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Abstract

Some special sum graphs and difference graphs, based on abelian
groups, are discussed. In addition to Li's result on character sum
estimates, Weil’s character sum estimates are also used to show that
these are indeed Ramanujan graphs.
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1 Introduction

Roughly speaking, a Ramanujan graph is a connected regular graph whose
nontrivial eigenvalues are relatively small in absolute value. The interest
in Ramanujan graphs arise from their use in communication networks, ex-
tremal graph theory and computational complexity (see [10], [2], [3]). The
detailed definition of a Ramanujan graph is as follows.

Let G be a finite (directed) graph. The adjacency matriz of G, denoted
by A, is a square matrix with entry at (z,y) equal to the number of edges
from z to y in G. If G is k-regular, that is, the out-degree and the in-degree
at each vertices of G are equal to k, then k is an eigenvalue of A with
multiplicity equal to the number of the connected components of G. If,
in addition, G is r-partite, i.e., the vertices of G can be partitioned into r
disjoint sets Vp, - -+, V;_1 such that the outedges from vertices in V; end in
Vit1 for ¢ € Z,, then (k is also an eigenvalue of A for all r-th roots ¢ of
unity. Call (k’s the trivial eigenvalues of A, and the remaining eigenvalues
nontrivial. For a k-regular graph G, let A(G) be the maximal nontrivial
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cigenvalue of A in absolute value. If G is k-regular with A diagonalizable
by a unitary matrix, then the trace of AA® is nk and the eigenvalues of
AA? are the absolute value of the eigenvalues of A squared. Thus if G is
also r-partite, then n > rk and rk? + (n — r)A(G)? > nk, which yields the
following trivial lower bound of A(G):

AG) > (" = Tk) v Vk.

n—rT

A nontrivial lower bound for undirected graphs is given by Alon and Bop-
pana.

Lemma 1.1 ([10]) For k-regular undirected graphs G, we have
lim inf A(G) > 2vVk -1

as [G] — oo.

The same lower bound also holds for k-regular directed graphs G with A
diagonalizable by unitary matrices. This is because the bipartite undirected

graph with adjacency matrix
0 A
At 0

has eigenvalues %|A|, where A runs through eigenvalues of A. In view of
the above lemma, we say that a k-regular graph G has small eigenvalues if
A(G) < 2k — 1. Following Lubotzky-Phillips-Sarnak [10], we call a graph
G Ramanujan graph if

(1) G is k-regular;

(2) MC) < 2VE-T;

(3) A is diagonalizable by a unitary matrix.

Since a directed k-regular r-partite Ramanujan graph will give rise to 7

bipartite undirected Ramanujan graphs, therefore we include also directed
graphs in the definition above.

Despite the fact that a random k-regular graph G has a high probability
to have A(G), if not already < 2v/k — 1, not much bigger than 2vk — 1,
it is difficult to verify if a given graph is indeed Ramanujan. Hence it is
desirable to have explicit constructions of Ramanujan graphs. Up to date,
there are some known systematic methods. For details, we refer the reader
to [1], [3-{7]
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In this article, we review some known results on sum graph and differ-
ence graph in Section 2. Some special sum graphs and difference graphs,
based on abelian groups, are discussed in Section 3. In addition to Li’s
result on character sum estimates, Weil’s character sum estimates will also
be used to show that these are indeed Ramanujan graphs.

2 Known Results

In [5], certain graphs, namely sum graph and difference graph, are proven
to be Ramanujan. Let G be a finite abelian group and let S be a k-subset of
G. Two k-regular graphs, called sum graph X (G, S) and difference graph
X4(G,S) on G, are defined as follows. For = € G, the out-neighbors of z
in X,4(G, S) (resp. X4(G,S)) are those y € G such that z +y € S (resp.
y—x € S). It follows from the definition that the sum graph is undirected
and the difference graph is usually directed; it is undirected if and only if
S is symmetric, that is, S = —S. The sum graphs and difference graphs
have some nice properties (see [5] or [8]). Li provided in [5] the following.

Lemma 2.1 ([5]) Let G be a finite abelian group and let S be a k-subset

of G. If
D w(s)

8€S

for all nontrivial characters ¢ of G, then X,(G,S) and X4(G,S) are Ra-
manujan graphs.

<2vVk -1

This reduces a combinatorial problem to the problem of character sum
estimates. It is well known that for any nontrivial character ¢ of G,

> ¥(s) = 0. So, we have the following two trivial results:
8€EG

(i) Xs(G, S) and X4(G, S) are Ramanujan graphs when |G| — 21/|G| +
2 <|S]| < |G| since

D w(s)

SES

- ) %) <IG\ S| <2vI8[-1.

SEG\S

(ii) If X,;(G, S) and X4(G,S) are Ramanujan graphs with $ C G and
IS| < | €1}, then X,(G, G\ S) and X4(G,G \ S) are also Ramanujan. The
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reason is that,

> ¥(s)

8€CG\S

<2/I8[-1<2/[G\ S| -1

=" %(s)

sE€ES

Let F = GF(q) and F, = GF(q"). For a € F;, the norm Nf,,p(c) of
a over F is defined by
Ngr(@)=a-of... Q" = oD/ (-1
Let N, be the kernel of the norm map N, ,r, ie, Ny = {a € F, :
Ng,/r(a) = 1}. Then N, is a multiplicative subgroup of order 3;_;11 in
F; = F,\ {0}. Let ¢ be a primitive element of F,. Assume n > 2. Put

t74+a
S"—{t+a : a.GFU{oo}}.

Here, when a = 00, co/co is interpreted as 1. It is easy to see that |S,| =
g+ 1 and S, is contained in N,,. The following two lemmas were shown by
Li in [5].

Lemma 2.2 ([5]) For each nontrivial character x of Nn, we have

D x(s)

S5€ESn

< (n—2)V4.

Lemma 2.3 ([5]) For all nontrivial additive character 1 of Fy,, we have

> (9

SESn

< (2n-2)\/q.

It follows from Lemma 2.2 that X (N,,S,) and X4(N,, S,) are Ra-
manujan graphs for n = 3,4. In fact, when n = 3, the bound is /g, so we
may enlarge S by randomly joining in up to /g more elements in N3 and
still get Ramanujan graphs. As a consequence of Lemma 2.3, X,(F3, S2)
and X4(F3, S2) are Ramanujan graphs. It can also be shown (see [5]) that
Xs(Na x F3,S5) and Xy4(N; x F3,S;) are Ramanujan graphs.

3 Main Results

In this section, we shall show that some special sum graphs and difference
graphs on N3 or F' are Ramanujan graphs by using Lemma 2.2 or Weil’s
character sum estimates respectively.

242



For c€ FU {00}, let T, = 5, ie.,

_Jt+e t94+a
T t9+¢c t+a

Obviously, Teo = S, and T, C N, for all ¢ € FU {oo}.

: aeFU{oo}}.

Lemma 3.1 Ifn >3, then T,NTy= {1} forallc,d€ F, c#d.
Proof. Clearly, 1€ T, N Ty for ¢,d € F, c # d. So, we need only to prove
that |T. N T4| = 1. Otherwise, there must exist a,b € F, a # b, such that

t+c t°+a_t+d t94+b
t9+c t+a t9+d t+0b

#1. (1)
It follows that

(7! + et + at + ac)(t7! + bt + dt + bd)
= (" +at? + et + ac)(t9t! + dt? + bt + bd) = 0,

that is,

[(b+c—a—d)t?*! + (bc — ad)(t + ) + abc + bed — abd — acd](t? — t) = 0.

Since t7 — ¢ # 0 we have
(b+c—a—d)t?! 4 (bc — ad)(t? + t) + abc + bed — abd —acd = 0.  (2)

Since z? = z for any z € F and (y + 2)9 = y? + 29 for all y,z € F,, we
have from (2)

(b+ c— a — d)t2e+D 4 (be — ad)(t7" + t%) + abc + bed — abd — acd = 0. (3)
From (3) and (2), we get
[(b+c—a—d)t? + be - ad)(t?" —t) = 0.
Since n > 3, we have 9 —t # 0 and thus
(b+c—a—-d)t?+bc—ad=0. (4)
Ifb+c—a—d#0 then bc — ad # 0 from (4) and

gale-1) - (__od=be q—l_l
" \b+c—a-d -
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which contradicts the fact that ¢ is a primitive element of F, (n > 3).
This forces that b+ ¢ —a —d = 0 and bc — ad = 0. So, we may assume
that a = ub, ¢ = ud, where u # 1 noting that ¢ # d. Thus we have
b+ud—ub—d =0, i.e., (b—d)(1—u)=0. It follows that b = d. Therefore,

t+d t9+b 1
t9+d t+b
which is a contradiction to (1). I}

Similarly, we have the following.

Lemma 3.2 Ifn >3, then T.N T, = {1} forallc€ F.

Remark: By Lemma 3.1 and Lemma 3.2, we know that U T=
ce FU{co}
g(g+ 1) +1 = [N3]. On the other hand, |J T. C N3. So, we have
c€ FU{o0}
N3= |J T
c€ FU{o0}

Lemma 3.8 Let c € FU{oo}, then for each nontrivial multiplicative char-
acter x of N, we have

> x(s)

8€Te

< (n—2)V4.

Proof. Let y. = T‘&%, then T, = 4.5,. For any nontrivial multiplicative

character x of N, by Lemma 2.2, we have

> xls) > x(s)

seT. 8ESn

D x(we)x(s)

SES,

< (n—-2)Vg.

By Lemma 2.1 and Lemma 3.3, we have the following immediately.

Theorem 3.4 Let c € FU {co}, then X;(Nyp,T;) and Xg(Nyn,T,) are Ra-
manujan graphs for n = 3,4.

When n = 3, we may not only enlarge T, by randomly joining in some
elements in N3 but also compress T, by removing some elements from T,
and still get Ramanujan graphs.

244



Theorem 3.5 Let c € F U {co}. Then

(i) Xs(N3, T, U P) and X4(N3,T. U P) are Ramanujan graphs for any
u-subset P of N3\ T, whereu < [2\/q—/g+1—/g+2].

(i) Xs(N3, T\ M) and X4(N3,T.\ M) are Ramanujan graphs for any
v-subset M of T,, where v < [2\/g+ G+ 1—,/G—2].

Proof. For any nontrivial multiplicative character x of N3, by Lemma
3.3, we have

> x(9)| =X xs)+ D x(s)

SET.UP S€T. sEP

S\/-q.'*"un

and

> x| =D x(s) =D x(s)

8€ET\M 8€T, sEM

Now |[T.UP| =g+ 1+4u. When v < |2,/g—,/g+1—./G+2], we have
V@+u < 2y/g+u. Hence

3 x(s)| <2V UP[—1.

8€ET.UP

<Va+v.

Similarly, we have

> x(s)| < 2VIT\ M| -1

8€ETA\M
ifv <|2y/g+/9+1— /g —2]. The conclusions (i) and (ii) are obtained
from Lemma 2.1. 0

Theorem 3.6 X;(N3,T,, U T.,) and X4(N3,T,, UT.,) are Ramanujan
graphs for any c1,c2 € F U {00}, ¢1 # co.

Proof. Let x be a nontrivial multiplicative character of N3. By Lemmas
3.1-3.3, we have

> x(s)

8§€Tc) UTe,

> xs)+ Y x(s)—x(1)| £2v/3+1.

8€T,, 8€Te,
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Since |Tc, UT,,| = 2¢+1 and 2,/g+ 1 < 24/2q, we have

> x(s)| £ 2VIT, UT,[-1.

€T, UT,,

By Lemma 2.1, we get the result. 0

Similar to Theorem 3.5 we may enlarge T, U T, by randomly joining
in some elements in N3 or compress T,, U T,, by removing some elements
from T, UT,, and still get Ramanujan graphs. We have the following.

Theorem 3.7 Let cj,c2 € FU {0}, ¢1 # c2. Then
(1) X5(N3, T, UT.,UP) and Xq(N3, Te, UTe, UP) are Ramanujan graphs
for any u-subset P of N3\ (T, UT.,), where u < [2v/2/q — Va—2./q+1].

(ii) Xs(N3, (Te, UT,,)\ M) and Xg(Na, (T, UTe,)\ M) are Ramanujan
graphs for any v-subset M of Te, U T.,, where v < |2v2,/qF Vi+l-—
2,/q-3].

Proof. For any nontrivial multiplicative character x of N3, by Lemmas
3.1-3.3, we have

D x(s)

8€Ts, UTe, UP

DX+ Y x(9)+ D x(s) — x(1)

s€Tc, 8€Te, s€P
< 2/g9+u+1.

Now [T, UT,, UP| = 2¢+u+1 and 2,/ +u+ 1 < 2y/2¢g+u when
u < |2v2y/q9 — /g —2/G+1]. So, we have

> x(s)

8€T,, UT, UP

<2y/|T;, UT.,UP| 1.

By Lemma 2.1 we obtain conclusion (i). And conclusion (ii) can be proved
similarly. D

3 3
Theorem 3.8 If ¢ > 19, then Xs(Ns, U T¢;) and Xq(Ns, U T.,) are Ra-
i=1 i=1

+:
manujan graphs for any three distinct elements ¢y, co and c3 in F U {oo}.
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Proof. Let x be a nontrivial multiplicative character of N3. By Lemmas
3.1-3.3, we have

> x(s)

8€Toy) UT ey UTey

= <3,/3+2

3
3D x(s) - 2x(1)

i=18€T;

Obviously, 3,/7 + 2 < 24/3q if ¢ > 19. Since [T, UT,, UTe,| = 3¢ + 1, we

have
> x(s)| £2VIT UT, UT,| - 1.
8€Te, UTe,UTe,
The desired result is obtained from Lemma 2.1. a

Now we use Weil’s character sum estimate to show that some sum graphs
and difference graphs on F = GF(q) are Ramanujan graphs. Weil’s theo-
rem on additive character sums can be found in Lidl and Niederreiter [9,
Theorem 5.38].

Theorem 3.9 (Weil’s theorem [9]) Let f € F|z] be of degree n > 1 with
gcd(n,q) = 1 and let x be a nontrivial additive character of F. Then

Do x(f(@) < (n=1)va.

ceF

Let ¢ = ne 4+ 1 be a prime power and let £ be a primitive element
of F = GF(g). Let D be the set of all e-th roots of unity in F, ie.,
D={¢™: =0,1,---,e — 1}. Then we have the following.

Lemma 8.10 For any nontrivial additive character x of F', we have

Z x(o)] < (n;l)\/j_-_i-_l_

ceD n

Proof. Take f(z) = z™ € Flz]. It is easy to see that gcd(n,q) = 1. By
Theorem 3.9, we have

> x(f(e)

ceEF

<(n-1va (5)

Let o
D;={€: j=0,1,---,e—1}
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and
F(Di) ={f(c): ce Dy},
i=0,1,---,n—1. Itiseasy toseethat D;ND; =0, 0<i<j<n-1
n-1
and f(Dp) = f(D,) = -+ = f(Dp—1) = D. Note that F\{0}= U D;,
i=0

we have from (5)

n[d x| -1<| 3 x(fe)+x(0)| < (n-1)3.
c€ED c€EF\{0}
This implies the required result. 1]

Theorem 3.11 X,(F, D) and X4(F, D) are Ramanujan graphs if ¢ = ne+
1> g(n), 2 < n <5, where q(2) =5, q(3) = 8, q9(4) = 16 and ¢(5) = 47.

Proof. Let x be a nontrivial additive character of F. By Lemma, 3.10, we

know that
> x(e)
ceD

It is readily checked that

(n-1)/g+1 <2 q—l_1
n V =

when g > ¢(n), 2 <n < 5. Since |D| = 9;—1, we have

< (n—1)/q+ 1.

> x(e)| <2/ID[-1.
ceD
The proof is completed by Lemma 2.1. 1}

We may enlarge D by randomly joining in some elements in F and still
get Ramanujan graphs.

Theorem 3.12 X ;(F, DU P) and X4(F, DU P) are Ramanujan graphs
for any u-subset P of F\ D, where u < 2\/9;—1 —Ap—Apn+2and A, =
(n—-1)yq+1
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Proof. For any nontrivial multiplicative character x of F, by Lemma 3.10,
we know that

= < An +u.

Y. x(e)

c€DUP

3 %@ + 3 x(0)

ceD cEP

It is readily checked that

when u 52\/9;—1 — Ap — An+2. Since [DUP| = 57:—1+u, we have

> x(e)

ceDUP

<2y/|DUP|-1

By Lemma 2.1, we get our conclusion. |

Similarly, we may compress D by removing some elements from D and
still get Ramanujan graphs. We have the following.

Theorem 3.13 X,(F, D\M) and Xq4(F, D\M) are Ramanujan graphs for
anyv-subset M of D, wherev < 21/9;—1 + An—An—2and A, = %@—*’l.
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