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Abstract

We study combinatorial structure of £-optimal A%-codes that offer the
best protection for spoofing of order up to € and require the least number
of keys for the transmitter and the receiver. We prove that for such
codes the transmitter’s encoding matrix is a strong partially balanced
resolvable design, and the receiver’s verification matrix corresponds to an
a-resolvable design with special properties.

1 Introduction

In a traditional authentication code (A-code) there are three participants: a
transmitter, a receiver and an opponent. The transmitter and receiver are
trusted. The opponent attempts to impersonate the transmitter by injecting
a fraudulent message into the channel, or to substitute a message sent to the
receiver with one of his own making. Simmons [15] extended this model by
removing the assumption of trustworthiness of the transmitter and the receiver
and included possible attacks from them. He introduced a fourth participant,
called the arbiter, who is trusted and arbitrates if there is a dispute between the
transmitter and the receiver. This is called anauthentication code with arbiter
(A2%-code). The model and constructions for A2-code were further studied by
Johansson [5], Desmedt at al [2] and Kurosawa [8].
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In this paper we study the combinatorial structure of £-optimal A2-codes.
These are codes that have the best protection for spoofing of order up to £
and have the least number of keys. Similar studies for traditional A-codes were
reported in [10] and [17). The paper is organized as follows. In section 2 we
introduce the model and in section 3 derive information-theoretic bounds for
spoofing of order i. We also obtain necessary and sufficient conditions for A2
codes that achieve the bounds with equality. In section 4 we prove combinatorial
lower bounds on the size of transmitter’s and receiver’s key spaces and derive
necessary and sufficient conditions for achieving the bounds with equality. In
section 5, we study the combinatorial structure of the transmitter’s encoding
matrix and receiver’s verification matrix, and establish the relationship between
optimal codes and some known classes of designs.

2 Definitions and Notations

An A2-code is an asymmetric authentication system defined by two sets of func-
tions: a set of encoding functions used by transmitter to generate an authenti-
cated message, and a set of verification functions used by the receiver to verify
authenticity of a received message. The set of encoding functions is indexed
by the transmitter’s key, e;, and the set of verification functions is indexed by
the receiver’s key, e,. The transmitter uses his secret key, e; € Er, to select an
encoding function f, and encode a source state s € S, to obtain an authenticated
message, m € M, that is sent to the receiver.

f:ETXS—)M

The receiver uses his secret key, e, € Eg, to determine the verification
function g to verify authenticity of the received message,

g:Er x M — SU {reject}

Decoding may result in acceptance of the message as a particular source state,
or complete rejection of it and declaring it fraudulent.

We assume a probability distribution on S and one on ET x Ef, denoted by
p(s) and p(e:, er) respectively. Using p(e:,e,) we can calculate the probability
distribution of Er and Eg, denoted by p(e;) and p(e,), respectively. The keys
for transmitter and receiver are chosen such that if f(e;,s) = m and p(e;,e;) >
0, then g(e,,m) = s for all s € S. Further, if g(e,,m1) = s1,9(er,m2) =
82, -+, g(er,m;) = s;, then there is a e; such that flet,81) =my, -+, fler, i) =
m; and p(es,er) > 0. Key generation for the system can be coordinated by
the arbiter in a number of ways. For example, the transmitter may select his
key, e, securely forward it to the arbiter who will choose a key e, with the
required properties and securely forward it to the receiver. Key generation
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process can also be started by the receiver, who will send his chosen key to
the arbiter. Arbiter will choose a secret key for the transmitter and secretly
deliver it to him. Finally, keys can be generated by the arbiter and delivered to
the transmitter and receiver. In all cases the arbiter will end up knowing both
transmitter and receiver keys.

The collection of encoding functions define an encoding matriz where the
rows are labelled by e, € Er, columns are labelled by s € S and the (e, s)
element is m = f(e;,s) € M. The collection of verification functions define
a verification matriz where rows are labelled by e,, columns are labelled by
m € M, and the (e, m) element is s € S or ‘-’ if g(e,,m) = s or *-’, respectively,
and ‘-’ means reject. We use the following notations.

St set of sequences of ¢ source states (s, 82, -, 8;), where
5;'s are pairwise distinct;
M set of sequences of ¢ messages (m,,ms,---,m;), where
m;’s are pairwise distinct.

Also
M(e,) = {meM:g(e.,m)e€S}
M(e,,s) = {meM:g(e,m)=s}
Er(my,---,m;) = {e, € Ep:g(e,,m;) € S and g(er,m;) are pairwise
distinct, 1 < j < i}
Er(e:) = {er € Er:ples,er) >0}
Er(my,---,m;) = {e € B :3s; € § such that f(e;,s;) =m;,1<j<i}
Er(e;) = {e € Er:ple,er) >0}
EroEp = {(eer): ples,er) >0}

3 Bounds on probability of success

We study three types of attack and derive lower bounds on the success proba-
bilities of attacker in each case. Proofs of the theorems are omitted as they are
essentially the same as proofs of Theorems 4.1-4.5 in [5] and Theorem 1 in [10].

Attack O;: An opponent observes a sequence of i distinct messages, m* =
(my1,ma, -+, m;), sent by the transmitter and attempts to construct another
message m # m;, 1 < j < i, which is acceptable by the receiver. The opponent
is successful if receiver accepts m as authentic.

The opponent’s probability of success is
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p(R accepts m | R accepts m*).

Define,

Pp, = max_max p(R accepts m | R accepts mt).
mieMi meM

For a random variable X with probability distribution p(X) let H(X) =
— 3, p(z)logp(x) denote the entropy function.

Theorem 3.1 Pp, > 2H(ErIM™*)-H(ERIM®) [ = 0,1,2,---.
Equality holds if and only if

pler| R accepts m?)
ples| R accepts mt, m)

is independent of m‘,m and e, where e, € Er(m‘',m) and Ep(mi,m)#0. In
the case of the equality,

p(er| R accepts m?)
(e;] R accepts mi,m)’

Po, = p(R accepts m | R accepts m*) = »

Attack R;: Receiver, after receiving a sequence of i valid messages, mi =
(my,my, - - - ,m;), claims it has received a message m different from m;y, ms,---,m;
It is successful if the arbiter approves receiver’s claim. Arbiter accepts m from
the receiver if m is valid under the transmitter’s key.

Receiver’s probability of success is,

p(m is valid for T | T generates m’,e;).

Define,

Pp, =  max max p(m is valid for T | T generates m‘, e,).
micMie.€cEg meM

Theorem 3.2 Pg, > oH(Er|M*! . Er)-H(ET|M"ER) ;=0,1,2,--.
Equality holds if and only if

pler | T generates m’,e,)
ple, | T generates m',m,e;)

is independent of mi,m, e, € Er(m*,m) and e, € Er(m‘,m), where p(e:, e;) >
0, and Er(m?,m) # 0. In the case of the equality,

ple; | T generates m',e;)
ple, | T generates m',m,e,)’

Pg, = p(m is valid for T | T generates m',e;) =
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Attack T: T sends a message m, and later denies it. He is successful if the
receiver accepts m as authentic. If T' uses e, his success probability is,

p(m is valid | e;),

where m is valid means that m is acceptable by R and could not be generated
by T using e;. Define,

Pr= max m is valid .
T e'aneagrmeM\M(ec)p( is valid | e)

Theorem 3.3 ([5]) Pr > 2H(ErIM.Er)—H(Er|Ez)
Equality holds if and only if,

pler | er)
pler | R accepts m,e;)

is independent of e;,,m and e,, where e, € Egr(m) assuming Eg(m) # 0,
pleg,er) >0 and m ¢ M(e;). In the case of equality,

pler | er)
ples | R accepts m,e)’

Pr = p(R accepts m | e;) =

4 Bounds on the sizes of the key spaces

An A2-code is secure against spoofing of order i if Po,, Pg; and Pr are all less
than 1. We will consider an A2-code which is secure against spoofing of order
up to £ and use the following assumption throughout the rest of the paper.
Assumption: The probability distribution on ET o Eg is uniform.

We consider the case that Po,, Pr,(0 < i < ¢) and Pr all achieve their lower
bounds derived in Theorems 3.1, 3.2 and 3.3. In this case we can calculate
probabilities in the following way.

Po, = p(R accepts m | R accepts m)
p(R accepts m’,m)
p(R accepts m')
2e.eEr(mith) Pler)

= . 1)
ze,eEn(m‘) pler) (
We also have,
Pr = ple; | T generates mi,e,)
) pe; | T generates m*, m,e,)
— Ze,EEr(m‘+‘)ﬂE1(e,) ples,er) 2)

Z:ecEE"J'(m‘)l’\E-p(e,.) ples, er)
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Theorem 4.1 In an A%-code if Po, and Pg, achieve their lower bounds, we
have

t ¢
|Ez| > (J] Po.) " (J] Pr)~". 3)
=0 i=0
Equality holds if and only if,
(i) |[Br(m**') N Er(e,)| = 1;
(ii) |1Er(m™?)| = |Eg(ed)l;
for any m'*! e, e, with Ep(m®*!) # 0, Er(m**') N Er(e,) # 0; and
(iii) the probability distribution on ET is uniform.

Proof: From equation (1) and (2) we have,

¢ ¢
(H PO.')(HPR.')

i=0 i=0 e,€Er(mit!)

1
erGEg(;an ) p(ef) m (4)

= > ple)ple: | er)

erEER(m‘+l)

= > pleser)
e~.€EEgR(mtt?)

|Er(m+!)]|
|ET||ER(es)|

Now choose m!*! and e; such that m!*! is incident with e, (could be generated
by e;). Then any e, € Eg(e;) must accept m®+!. So | Er(m®*!) |>| Er(e:) |-
Therefore |Er| > ([T-_o Po:)~ ([T'_o Pr:)~!. Equality holds if and only if
|Er(m®*1)| > |Er(e;)| and inequalities (4) and (5) become equalities. Achieving
equality in (4) is euivalent to |Er(m®*!) N Er(e;)| = 1. Achieving equality in
(5) being euivalent to |Er(e:)| is a constant for all e;. It is also equivalent to
that the probability distribution on E7 is uniform. . O

|Er(m®1) n Er(e,)
D Vo BT

v

(for some e;). (5)

Theorem 4.2 In an A?-code if Po,, Pg,,0 < i < ¢, and Pr achieve their lower
bounds, and |Er| = (]'[f=o Po‘.)‘l(l'[f=0 Pg,)7}, then

t

|Erl > (][ Poo) ' P7".
=0

Equality holds if and only if
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1. |Ep(m)NEg(e;)| = 1 for any e, and m such that m ¢ M(e,) and Er(m)N
Enr(e) #0.

2. The probability distribution on Eg is uniform

Proof: From Theorem 3.3 and 4.1 we can write Pr in the following way.

Pr = p(R accepts m|e;)

= > pler | e) = pler | e)|Er(m) N Er(e:)|
e €Er(m)NERg(er)
|Er(m) N Eg(e:)]

|ER(6t)|

So we have

¢
_ |Er(m) N Eg(e:)]
[Lroorr = 3 o™t

i=0 ereEn(ml+l)

Z ple, er)IER(m) N Eg(e:)|

e-€Er(mt+!) e, €ET(er) |Er(ee)l
= Y Y plener) |Er(m) N Er(e:)| (by Theorem 4.1)
|Er(e)|

e~€EER(ec) et €ET(er)

= Z Z p(et,er) IER(m) nER(et)l

e:€Er(er) er€EER(er) IEn(e¢)|
|Er(er)||Er(es)| |IErR(m) N Eg(e:)]

|E7 0 Eg| |Er(ec)|
Er(e
L ) B

The above value is independent of e;, e,,m. So we can choose an e, such that

Er(e, 1
fEJ:oE}'[ 2 g7 Then we get

4
|Erl > ([] Po.)~Pr'|Er(m) N Er(es)| (6)
i=0
4
> ([[Po)'P7! (7
i=0

|Er| = (l'[f=0 Po,)~'P;!' if and only if inequalities (6), (7) become equalities.
(6) becomes equality if and only if |Ex(e,)| is independent of e,. It is equivalent
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to the probability distribution on Epg is uniform.
(7) becomes equality if and only if |Er(m) N Er(e)| =1 for all m and e, with
m ¢ M(e). : O

Corollary 4.1 If |E7|,|ERg| achieve their lower bounds, then we have

¢ 11
|Er o Er| = ([] Po)~"(I] Pr) "' Pr".

i=0 i=0

Proof: In the case that |E7|,|Eg| achieve lower bounds, we have

[4 [4
Bam®)| 1 |Ep(m)nEr(e)| 1
QT Po)IL Pr)Pr = =5 Ereyi ™ 1Brtel  ~ BroEal

O

i=0 i=0

An A?-code, for which Po,, Pg,,0 < i < ¢, Pr,|ER|,|Er| all achieve their
lower bounds, is called ¢-optimal code. In the rest of this paper we study com-
binatorial structure of these codes.

Corollary 4.2 In an ¢-optimal code, for any i,1 < i < €+ 1, we have the
following:

1. |Er(m?) N Ex(e;)| is independent of m’ and e, if Er(m*) N Er(e,) # 0.

2. |Ep(m?)| is independent of m* if Er(m‘) # 0. Especially, |Er(m‘+!)| = 1.
3. |Er(m*) N Eg(e;)| is independent of m* and e, if Er(mi)NEg(e) #0.

4. |Er(m’)| is independent of m' if Ep(m’) # 0.

Proof: From (i), (iii) of Theorem 4.1 and equality (2) we have

i-1 :
_ |Er(m*) N Ex(er)|
I 2n =5

So |Er(m?) N Er(e,)| is independent of m! and e,. The first statement is true.
From (ii), (iii) of Theorem 4.1 and equality (1) we have

i—1 i
[ro= ¥ plen =220
j=0

e € Emimi) |ER|
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So |Er(m?)| is independent of m® for any i. The last statement is true. From
|Er(m)| - |Er(m*) N Er(es)| = |Er(m’)| - |Er(e:)| @)

we know |Er(m?)| is independent of m’. Especially, by Theorem 4.1, (i), (ii)
|Er(m%)| = 1. The second statement is true. In the similar way the third one

can be proved.
O

5 Combinatorial Structures of the Key Spaces

In this section we study the relationship between l-optimal A%-code and com-
binatorial design. We only consider Cartesian (without secrecy) A%-codes. In
a Cartesian A%-code for a fixed m € M, there is a unique s and one or more
e; € Er that satisfy f(e;, 8) = m, and at most one s and one or more e, € Eg
that satisfy g(e,,m) = s.

5.1 Two Kinds of Combinatorial Designs

Definition 5.1 A block design is a pair (V, B), where V is a set of v points
and B is a family of k-subsets (called blocks) of V. A block design is called
t-design if any t-subset of V occurs in ezactly A blocks.

Definition 5.2 ([8]) A block design is called a-resolvable if the block set can
be partitioned into classes Cy,Cs,---,Cy with the property that in each class,
every point occurs in exactly o blocks.

Obana and Kurosawa showed an example of this design [8]. We will be
interested in a-resolvable design with the following properties:

There is a positive integer £ < n such that
(P1) Any collection of i blocks from ¢ different classes either intersect in p;
points or do not intersect, 1 <i < £+ 1.
(P2) For any ¢+1 blocks Bj,, Bj,,* - -, Bj,,, from different classes Cj,,Cj,,- -, Cj,.
and any u(# ji1,J2, -+, je+1), there exists a unique block B, € C, such that

le n"'nBjt+1 =B.‘iln"°nBj¢+1nBu’

if B, N---N B;
Bl=1.

# 0. Furthermore, for any B € C,\{B.}, |B;,;N---NBj,,, N

t+1 Je+1

Definition 5.3 ([10]) A partially balanced ¢-design is a block design (V, B) in
which any t-subset of V either occurs in exactly A blocks or does not occur in
any block.
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We denote this design by ¢ — (v, k; {),0})-design.

Definition 5.4 A t — (v, k; {),0})-design (V, B) is a strong partially balanced
t-design if it is also an i — (v, k; {\i,0})-design, for any i, 1 < i < ¢, and
1-design.

Example 5.1 (Eristence of strong partially balanced t-design)
Let Fq be a field of q elements, and I be a positive inieger less than g — 1.

V=F
For fized a; € Fq, a; # 0, define a subset C CV as follows:
l .
C={(z,y):y= Za,—m',a,- € Fq,q; # 0}.
=0

Let B be the family of all subsets defined above. For any i different points
(x1,1), (T2,92),*+, (i, 4:) €V, if they are in a subset C, then they satisfy

alx‘, + al_lx’l'l +---+ay+a = Y
azh +azh o taizata =y
gt +aoizi Tt + o taizitao =y

This is a system of linear equations with unknown agp,a1,---,a;. The rank
of the coefficient matriz is i. So for 1 < i < I, it has ¢'~*(g — 1) solutions
(@1,at-1,-++,a0) with a; #0. If i =141 there is a unique solution. Therefore
(V, B) is a strong (I + 1) — (¢°, q; {1,0})-design with X; = ¢"~*(¢—-1),1 <i <L

Definition 5.5 A t — (v,k; {,0})-design (V,B) is a resolvable partially bal-
anced t-design if the block set can be partitioned into classes C1,Cs,---,C,+ with

n

the property that for each j(1<j < n),(V,C;) isat— (v', k; {)\',0})-design.

Definition 5.6 A strong partially balanced ¢ — (v, k; {A,0})-design (V, B) is
resolvable if it is resolvable with classes C1,Cs -, C, and the property that for
each j,1 < j < n',(V,Cj) is a strong partially balanced t — (', k; {X',0})-design.

Now we show how to derive resolvable partially balanced ¢-design from an
a-resolvable design with properties (P1) and (P2).
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Lemma 5.1 Let (V, B) be an a-resolvable design in which B, |B| =, is parti-
tioned into Cy,Cs,---,Cy with property (P1). Suppose all classes include the
same number of blocks. Then

|{(Bjn"°:Bji) : hz=1-Bj.. #ﬂaBju €Cy,15u Sz}l = H : %z’at_l’

where 1 <1 <{+1.

Proof: We use an induction argument to prove this lemma. First consider a
block B; in C;. Using property (P1), for each point p € B, there are o blocks
Bs’s in C, such that p € B; N By. Now |By| = y1,|By N By| = 2, and so for a
fixed Bl, ‘

(B, Ba) : Bun B2 #£0,Ba € Ga = Mo

If B; runs through Cj, then because |C;| = b/n we have,

b
H(BLB): BiNBy #0,B1 € OBy € Go)| = 1 oo

Now suppose for i blocks we have,
i . b m iy
H(Bji»--- 3 Bj) : My=1 Bj, # 0,Bj, €Cy,1 <u<i}|= n -I-;a )
]

We show that a similar equation holds for ¢ + 1 blocks, hence completing the
induction step. Consider a point p € Ni_,B;,. There are & blocks Bj,,, in
Cj.,, such that p € it B;, . Because |Ni_, B;,| = p; and |NEEY By, | = pita,
we have

) . b . i
{(Bjir-+2Biey) : ML By, #£0,B;, € Cu1<ugi+1}] = —-Eait. By
L] Litr
— 2 M ai,
n Byl
which proves the Lemma. o

Lemma 5.2 Let (V, B) be an a-resolvable design in which B is partitioned into
C1,Cs,- -+, Cy and satisfies property (P1) . Suppose all classes include the same
number of blocks. Then for i blocks Bj, € C;,,--+,Bj, € Cj, withNi_, B;, #0,
we have

|{(Bj:‘+11""Bj¢+1) : ni+=11B]'u 7£ Q,Bju € Cuyi+1 <ul e+ l}l = ﬁaf—i+l,

wherel <i<{f+1.
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Proof: For any p € Ni_,B;, there are a blocks Bj,,, in Cj,, such that
p € NLB;.. By (P1) we know | Ni_, Bj,| = pi and | NGZY Bj,| = it
So |{Bj;y1 € Ciya : NEAB;, # 0} = Ho. Similf;\r argument for i + 1

blocks, Bj,, Bjys-**, Bjiy,, results in {Bijisz € Ciiyz n:;;leju #0} = ﬁfﬁa
Repeating the argument we have

|{(Bji+u' vt 3Bjt+1) : nf;;llBju 7‘é Q’Bju € Ctni +1 <u < e+ l}l
- _H a-“i“a--- He
Hi+1  Hit2 He+1
= B e-in
Het1

«a
}

which proves the Lemma. O

Lemma 5.3 Let (V, B) be an a-resolvable design in which B is partitioned into
C1,Cs, -+, Cn. Suppose all classes have the same number of blocks. Fori blocks
Bj, € Cj,,-++,Bj; € Cj, with 1 <i < ¢, and p € N, B;,, we have

l{(BJ'i+1v" : ?le+l) :pE N4t BjuiBju €Cy,15usl+ l}l = ol

u=1
Proof: It follows from Definition 5.2. O

Theorem 5.1 Suppose there exists an a-resolvable design (V, B) in which B

is partitioned into Cy,Ca,---,Cn, with properties (P1) and (P2), and such

that all classes have the same number of blocks. Then there exists an (£ + 1) —

(|B|,n; {1,0})-design (U, E) which is strong resolvable and has parameters,
U B W ey

Ber

Proof: We construct a resolvable partially balanced (¢+1)-design. Let U be the
set of | B| points. Fix ¢+1 classes, say C1,Ca,- -+, Ct+1. From property (P2), for
any £+1 blocks B; € C1,By € Ca,-++,Bey1 € Cy41, with BiNBaN-- ‘NByy # 0,
and any u,£ + 1 < u < n, there exists a unique block By € C. such that
BiN---NBgy1 N By = BiN---NBey. In this case there exists only one group
B[+2 € C[+2, s ,Bn € Cn such that

BiN-- N By NBpyaN---NBy =B1N---N By
Now we define a block (n-subset of U)

EB:,"',B(.H = {mla' ’ ')ml+1’ml+21"'1mn}~ (9)
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From Lemma 5.1, we get in total 2;2-af blocks which form a block set E.
Using this construction we know that any ¢ + 1 points of U either occur in one
block or does not occur in any block. From Lemma 5.2 we know that any ¢ points

of U either occur in ’—‘%a“"‘“ blocks or do not occur in any block. So (U, E)

is an (£+1)—(|B|,n; {1,0})-design with parameters \; = ﬁa"”l, 1<i<.
From properties (P1) and (P2), a point p € V' appears in a blocks of every
class. Therefore

{(B1,Bz,"*,Be+1) : p € nfi—'iBj}l = al*l.

That is, a point p € V' corresponds to a*! blocks ey, - --,eqes1 of (U, E). For
each block, say e;, we call (ej,p) a valid pair. Now we partition the block set
E. First choose one point p; € V. There are a’*! blocks e in E such that each
(e,p1) is a valid pair. Denote the collection of such e by E;. Next if there is
any point left, choose

p €V —{peV:3e€ E, (ep) is a valid pair}.

Then there are a‘*! blocks e in E such that (e,p») is a valid pair. Denote
the collection of such e by E;. Repeat the above steps until all the points are
exhausted. At the dth step we choose

pa€EV—{peV:3e€ EyUE,U---UEy4_,, (e,p) is a valid pair}.

For py there are ! blocks e in E such that (e, pg) is a valid pair. The collection
of all such e is E4. The process stops when,

V-{peV:3e€ E;U---UE,, (e,p) is a valid pair} = 0.

Now we have a partition of E = E, U---UE,.

Furthermore, in each Ej, using Lemma 5.3 any 4,1 < ¢ < ¢, points of U
either occur in exactly a~**! blocks or do not occur in any block. This implies
(U, E) is a strong, resolvable partially balanced (¢ + 1)-design with parameters
); = at~#*+1, This proves the Theorem. m]

5.2 Structure of Er and Er

In this section we will study the combinatorial structure of E1 and Eg which cor-
respond to the combinatorial designs defined in the previous section. We assume
all codes are ¢-optimal Cartesian codes. In a Cartesian A%2-code M is partitioned
into My, Ma,- -+, M|g|, where M; = {m : 3e, € ER such that g(e;,m) = s;}.

Lemma 5.4 |M(e,, s)| and |M(e,)| are independent of e,, s.
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Proof: For a given e, € Eg and s € S, all m in {m = f(e;,s) : e, € Er(e,)}

are acceptable by e,. So |M(e,,s)| > IE_'I‘(I%%%}‘I(W On the other hand if
m can be accepted by e,, then m can be generated by some e; € Er(e,). So

Er(er _ Ez(en L
|M (er,s)] < E—r(m)TnZ‘T(e,)r Therefore, |M(er,3)| = 5 m)TneET( <y Which is

independent of e, and m using Corollary 4.2, 1. It follows that |[M(e,)| =
Y ses |M(er,s)| =S| - |M(er,s)| is independent of e, € Eg. O

Corollary 5.1 PEOI = |M (e, s)| is an integer.
Proof: From the proof of Lemma 5.4 and equation (2). a

Lemma 5.5 Pp, = Pg, =---= Pg,.

Proof: From equation (2) Pg, = ]E—T%%F&H Now fix s € S and e, € ER.
Choose m? = (my,---,m;) such that Ex(m*) N Er(e;) # 0 and my,---,m; ¢
M (e,,s). Then for m € M(e,,s), m* and m can be accepted by e,. Hence m!
and m can be generated by some e; € Er(e,). So

|Er(m*,m) N Er(e.)| - |M(er, 8)| = |Er(m’) N Er(er)].

Hence we get [M(er,s)| = ; éf{r(,‘mz?fgf(;{l)l = Pg'. But we also know that
Er(er -

|M(e"’s)| = ET(mTﬂji‘T(er)l = PRol‘ So Pp, = Pp, =+-+ = Pp,. a

Lemma 5.6 Po, = Pp, =--- = Po,.

Proof: Fix aj,1 < j <|S|. For i < € choose m’ = (my,---,m;) such that
my,---,m; ¢ M; and Eg(m*) # 0. Then

o Y pler) =IMer,si)l Y, pler)

meM; e, € Eg(mi,m) erEER(m?)

So Po, = |M(ey,s;j)| - |M;|~" and so all Po, are equal. a
Corollary 5.2 There erists an integer ¢ such that |M| = c|S|.

Proof: In the proof of Lemma 5.6 we have seen that |M;| = |M(e,, s)|P5}
holds for each j,1 < j < |S|. So |My| = |[Ma| = --- = |M|s||. Therefore
|M| = |My] -|S]. O
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Lemma 5.7 There is a partition on Er given by Er = U, Er(e;).
The proof can be found in [13].

Lemma 5.8 For a sequence of £+ 1 messages m**! from M, Mi,,---, M;,,,
with Ep(m*') #0, andu #4j,j =1,2,---,8+ 1 with £+ 1 < |S|, there ezists
a unique message my € M, such that Ep(m't!) = Eg(m‘*!,my).

Proof: Suppose Eg(m‘*t!) # 0. Then there exists at least one e, € Er that
generates m‘+!. Without loss of generality, we assume that m‘*! comes from
My, -+, M. Let u > €+ 1 and f(er,84) = my. Clearly Eg(m*!,m,) C
Eg(m%*1). To prove Ep(m®*t',m,) = Eg(m‘*!), assume otherwise: that is
Eg(m'+!,m,) # Er(m'*) and so |Eg(m*t!,m,)| < |Er(m**!)|. From The-
orem 4.1, (ii) we know |Egr(m!+!)| = |Er(e:)|- So |Er(m**!,my)| < |Er(es)|.
But because of the way m,,e; are chosen, we know Eg(e;) C Ep(m'*!,m,).
Hence |Er(e;)| < |Er(m®*!, m,)| which is a contradiction.
Uniqueness: If there exist two messages mu,m'u € M, such that

Ep(m'*!,m,) = Er(m**',m,) = Ep(m**")

then there exist et,e; € Er such that m*!,m, can be generated by e, and
m®*!,m, can be generated by e,. As both my,m, are in M,, e, # ;. So
|Er(mft1)| > 2 > 1, which contradicts Corollary 4.2, 2. 0

Note that Lemma 5.8 tells us that if a sequence of £ + 1 messages,
my € My, -+, meq1 € Moy

is acceptable under the same key, then there exists a unique sequence m¢42 €
Mey2,---,ms) € Ms) such that

Eg(my, -+, meq1) = Er(my, -+, Meg1,Met2, -+, Mys5))-

Furthermore from Theorem 3.1 and 4.2, for any m such that m # me42,---,mys),
we have Eg(my,---,mep1,m) = Er(ma,- -+ ,mep1)NEr(m) = Er(e))NEg(m).
So |Egr(my,---,m¢41,m)] = 1. This means that the system will not be secure
after £ messages are transmitted.

The structures of Er and Er are given as follows. Let Eg be a point set.
From Corollary 4.2, 4 we have |Eg(m)| independent of m. So (Eg,{Er(m) :
m € M}) forms a block design. In this design the block set can be partitioned
into |S| classes Cy,Ca, - - -, C)g| such that if g(e;,m) = s; then the block Er(m)
is in C,'.

The following theorem gives the structure of Ep.
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Theorem 5.2 In an ¢-optimal Cartesian A%-code, the design (Eg,{Egr(m)})
15 a-resolvable with properties (P1) and (P2). The block set is partitioned into
|S| classes, C1,Ca,---,C|s|, and has following parameters:

1. a= PEOI.

2 u= |ER|H-0PO foranyi, 1<i<f+1.

Proof: From Corollary 5.1, 4.2 and Lemma 5.8 it can be derived that (Eg, { Er(m)})
is a-resolvable with properties (P1) and (P2). Corollary 5.1 shows that o =
PE;, and equation (1) shows that y; = |Eg(m?)| = |Eg| Hg_o Po;. O

Now we consider E7. Let M be the point set, and for each e; € Er consider
a block {f(e¢,s) : s € S}. Then (M, {f(e:,S) : e: € Er}) forms a block design
which is denoted by (M, Et).

Theorem 5.3 In an {-optimal Cartesian A%-code, (M, ET) is a strong partially
balanced, resolvable (£+1)—(|M|,|S|; {\, 0})-design. The block set is partitioned
inton’ classes, Cy,Cs,---,C ' » and has following parameters:

1. A= A1 =1, and

= (Po—ol)t-i-H (P’;ol )t—i+l, 1<i<¢;
2. For a class C;, (M,Cj) has parameters X' = Xy, , =1, and
X, = (Pgl)t~H1, 1<i<y,

where n' = |Ex|/|Er(er)|.

Proof: Lemma 5.7 and Corollary 4.2 show that (M, Et) is a strong partially
balanced, resolvable (¢ + 1) — (|M|,|S]; {),0})-design. The parameters are as
follows.

'53"(("‘”' \Br(m®) 0 Er(e,)] (from (8))
|[Er(m®)] _|Er(m’) N Ex(es)]
|Er(m )| |Er(mt+1) N Ex(er)|
(Pohye 1+ (PRt (from (1), (2), lemma 5.5,5.6)

Xi = |Br(m)|=

(from theorem 4.1)

and

|Er(m*) N Er(e,)|
|Er(mt+1) N Er(e,)|

= |Br(m’) N Er(e;)| = = (PRl
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5.3 Constructing ¢-optimal A%-codes from Designs

In this subsection we show how to construct an f-optimal Cartesian A%-code
from an a-resolvable design.

Theorem 5.4 Suppose there exists an a-resolvable design (V, B) in which M
is partitioned into Cy,Cs,- -+ ,Cy with properties (P1), (P2) and such that all
classes have the same number of blocks. Then there exist an £-optimal Cartesian
A%-code The code has the following parameters:

1. The number of source states is n;
2. The number of messages is | B|;

3. |Er| = |V|,|Br| = & . #-0,|Er o Bg| = By at;

n g

4' PO.'=£:%1PR.'=%,PT=;‘¢I__“7OS1:S£'

Proof: Using theorem 5.1 we obtain an (£ +1) — (| B|,n; {0,1}) design (U, E).
Now the A2%-code will have the message space M = U, source state space S =
{31,82,"',8“}, Ep=V and Er=E.

For each v € V define a verification function g such that

_ 8; ifveB;
9(”’"‘)-{ ~ ifugB;

For each e € E define an encoding function f such that f(e,S) is (9).
Because of property (P1) Pp, = L"‘fi From the proof of Theorem 5.1 we

know Pg, = ‘\—:\T—‘ = é, and from property (P2) and construction of Er we have
Pr = ml_x All calculations are independent of the chosen message, encoding
function or verification function. So Po,, Pr;, Pr meet their lower bounds.

Noting the construction of Er in the proof of Theorem 5.1 we know that
Er(m'*') = Eg(e;) and |Er(mft!) N Er(e,)| = 1. So by using Theorem 4.1
|Er| achieves its lower bound. From property (P2) we know for any m such
that m ¢ M(e),

|Er(m)NEg(e)| = |[Er(m)NEg(my,-+,mes1)| = |Er(ma, - ,meqr,m)| =1

and so by using Theorem 4.2 |Eg| achieves its lower bound. Hence the code is
optimal. O

Example 5.2 An l-optimal A%-code
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Encoding matriz Et:

1 2 38 4 5 6 7 8 9 10 11
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Verification matriz Eg:
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ETOER.‘

€r
1 2 3 4 &5 6 7 8
11y v
2|V v
3|V v
iV v
5 v v
6 v v
7 v v
€ 8 \/ \/
9 v v
10 Vv Vv
11 \/ \/
12 Vv Vv
13 Vv Vv
14 v v
15 V4 Vv
16 vV v

In this code, Po,=1/2, Po,=1/2, Pr,=1/8, Pr,=1/%, Pr=1/2.
Note that ET o Egp corresponds a partially balanced 2 design.
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