x 5,

where n; = |{B € B||B N point(o3)| = i}}, and we obtain no = 115. Now
let m; be the number of these blocks (out of 115 blocks) which intersect
the point(c;) in 7 points. Then again from the intersection equations the
following relations are easily obtained.

my + mz + m3 + my = 115,
40 < m3 + 3ms + 6my < 60,
30 < m3 + 4my < 50.
It follows that my = m3 =0, m; = 13 x 5, and my = 5 x 10. But m; + m4
is at most (3)(5) + (3)(}) = 50. The cases [fix(f)| = 5 or 10 are similarly
ruled out. Therefore, for any 4-(15,5,5) design D,5 fAut(D).
If f € Aut(D), and o(f) = 11, then there is a block B € B such that-

f(B) = B. So |B| > 11, and this is a contradiction.
By the above argument, our design is an automorphism-free design.

Remark. For any 4-(15,5,5) design D, |Aut(D)| = 2*3°7713°.
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