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Abstract

The integrity of a graph G, I(G), is defined by I(G) =
minscv(c){|S|+m(G — S)} where m(G — S) is the maximum
order of the components of G — S. In general the integrity
of r-regular graph is not known [8]. We answer the following
question for special regular graphs. For any given two integers
p and r such that & is an integer, is there a r-regular graph,
say G*, on p vertices having size ¢ = & such that

I(G(p, 5)) < I(G")

for all p and r? Integrity graph is denoted by IG(p,n). It is a
graph with p vertices the integrity n, and has the least number
of edges denoted by ¢[p, n]. We compute g[p.n] for some value
of p,n.

Keywords: Integrity, Cycle, and Integrity graph.

1 Introduction

Integrity was introduced by Barefoot, Entringer and Swart [3] as
an alternative measure of the vulnerability of graphs to disruption
caused by the removal of vertices. The motivation was that, in some
respect, connectivity is oversensitive to local weakness and does not
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reflect the overall vulnerability. In an analysis of the vulnerability
of a communication network to disruption, two quantities(there may
be others) that come to mind are the number of elements that are
not functioning and the size of the largest remaining group within
which mutual communication can still occur. Formally, the integrity
is

I(G) = min scy(e){lS|+m(G - 5)}

where m(H ) is the maximum order of the components of H.

A few further comments on notation are appropriate here. The
order and size of G(that is, the number of vertices and edges) will gen-
erally be denoted by p and g, respectively. m(G) equals the largest
order among the components of G. As usual, V and E will denote
respectively the sets of vertices and edges of G. The length of the
shortest cycle in a graph G that contains cycles is called the girth
of G and is denoted by g(G). Graph G(p,q) denotes a graph with
g = |E| and p = |V|. Let v be a vertex of G and e be an edge of
G. Then deleting a vertex or edge, or adding an edge are denoted
accordingly by G — v, G — e, or G + e. I-set of graph G is a subset
S of V(G) such that I(G) = |5]+ m(G - §5).

In general the integrity of a graph is not known [8]. But for
trees there is a theorem given in [2] that gives an upper bound for
the integrity. This upper bound is well-known integrity of path.
Therefore what we are interested in is the following question: For
any given two integers p and r such that & is an integer, is there a
r-regular graph, say G*, on p vertices having size ¢ = E- such that

I(G(p, 7)) < I(G™)

for all p and r?

For some cases we give an answer to the above question. We also
compute the integrity of all G(6,9) and G(6,12) graphs [11] to see
whether above statement is true or not.

We organize the rest of the paper as follows. In the next section
we review the known theorems on the integrity. In Section 3 we
prove that the 2-regular graph C}, has the maximum integrity among
all graphs G(p,p). It is shown that p — 2-regular(if p is even) and
p — 3-regular graphs have the maximum integrity among all graphs
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G(p, p—%‘—zl) and G(p, ﬂ%‘—:’l), respectively. Similar case is also shown
for some other regular graphs. In Section 4 we first give the definition
of integrity graph and determine g[p, n] values for given small p and
n.

2 Some of the Results on Integrity

In this section we first state well-known theorems about the integrity
of special graphs. In the following theorem, we give the integrity of
a variety of families of graphs. These results were first found by
Barefoot, Entringer and Swart.

Theorem 2.1 [2, 3] The integrity of

(@) the complete graph K, is p;

(b) the null graph K, is 1;

(c) the star Ky, is 2;

(d) the path P, is [2y/p+ 1] — 2;

(e) the cycle Cp is [2,/p] — 1;

(f) the comet Cprr is I(P,), if r < /p+1—5/4; [2/p=7] — 1,
otherwise;

(g) the complete bipartite graph K, , is 1 + min{m,n};

(h) any complete multipartite graph of order p and largest partite set
oforderr isp—1r+1.

The second theorem tells which graphs have integrity near the
extremes of the range; only the case I(G) = p — 1 is nontrivial.

Theorem 2.2 [10] Let G be a graph of order p.

(a) I(G) =1 if and only if G is null.

(b) I(G) = 2 if and only if all nontrivial components of G are edges
or the only nontrivial component is a star.

(¢) I(G) = p—~ 1 if and only if G is not complete and G has girth at
least 5.

(d) I(G) = p if and only if G is complete.

The following two theorems are about the integrity of trees. First
one gives the maximum integrity among all trees with p vertices.
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Theorem 2.3 [2] Of all trees T, of order p, the path P, has mazi-
mum integrity.

Theorem 2.4 [2] For 2 < n < [2/p+ 1] — 2 there is a tree T of
order p for which I(T) = n.

As we see in Theorem 2.3, among all graphs G(p, p— 1), the path
P, has the maximum integrity.
3 Integrity of Regular Graphs

In this section we answer the question asked in Section 1 for special
regular graphs. We first state and prove the following theorem.

Theorem 3.1 Let G be a connected graph with p vertices. If G
contains r cycles with no chord, then I(G) < I(Cp) if r cycles contain
at least one common edge, I{(G) < 2\/p— 1 + 1| + r — 2 otherwise.

Proof. Let Cp,’s be the cycles with no chord in G for ¢ = 1,2,..., 7.
Suppose Cy,’s do not have a common edge for all i = 1,2,...,7. Then
pick v; from each cycle Cp; such that v;’s are all different. Then
G — {v,v2,...,v,} is a tree with p — r vertices. By Theorem 2.3 we
have I(Tp—;) < [2¢/p— 7+ 1] — 2. Let § be a I — set of T,—,, that

is,

IS|+ m(Tp—r — S) < [2v/P—T+T] - 2.

Define §' = SU {v,v2,...,v-}. Hence

m(G - 8)=m(G - § - {v1,v2,....,03}) =
m(G — {v1,V2, .0y 0} — §) = m(Tp—r = S).

Then
1§ + m(G = S§") = |S|+r+m(Tp-r —S) < [2vp—-r+ 1] +7-2.
Therefore

IG)<|S+m(G-§)<[2vp=r+ 1| +7-2.
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Now suppose e = (u, v) is the common edge of Cy,;’s fori = 1,2, ..., 7.
Then G—{v}(G—{u})is a tree with p—1 vertices. Define 5’ = SU{v}
and then we obtain the following.

I(G) < [2yF] - 1 = I(C)).
]

Corollary 3.1 Let C, be a cycle with p > 4. Then I(C,) = I(Cp +
e) = [2,/p] - 1.

Proof. Since C,, is a subgraph of Cp + e then I(C,) < I(Cp +¢€). On
the other hand by Theorem 3.1 I(Cp+e€) < [2\/p] -1=1(Cp). O

Observe that for all p > 4 G(p, p+1) graphs have two cycles with
no chord. Therefore we have the following corollary.

Corollary 3.2 Let p > 4 be a positive integer, then I(G(p,p+1)) <
I(Cyp) if two cycles with no chord contain at least one common edge,

I(G(p,p+1) < [2y/p —1] otherwise.

We now determine lower and upper bounds of the integrity of
G(p,p) graphs. A typical G(p,p) graph is depicted in Figure 1.

T,

Figure 1

where T; is either a vertex or a tree fori = 1,2,....,kand r+¢;+... +
ik = p.

Lower bound:
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The G(p,p) graph (p > 3) depicted in Figure 2 has the integrity
3, where T/s are either vertex or T; = P,. Obviously this is the
minimum integrity for a G(p, p) graph by Theorem 2.2 () and (b).
Hence I(G(p,p)) 2 3.

Figure 2

Upper bound:
The following is a corollary to Theorem 3.1 and gives the upper
bound for the integrity of all G(p, p) graphs.

Corollary 3.3 Among all the graphs of G(p,p) where p > 3, the
2-regular graph Cp has the mazimum integrity.

Proof : First observe that for any given integer p > 3, G(p, p) graph
has a unique cycle as a subgraph. Apply Theorem 3.1 to obtain the
result. O

Next we give the integrity of some special regular graphs.
Theorem 3.2 Let p > 5 be a integer. Then there exist a p—3-regular
G(p, ﬂpz_—(il) graph such that

I(G(p, 252)) = p- 1.
In particular if p is even, then

I(G(p,252) = p - 1.
Proof. )
If G(p, M) is a p — 3-regular graph, then it is not complete and

G(p ,—(p—2—§l) is union of cycles. In particularly if we take C, as
E(p,ﬂ”z;sl), then girth of C, is p > 5 and by Theorem 2.2 part
(¢) there exists a p — 3-regular graph which has the integrity p — 1.
If p is even, then G(p, ﬂ"z;zl) is union of K'3’s which has girt oo > 5.
Result follows from Theorem 2.2 part (c). 0
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Before we state theorems we recall some of definitions on graph
theory. For the positive integers » > 2 and n > 3, determine the
smallest positive integer p = f(7,n) for which there exists an r-
regular graph with girth » having order p = f(r,n). Such graphs are
called (r,n) - cages. [r,n] — graph is being used to indicate r-regular
graph with girth n. Thus (r,n)-cage is an [r,n]-graph; indeed, it is
one of minimum order. For more information about (r, n)-cages see
for example [7]. That f(r,n) always exists has been shown by Erdés
and Sachs [9].

Theorem 3.3 [9] For every pair of integers r,n > 3, the number
f(r,n) exists and in fact

f(r,n) < (::;

) ==+ (= 12 4 (-],

It was shown in [4] that f(r,5) > r2 4+ 1 for all » > 2. Hoffman and
Singleton [12] proved that equality holds for r = 2,3, and 7, and
perhaps 57, since it is not known whether there is a [57, 5)-graph of
order 572 4 1.

Theorem 3.4 [12] For r > 2, f(r,5) > r? 4+ 1. Furthermore, for
T # 57, equality holds if and only if r = 2,3, or 7.

When r = s™ + 1 for some prime s and positive integer m, then

f(r,6) = Arzli=2
and the (r,6)-cage is unique (see [5], Chap. 23).
Once we state the above theorems, the followings are immediate
consequences.

Theorem 3.5 For integers r > 2 and p > r? + 1 there exists (p —
7 — 1)-regular graph G of order p such that I(G) =p — 1.

Proof. Use Theorem 3.4 to construct (r,5)-cage on p = f(r,5) >

r? + 1 vertices. Take complement of (r,5)-cage as (p— r — 1)-regular
graph on p vertices. Use Theorem 2.2 part (c). 1]
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With a similar proof as above and use the fact about (r, 6)-cage
we can state the following theorem.

Theorem 3.6 If r = s™ + 1 for some prime s and positive integer
m, then there exists (p—r—1)-regular graph G(p, q) with the integrity

p—1, where p= ﬂ%);i and ¢ = (r—rl_):—l _ (r-;l)'

For certain p and r positive integers the following theorems show
that among all G(p, 5-) graphs there exists an r-regular graph which
has the maximum integrity.

Theorem 3.7 Let p > 5 be a positive integer. Then among all
G(p, g(5’2——?’1) graphs there ezist a p— 3-regular graph that has the maz-
imum integrity.

Proof.

There exists a p — 3-regular graph which has the integrity p — 1 by
Theorem 3.2. By Theorem 2.2 part (d) I(G(p,q))=p > p—1if and
only if ¢ = ﬂBQ:ll > ﬂ”z;al. Therefore p — 3-regular graph has the
maximum integrity among all G(p, ﬂ”z;sl) graphs. 0

Similarly

Theorem 3.8 For integers r > 2 and p > r% + 1 there ezists (p —
r —1)-regular graph G of order p such that I(G) is mazimum among
all graphs G(p, t'{—lm).

Theorem 3.9 If r = s™ + 1 for some prime s and positive integer
m, then there exists (p — r — 1)-regular graph G which has the maz-
. . . 2(r—1)%3-2

imum integrity among all graphs G(p,q) where p = —— and

7
_ (r=1)3—1 (r+1)
q= = r—)2 -T2

In the following examples we answer the same question asked in
Section 1 for G(6,9) and G(6,12) graphs.

Example 3.1 We compute the integrity of all G(6,9) and G(6,12)

graphs. These graphs are taken from [11] and depicted in Appendix.
We have the following values

34



I(Gy) =3,
I(G2) = I(Gs) = 5,

and for remaining k’s
I(Gy) = 4.

and

I(H,) = 4,
I(Hl) = I(H3) = I(Hq) = I(Hs) = 5.

From these values we make the following observations:

1. There exist a 3-regular graph, for example G5, such that I{G(6,9)) <
I(G,).

2. There exist a 4-regular graph, for example Hs, such that I{G(6, 12))
I(Hs).

0

In general the integrity of r-regular is not known. For special
cases we know the integrity of r-regular graphs. These are K4,
K, ., and r-cube. It was shown [6] that the integrity of the r-cube is
O(2"logr/\/r). Since we have partial answer for the question stated
in Section 1 the following is a still open question.

Question :Let r and p be two positive integers such that & is also an
integer. Then among all G(p, &) graphs is there a r-regular graph,
say G*, such that

I(G(p, 7)) S I(G") ?

4 Integrity Graphs

As we know no formula exists for the integrity of a graph in general.
This, however, is not our interest; instead, it is the following problem:
For positive integers n,p > 1, determine the smallest positive integer
q[p,n] for which there exists a connected graph with the integrity n
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and order p having size ¢[p, n]. We call such a graph integrity graph
and denote by IG(p,n).

Since IG(p, n) is a connected graph IG(p, n) is at least a tree and
IG(p,n) can be a complete graph. Therefore we have

-1
p—1<glp,n] < 22l

By Theorem 2.13 in [1] J(Kpm—-1+ Kp-m41) = m where 1 < m <
p. Then we have the following theorem for lower and upper bound

of g[p, n].

Theorem 4.1 Let p and n be two positive integers such that n < p.
Then

—1)(2p—-
p—1<glp,n] < 2=1)2p=n)

The following is an easy observation from Theorem 2.2 and Theorem
24.

Theorem 4.2 Let n and p be two positive integers grader than 3.
Then

(a) glp, p] = BEFH.

(0) glp,n) = p—1 for all p such that [2/p+ 1| -2 > n.

(C) q[P,p— 1] < ﬂpzil

By Theorem 2.2 IG(p, 1) does not exist and IG(p,2) is the star
Kip-1. We try to determine ¢[p, n] for small values of p and n > 3.
Before this we state the following lemma.

Lemma 4.1 Let G be a connected graph with p = 9 and ¢ = 10, that
is G = G(9,10). Then I(G) = I(G(9,10)) < 5.

Proof. By Corollary 3.2 I(G(9,10)) < I(Cy) = 5 if two cycles with
no chord have a common edge. If these two cycles do not have a
common edge, then by Corollary 3.2 I(G(9,10)) < [2v/8] = 6. But
observe that if these two cycles C,, and C,, do not have an common
edge, then we have the following cases.

Case 1. If these two cycles have common vertex v, then G(9,10)— v
is one of the following
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P, U Ps, P3U Ps, PyU Py.
And
I(P,U Pg) = I(P3U Ps) = I(PyU Py) = 4.
Hence I(G(9,10)) < 5.

Case 2. If these two cycles do not have common vertex, then then
G(9,10) is one of the following

G(3,3)UG(6,6)U{e}, G(4,4)U G(5,5) U {f}.

That is G(3,3) and G(6,6) are connected with an edge e or G(4,4)
and G(5,5) are connected with an edge f.

Suppose G(9,10) is the following: G(4,4) and G(5,5) are connected
with an edge f = (u,v) where u € V(G(4,4)) and v € V(G(5,5)).
Define S = {v} then

I(G(9,10)) < |§] + m(G(9,10) — v) = 5.
Suppose G(9, 10) is the following: G(3,3) and G(6,6) are connected
with an edge e = (u,v) where u € V(G(3,3)) and v € V(G(6,6)).
Since G(6,6) has a cycle then there exist a vertex w € V(G(6,6))

such that G(9,10) — {v, w} has three component and the maximum
number of vertices of component is at most three. Hence

I(G(9,10)) < |{v, w}] + m(G(9,10) — {v,w}) = 5.
Similarly one can show that I(G(8,9)) < 5. 1]

q[p, n] for small » and p

en=3

- ¢[3,3] = 3 and ¢[p,3] = p—1 for all p > 4 by Theorem
4.2.

e n=4

~ ¢[4,4] = 6 by Theorem 4.2.
- q[5,4] = 5 since I(Cs) = 4.
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— ¢[p,4] = p— 1 for all p > 5 by Theorem 4.2.
en=>5

— ¢[5,5) = 10 by Theorem 4.2.

q[6,5] > 6 by Corollary 3.3 and ¢[6,5] = 9 by computing
the integrity of all G(6,k)’s for k = 7,8,9.

q[7,5] = 7 and ¢[8, 5] = 8 since I(C7) = I(Cs) = 5.
— ¢[p,5] = p— 1 for all p > 8 by Theorem 4.2.

en==06

q[6,6] = 15 by Theorem 4.2.

q[7,6] > 9 by Corollary 3.2 and ¢[7,6] < 13 by Figure 5.
q[8,6] > 10 by Lemma 4.1 and ¢[8, 6] < 12 by Figure 5.
- ¢[9,6] = 11 by Lemma 4.1 and Figure 4.

q[10,6] = 10 and ¢[11,6] = 11 since I(C10) = I(C11) = 6
- ¢[p,6] = p— 1 for all p > 12 by Theorem 4.2.

G(9,11)
Figure 4

G(7,8) depicted in Figure 5 has girt 5 so G(7,8) is G(7,13) graph
with the integrity 6 by Theorem 2.2. There are 558 G(7, k) graphs
for k = 9,10,11,12 and 1643 G(8, k) graphs for £ = 10,11. One can
compute the integrity of all these graphs to determine exact value of
q[7,6] and ¢[8, 6].

G(8,12) G(7,8)
Figure 5
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We summarize the numbers computed above in a table as follows:

[nllp [ alpn] ] |

3| 3 3 Theorem 4.2 (a)
4 3 Theorem 4.2 (b)
41 4 6 Theorem 4.2 (a)
5 5 I(Cs5)=5
6 5 Theorem 4.2 (b)
51 5 10 Theorem 4.2 (a)
6 9 Exhaustive search
" 7 7 I(C)=5
8 8 I(Cg) =5
9 8 Theorem 4.2 (b)
61 6 15 Theorem 4.2 (a)
7 | 9<,513 | Corollary 3.2 and Figure 5
8 |10<£,£12 | Lemma 4.1 and Figure 5
9 11 Lemma 4.1 and Figure 4
‘ 10 10 I(Clo =6
q 11 11 I(Ci1i=6
12 11 Theorem 4.2 (b)

Obviously integrity graph IG(p,n) is not unique for given pa-
rameters n and p. For example there are two IG(6,5) graphs(G2, Gs
depicted in Appendix). They are not isomorphic graphs.
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Appendix

All the G(6,9) graphs.
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All the G(6,12) graphs.

< B
& D

42



