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ABSTRACT. It is proved in this paper that for any integer n >
136, a SODLS(v, n) (self-orthogonal diagonal Latin square with
missing subsquare) exists if and only if v > 3n+2and v —n
even.

1 Introduction

A Latin square of order n is n X n array such that every row and every
column is a permutation of a n-set. A transversal in a Latin square is a
set of positions, one per row and per column among which the symbols
occur precisely once each. A transversal T is symmetric if (i,5) € T if
and only if (4,7) € T. A pair of transversals T and S are symmetric if
(i,7) € T if and only if (j,7) € S. A transversal Latin square is a Latin
square whose main diagonal is a transversal. It is easy to see that the
existence of a transversal Latin square is equivalent to the existence of a
idempotent square. A diagonal Latin square is a transversal Latin square
whose back diagonal also forms a transversal.

Two Latin squares of order n are orthogonal if each symbol in the first
square meets each symbol in the second square exactly once when they
are superposed. A Latin square is self-orthogonal if it is orthogonal to its
transpose. Orthogonal (transversal) Latin squares of order v are denoted
briefly by OLS(v) (OILS(v)). Self-orthogonal (diagonal) Latin sanare of
order v is denoted briefly by SOLS(v) (SODLS(v)).

For the spectra of SOLS and SODLS, we have

Theorem 1.1. ([2]) A SOLS of order v exists for all integers v, with the
exception of v € {2,3, 6}.
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Theorem 1.2. ([8]) A SODLS of order v exists for all integers v, with the
exception of v € {2, 3,6} and the possible exception of v € {10,14}.

The problem we study in this paper is the self-orthogonal diagonal Latin
squares analogue of the Doyen-Wilson theorem [5]. We begin with some
definitions. If a self-orthogonal diagonal Latin square has a subsquare occu-
pying the central position, the subsquare itself must be orthogonal diagonal
Latin square. We refer to it as self-orthogonal diagonal subsquare. We de-
note by SODLS(v,n) a self-orthogonal diagonal Latin square of order v
with self-orthogonal diagonal subsquare of order n. It is easy to see that
the existence of a SODLS(v, n) requires that v — n is even. In particular,
any SODLS(v) is a SODLS(v, 1) when v is odd. In view of Theorem 1.2, no
self-orthogonal diagonal Latin square can contain orthogonal diagonal sub-
square of order 2, 3 or 6. However, we can construct self-orthogonal diagonal
Latin square missing subsquare of these orders. We also let SODLS(v,n)
denote a self-orthogonal diagonal Latin square of order v with missing sub-
square of order n occupying the central position. It is not necessary for
such self-orthogonal diagonal subsquare of order n to exist. We refer to the
subsquare as the hole.

Some simple computation shows

Theorem 1.3. If there exists a SODLS(v,n), thenv > 3n+2and v —n
even

SODLS with missing subsquare have been studied by several researchers.
Some applications to the construction of other types of designs are as fol-
lows: orthogonal diagonal Latin squares, incomplete self-orthogonal Latin
square and magic square with magic subsquare.

In this paper, we prove the necessary condition is also sufficient for n >
136.

Theorem 1.4. For any positive integer n > 136, there exists a SODLS(v,n)
if and only if v > 3n+ 2 and v — n even.

In the remainder of this paper we shall assume that the reader is familiar
with the concepts of incomplete orthogonal Latin squares (briefly IOLS) and
incomplete self-orthogonal Latin square (briefly ISOLS), and the various
methods of constructing (v,n)-ISOLS starting with a SOLS(n) (see, for
example, [4,10]), and starting with a (n, k)-ISOLS (see, for example, [7,10]).
We shall also assume that the reader is familiar with the various techniques
of constructing SODLS(v) from SOLS(v) by permuting rows and columns
(see, for example, [8,11,12]).

For the spectra of IOLS and ISOLS, we have

Theorem 1.5. ([9)) If v > 3n and v # 6, then there exists a (v,n)-IOLS.
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Theorem 1.6. ([10]) If v > 3n+ 1 and v # 6, then there exists a (v,n)-
ISOLS except possible for (v,n) € {(6m +1,2m): i =2 or 6}.

2 Some special cases

First we state a starter-adder type construction for (v, n)-ISOLS. The main
idea is to generate each square under a cyclic group of order » — n, from
its first row and from the last n elements of the first column. Let X =
{0,1,...,v—n—-1}UY, where Y = {z;,%,,...,z,}. Suppose L is a square
based on X with a hole indexed by Y. We shall denote by e (z,j) the
entry in the cell (¢, j) of the array L. The first row is given by the vectors
€= (eL(Os 0)» [ERE} eb(osv -n- 1)) and i = (CL(O,’U - n)’ sevy BL(O, V- 1)):
and the last n elements of the first column are given by the vector g =
(er(v = n,0),...,er(v —1,0). The L is constructed modulo v — n in the
range {0,1,...,v —n — 1}, where the z;’s act as “infinity” elements as
follows:

(1) er(s +1,t + 1) = er(s,t) if er(s,t) = z;, and er(s + 1,t + 1) =
er(s,t) + 1(modv — n) otherwise, where 0 < s, t <v —n —1.

(2) ec(s+1l,v—n—-1+t)=ey(s,v —n—14t) + 1(modv — n), where
1<t<n,0<s<v—n—-1.

(B) eclv—n—1+t,s+1)=er(v—n—1+1t,s)+ 1(modv — n), where
1<t<n,0<s<v-n-1.

We remark that there are obviously conditions which the vectors e, 5 g
must satisfy in order to produce the (v,n)-IOILS, but we shall not concern
ourselves with that, the reader may see [10].

Lemma 2.1. Suppose there exists & (v,n)-ISOLS constructed by the
starter-adder method, v — n is even-and the (1 + (v — n)/2)-st element in
the starter set ¢ is not infinity element. Then there exists a SODLS(v, n).

Proof: We begin with the (v,n)-ISOLS and permute rows and columns
with permutation o

(1 2 (v-n)/2 (v-n)/2+1 (v-n)/2+2 v-n )

1 2 (v-n)/2 v-n v-n-1 (v-n)/2+1
Then we obtain the required design.
From [10] we have

Lemma 2.2. For (v,n) € F, there exists a (v,n)-ISOLS constructed by
the starter-adder method such that the (1 + (v — n)/2)-st element in the
starter set is not an infinity element, where

F = {(19,5), (,2), (s, 3): t = 12,16, 20; s = 11, 13}
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Combining Lemmas 2.1 and 2.2 we have

Lemma 2.3. There exists 2 SODLS(v,n) for (v,n) € F.
We also need some other small designs.

Lemma 2.4. There exists a SODLS(38,12).

Proof: We begin with (4,1)-ISOLS. From this ISOLS we fill the main
diagonal with (11;3,2)-ISOLS by modifying the array constructed by Zhu
in [16], which we show below, and the others with one of a (9,3)-IOLS and
its transpose. We obtain the required design by filling the size 11 hole with
SODLS(11,3) for which existence comes from Lemma 2.3, and permute rows
and columns as Wallis and Zhu did in [12], in which the size 12 hole consists
of size 3 hole in SODLS(11,3) and the central position of filling arrays in
(4,1)-ISOLS.

1 7 5 9 10 2 6 11 3 4 8
4 2 8 10 3 7 1 5 11 6 9
9 6 3 1 8 10 11 2 4 5 7
1 8 6 4 1 9 10 3 5 7 2
7 4 11 8 5 3 2 6 10 9 1
5 11 9 2 7 6 4 10 1 8 3
3 10 4 5 11 1 2 6
6 1 10 11 2 4 3 5
10 5 2 3 6 11 1 4
8 9 7 6 4 5 3 1 2
2 3 1 7 9 8 5 4 6

(11;3,2)-ISOLS

Lemma 2.5. There exists a SODLS(49,15).

Proof: We begin with SODLS(5). From this SODLS, we fill the main
diagonal with (11;3,2)-ISOLS and the back diagonal with modified (11;3,2)-
ISOLS, that is, by permuting the first 6 columns so that the main diagonal
of the upper left part in the (11;3,2)-ISOLS becomes its back diagonal, but
leave the central cell. Fill all other cells with one of a (9,3)-IOLS and its
transpose. We obtain the required design by filling the size 13 hole with
SODLS(13,3) for which existence comes from Lemma 2.3, in which the size
15 hole consists of the central. position of filling arrays in SODLS(5).

Lemma 2.6. There exists a SODLS(v,n) for (v,n) € {(3t + k,t): t =
20,22, 30; k = 6, 10, 14}.

Proof: We begin with the SODLS(¢, 2) with 14 disjoint common transver-
sals including the main diagonal and the back diagonal which consist of the
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elements which is not in the subarray for which existence comes from [10]
and the decompositions 22=5x4+(1+1)and 30 =7 x4+ (1+1). We
fill the k transversals including the main diagonal and the back diagonal
with (4,1)-ISOLS or modified (4,1)-ISOLS and the others with one of an
OLS(3) and its transpose. We obtain the required design by filling the size
k + 6 hole with SODLS(k + 6,2) for which existence comes from Lemma
2.3, in which the size ¢ hole consists of size 2 hole in SODLS(k + 6,2) and
the central cells of filling 3 x 3 arrays in SODLS(¢, 2).

8 A general bound

Let P = {S;,S5,...,Sn} be a partition of a set S, where n > 2. A parti-
tioned incomplete Latin square (or PILS) having partition P is an |p| x |p|
array L, indexed by S, which satisfies the following properties:

(1) a cell of L either contains a symbol from S or is empty

(2) the subarray indexed by S; x S; are empty, for 1 < i < n (these
subarrays are called holes)

(3) the elements occurring in row (or column) s of L are precisely these
in S\S;, where s € S;.

The type of L is the multiset {|Si],|S2],--.,|Sn|}. We use the notation
1¥12%2 _ to describe a type, where there are precisely u; occurrences of 4,
fori=1,2,....

Suppose L and M are PILS having the same partition P. We say that
L and M are orthogonal if their superposition yields every ordered pair in
S2\(US?). The term “self-orthogonal PILS” is abbreviated to SOPILS.

We shall assume that the reader is familiar with the standard terminology
of group-divisible designs (GDDs) and Wilson’s “Fundamental Construc-
tion” (see, for example, [14]). Of course, a GD[k, 1, n; kn] is equivalent to
k — 2 POLS(n), k — 2 pairwise orthogonal Latin squares of order n.
Lemma 3.1. ([3]) If prime power q > 3, then there exists a SOPILS(19)
with transversal back diagonal.

We need the following recursive construction for SOPILS.

Lemma 3.2. ([4]) Suppose that (X,G, A) is a GDD, w is a weighting, and
let k > 1. Further, suppose that, for every block A € A, there are SOPILS
of type w(A). Then there are SOPILS of type {3_,.cw(z): G € G}.

We now state the main construction.

Lemma 3.3. If n, m and k are pos)'tive integers, m odd, 2 < n £ 3m -3,
1 < k < 2m and k # 3,4, such that there exists a GD[10,1,m;10m)].
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Then there exists a SODLS(7m + n + k,n) for even Tm + k. Further, for
Tm+n+5<v<9m+n and v —n even, there exists a SODLS(v,n).

Proof: In all but three groups of the GD{10, 1, m; 10m], we give the points
weight 1. In the third last group, we give s (s odd and s > 1) points weight
1 and give the remaining points weight 0. In the second last group, we
give ¢ points weight 1 and give the remaining points weight 0. We observe
that if s+ ¢ = k > 1 and k # 3,4, then we can choose s and ¢ such that
both SODLS(s) and SODLS(t) exist. In the last group, we give weight
0, 2 or 3, such that total weight is n. We can apply Lemma 3.2 with the
necessary input designs from Theorem 1.6 in which one size 8 block input is
a SOPILS(18) from Lemma 3.1 (or when s+t = 2m, one size 9 block input is
an SOPILS(1?) from Lemma 3.1), to obtain a SOPILS(m"s't!n!). We then
fill the size m holes with SODLS(m, 1), the size s hole with SODLS(s, 1) and
the size ¢ hole with SODLS(t), and obtain the required design by permuting
rows and columns as Wallis and Zhu did in [12].

Lemma 3.4. ([1]) There is a series of positive integers
M=(mi:i=1,23,...)=(17,19,23,25,27,29,31,37,41,...),
such that miy1—m; < 8, Tmiy1+4 < 9m;, and there exist GD[10, 1, m;; 10m;)
for all i > 1.
We are now in a position to prove
Theorem A. For any positive integer n > 48, if v > 10n/3+66 and v —n
even, then there exists a SODLS(v,n).

Proof: Our proof relies heavily on Lemmas 3.3 and 3.4. First of all,
for any fixed n > 48, there exists an ¢ > 1 such that 3m; —3 < n <
3mi+1 — 3. Thus we have 3mi;1 —n < 3(miy1 —m;)+3 < 27 and myqg <
(n +26)/3. Applying Lemmas 3.3 and 3.4 recursively, we know that there
exist SODLS(v,n) whenever v > Tm;;; + n + 5. Therefore there exist
SODLS(v,n) whenever v > 7(n + 26)/3 + n + 5, that is, whenever v >
10n/3 + 66.

We also obtain
Lemma 3.5. If v is even and v > 136, then there exists a SODLS(v, 12).

4 The main result

A Latin square is symmetric if it is equal to its transpose. We denote by
SOLSSOM(v) a self-orthogonal Latin square of order » with a symmetric
orthogonal mate, and USOLSSOM(v) a self-orthogonal Latin square of or-
der v with a constant main diagonal symmetric orthogonal mate. It is easy
to see that the existence of an USOLSSOM(v) required that v is even.

Lemma 4.1. ([6,13,15])
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(1) If n is odd and n > 3, then there exists a SOLSSOM(n);
(2) If n is even and n & E, then there exists an USOLSSOM(n), where

E = {2,6,10, 14, 46, 54, 58, 62, 66, 70}

Lemma 4.2.

(1) Ifthere exists a SOLSSOM(n) and n odd, then there exists a SODLS(n)
with n disjoint common symmetric transversals including the back di-
agonal, each posesses one position of the main diagonal;

(2) If there exists an USOLSSOM(n), then there exists a SODLS(n)
which possesses n disjoint common transversals including the main
diagonal and the back diagonal.

Proof: Suppose C is a symmetric orthogonal mate. By applying a permu-
tation simultaneously to the rows and columns, as Wallis did in [11], we
can produce a Latin square with constant back diagonal. We do the same
permutation to a self-orthogonal Latin square A and its transpose A’, and
obtain the required SODLS(n).

We first consider the case v = 3n + k, n even.

Lemma 4.3. For even n, if there exist a SODLS(n) with k disjoint common
symmelric transversals including the main diagonal and the back diagonal,
then there exists a SODLS(3n+ k,n), 2 < k < n, k even and k = 2,6,10
or 14.

Proof: We begin with the SODLS(n), and fill the k disjoint common
transversals with (4,1)-ISOLS and the others with one of an OLS(3) and
its transpose, hut the back diagonal with modified (4,1)-ISOLS, that is, by
permuting the first 3 columns so that the main diagonal of the upper left
part in the (4,1)-ISOLS becomes its back diagonal. Note that there exist
SODLS(k) from Theorem 1.2, we obtain the required design by permuting
rows and columns, in which the size n hole consists of the central cells of
filling 3 x 3 arrays in SODLS(n).

Combining Lemmas 4.1 - 4.3 we have

Lemma 4.4. If n is even and n ¢ E, then there exists a SODLS(3n+k, n),
for2<k<m,kevenand k=2,6,10 or 14.

Combining Lemma 3.5 and Lemma 2.4 we have

Lemma 4.5. If n is even and n > 136, then there exists a SODLS(3n +
2,n).
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Proof: We begin with the SODLS(n, 12) for which existence comes from
Lemma 3.5. We fill the diagonals in the upper left part with (4,1)-ISOLS
but the back diagonal with modified (4,1)-ISOLS, and the others with one
of an OLS(3) and its transpose. We then have a SODLS(3n + 2, 38). Note
that there exists a SODLS(38,12) from Lemma 2.4, so the result follows.
The size n hole consists of size 12 hole in SODLS(38,12) and the central
cells of filling 3 x 3 arrays in SODLS(n,12).

For the cases k = 6,10 and 14, we need

Lemma 4.6. If n is even and n > 108, then there exists a SOLSSOM(k)
such that n = 4k +t t € E; = {20,22}, or an USOLSSOM(k) such that
n=3k+t,te E U{30}.

Proof: From Lemma 4.1, it is not difficult to check that the assertion is
true.

Lemma 4.7.

(1) If there exists a SOLSSOM(k), k odd, then for ¢ < k there exists
a SODLS(4k + t,t) with t disjoint common symmetric transversals
including the main diagonal and the back diagonal which consist of
the elements which are not in the subarray;

(2) If there exists an USOLSSOM(k), then there exist SODLS(4k +t,t)
(for t < k) and SODLS(3k + t,t) (for 2 < t < k) with t disjoint
common symmetric transversals including the main diagonal and the
back diagonal which consist of the elements which are not in the
subarray.

Proof:

(1) We begin with the SOLSSOM(k). Then we have a SODLS(k) with k
disjoint common symmetric transversals including the back diagonal.
From this SODLS(k), we fill ¢ disjoint symmetric transversals includ-
ing the back diagonal with (5,1)-ISOLS or modified (5,1)-ISOLS, and
the others with SOLS(4). The result follows.

(2) We begin with the USOLSSOM(k), then we have a SODLS(k) with
k disjoint common symmetric transversals including the main diag-
onal and the back diagonal. From this SODLS(k), we fill ¢ disjoint
symmetric transversals including the main diagonal and the back di-
agonal with (5,1)-ISOLS, (4,1)-ISOLS, or modified (5,1)-ISOLS, (4,1)-
ISOLS, and the others with one of an OLS(3) and its transpose. The
result follows.
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Combining Lemmas 4.6 and 4.7 we have

Lemma 4.8. If n is even and n > 108, then there exists a SODLS(n, t),
t = 20,22 or 30, with t disjoint common symmetric transversals including
the main diagonal and the back diagonal which consist of the elements
which are not in the subarray.

Lemma 4.9. If n is even and n > 108, then there exists a SODLS(3n+k,n)
for k=6,10 and 14..

Proof: We begin with the SODLS(n, t) as in Lemma 4.8, and fill k disjoint
common symmetric transversals including the main diagonal and the back
diagonal with (4,1)-ISOLS or modified (4,1)-ISOLS, and the others with
one of an OLS(3) and its transpose. Then we obtain the required desian by
filling the size 3¢ + k hole with SODLS(3t + k, t)for which existence comes
from Lemma 2.6, and permuting rows and columns.

Up to now, we have obtained

Theorem B. If n is even and n > 136, then there exists a SODLS(3n +
k,n),2< k <n and k even.

We then consider the case v = 3n + k, n odd.

Lemma 4.10. If n is odd and n > 3, then there exists a SODLS(3n+k, n),
2<k<mn,kevenandk#4.

Proof: We begin with the SOLSSOM(n), then we have a SODLS(n) with n
disjoint common symmetric transversals including the back diagonal, each
possesses one position of the main diagonal. From this SODLS(r), we fill
the k disjoint symmetric transversals including the back diagonal with (4,1)-
ISOLS, or modified (4,1)-ISOLS, but leave the cells in the main diagonal, fill
the main diagonal with (4,1)-ISOLS or (5;1,1)-ISOLS but leave the central
cell. Fill all other cells with one of an OLS(3) and its transpose. Finally, fill
the size 5 hole with SODLS(5) and fill the size k — 1 hole with SODLS(k —
1,1), and permute rows and columns.

For the case k = 4, we need the following result.
Lemma 4.11. ([3]) If g is odd prime power and g > 3, then there exists
a set of ¢ — 1 POLS(q) which consists of a constant main diagonal square

Po, a symmetric square P; and (q — 3)/2 self-orthogonal Latin squares
P, P,...,P-3)/2 and their transposes.

Note that if n = q‘l"q.f ...g}, where the g; are distinct odd primes, and if
T=gqf < qg < --- < gy, then there are squares P, P, Py, Py, ..., Pir-3)12
of order n. We then have
Lemma 4.12. If n = qf‘ag ...qy, where the g; are distinct odd primes,
and if 7 < ¢® < af < --- < g, then there is a SODLS(n) with a pair of
symmetrically placed transversals meeting in the central cell.
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Proof: Suppose P, is a symmetric square. By applying a permutation
simultaneously to the rows and columns, we can produce a Latin square
with constant back diagonal. We do the same permutation to P, P> and
their transposes to obtain self-orthogonal diagonal Latin squares P and P;.
From the element in the central cell of P, and its transpose we obtain a
pair of symmetrically placed transversals in P and its transpose.

Lemma 4.13. Suppose k and m are odd and there exists a SODLS(k)
with a pair of symmetrically placed transversals meeting in the central cell.
Then there exists a SODLS(3km+4, km) if a (3m, m)-IOLS, a (3m+1,m)-
ISOLS and & SODLS(3m + 4,m) all exist.

Proof: We begin with the SODLS(k) and fill the 4 transversals with (3m+
1,m)-ISOLS or modified (3m + 1,m)-ISOLS and let the central cell be
empty, the others with one of a (3m, m)-IOLS and its transpose. Then we
obtained the required result by filling the size 3m-+4 hole with SODLS(3m+
4,m) and permuting rows and columns.

Lemma 4.14. If n is odd and n > 15, then there exists a SODLS(3n+4,n).

Proof: Write n = 3*58K, where gcd(K, 30) = 1. There are four cases to
consider, and, in each, Lemma 4.13 is applied. If both & # 1 and B # 1,
putk=nandm=1;ifa7£1butﬁ=1,putk=n/5andm=5; fa=1
but B#1,put k=n/3andm=3;andifa=LF=1, put k = n/15 and
m = 15. The necessary input designs come from Theorems 1.2, 1.5 and 1,6
and Lemmas 2.3 and 2.5.

Up to now we have obtained

Theorem C. If n is odd and n > 15, then there exists a SODLS(3n+k, n),
2 <k <mn and k even.

Proof of Theorem 1.4: Since 10n/3 + 66 < 4n whenever n > 136, the
result is an immediate consequence of Theorems A, B and C.
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