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Abstract. A decomposition of a digraph is said to be bicyclic if it
admits an automorphism consisting of exactly two disjoint cycles.
Necessary and sufficient conditions are given for the existence of
bicyclic decompositions of the complete digraph into each of the
four orientations of a 4-cycle.

1 Introduction

Let D, denote the complete digraph on v vertices. If g is a digraph, then a g-
decomposition of D, is a set v = {g1, 92, ...,9n} if arc-disjoint subgraphs of
n

D,, called blocks, each of which is isomorphic to g and such that U Ag) =
i=1
A(D,), where A(G) is the arc set of digraph G. An automorphism of a g-

decomposition of D, is a permutation of the vertex set of D, which fixes
the set v. The orbit of a block g under the automorphism = is the set
{m™(g) | n € Z} and the length of an orbit is its cardinality.

There are two orientations of the 3-cycle: the 3-circuit and the digraph
(called a “transitive triple”):
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A decomposition of D, into 3-circuits is equivalent to a Mendelsohn triple
system of order v, denoted MTS(v) [10]. A decomposition of D, into
transitive triples is equivalent to a directed triple system of order v, denoted
DTS(v) [9).

There are four orientations of the 4-cycle: the 4 circuit and the following:

b c b c b c

X Y Z

We represent X as [a,b,c,d]x, Y as [a,b,¢,d]y, and Z as [a,b,c,d]z. We
represent the 4-circuit with arc set {(a,b), (b, ¢), (¢c,d), (d,a)} by any cyclic
shift of [a,b,¢,d]c. A 4-circuit decomposition of D, exists if and only if
v=0or 1 (mod 4), v # 4 [13]. A X-decomposition of D, exists if and only
ifv=0or1 (mod 4), v # 5, a Y-decomposition of D, exists if and only if
v=0or 1 (mod 4), v ¢ {4,5}, and a Z-decomposition of D, exists if and
only if v =1 (mod 4) [8].

A digraph decomposition admitting an automorphism consisting of a
single cycle is said to be cyclic. A cyclic MTS(v) exists if and only if
v =1 or 3 (mod 6), v # 9 [4], and a cyclic DT'S(v) exists if and only
if v =1, 4, or 7 (mod 12) [5]. A cyclic 4-circuit decomposition of D,
exists if and only if v = 1 (mod 4) [12], a cyclic X-decomposition of D,
exists if and only if v =1 (mod 4), v # 5, a cyclic Y-decomposition of D,
exists if and only if v = 1 (mod 4), v # 5, and a cyclic Z-decomposition
of D, exists if and only if v = 1 (mod 4) [3,11]. A digraph decomposition
of D, admitting an automorphism consisting of two disjoint cycles is said
to be bicyclic. Bicyclic Steiner triple systems (a Steiner triple system of
order v is equivalent to a D3-decomposition of D,) are explored in [1,2,6].
Necessary and sufficient conditions for the existence of a bicyclic DT'S(v)
are given in [7]. The purpose of this paper is to give necessary and sufficient
conditions for the existence of a bicyclic g-decomposition of D, where g is
an orientation of the 4-cycle.



2 Automorphism Consists of Two Cycles of
Equal Length

In this section, we give necessary and sufficient conditions for the existence
of a g-decomposition of D,, where g is an orientation of the 4-cycle, ad-
mitting an automorphism consisting of two disjoint cycles of equal length.
Clearly, v must be even in such a decomposition. Throughout this section
we suppose the vertex set of Dy is {0o, lo,...,(v/2—1)p,01,14,...,(v/2 -
1)1} and let the relevant automorphism be (0g, lo,..., (v/2=1)0)(01, 1,...,

(v/2 —1)).

Theorem 2.1 A bicyclic 4-circuit decomposition of D, admitting an au-
tomorphism consisting two cycles each of length v/2 exists if and only if
=0 (mod 8).

Proof. Since v must be even, v = 0 (mod 4) is clearly necessary. We show
that such a system does not exist for v = 4 (mod 8). Suppose such a system
does exist. We associate a difference with each arc of D, as follows:

arc: (ao, bop), difference: b — a (mod v/2) of type 0
arc: (aj, b)), difference: b — a (mod v/2) of type 1
arc: (ao,b1), difference: b —a (mod v/2) of type 01
arc: (aj,bp), difference: b —a (mod v/2) of type 10.

The differences of types 0 and 1 are sometimes called pure differences and
the differences of types 01 and 10 are sometimes called mized differences.
Notice that in our hypothesized design, the length of the orbit of a block
must be either v/2 (in which case there are four distinct differences associ-
ated with the arcs of the block and the sum of these differences is 0 modulo
v/2) or v/4 (in which case there are two distinct differences associated with
the arcs of the block and the sum of these differences is v/4 modulo v/2).
Since the number of blocks in such a design is v(v —1)/4 = v/4 (mod v/2),
there must be an odd number of orbits of length v/4. The sets of differences
are

pure type 0: {1,2,...,v/2 -1}
pure type 1: {1,2,...,v/2 -1}
mixed type 01:  {0,1,2,...,v/2 -1}
mixed type 10: {0,1,2,...,v/2—1}.

The total sum of these differences is v(v — 2)/2 = 0 (mod v/2). Therefore
there must be an even number of orbits of length v/4. This is a contradiction
and the hypothesized design does not exist.
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We now show that the condition v = 0 (mod 8) is sufficient for the
desired design to exist. First, for the case v = 8, consider the blocks:

{[00,01, 10, 21]c) [00, 31, 11,01]c, [01, 30, 10, 20)c»
[01, 11) 21) 31]C$ [00) 30’ 203 10]0}‘

These blocks, along with their images under the powers of w, form the
desired design. Now for » > 8, consider the set of blocks:

A = {[00, (v/8)0, (v/4)0, (3v/8)o)c: [00, (3v/8)o, (v/4)o, (v/8)o)c}
U{[0o, (v/4)0, (v/4 + 2)1, 1i]c, [00, (v/2 — 2)1, (v/4 = 2)1, (v/2 — 1)1]c}
U{[00, 01, (v/4)o, (v/4)1]c; [O0, (v/4)1, (v/4)0, 01]c}

U{[00, 11,30, 21]c; [00, (v/4 — 1)1, (v/2 — 2o, (v/4 — 1h]c}

U{[01, (1 + 25)1, (3 + 45)1, (2 + 2s)1]c | 5 € Z(v-s8)/8}

U{[Oo, (3+28)1, (7+4s)0, (4+23)1]c, [01, (3+2s)0, (7+4s)1 , (4+2s)0]c |
s€ Z(p—lG)/B}

We establish sufficiency in two cases:

Case 1. Suppose v = 0 (mod 16). Consider the set of blocks:

AU{[0o, (v/8 — 1)o, (v/4)0, (v/8 + 1)o]c}
U{[0o, (1 + 25)0, (3 + 48)0, (2 + 25)o]c | 5 € Z(y—16)/16}
U{[00, (v/8 + 2 + 25)0, (v/4 + 5 + 45)0,(v/8 + 3 + 2s)o]c | s €
Z(y-16)/16}
Case 2. Suppose v = 8 (mod 16), v > 8. Consider the set of blocks:

AU{[OO, (1 + 25)o, (3 + 48)0, 2+ 23)0]0 | s € Z(v—8)/16}
U{[0o, (v/8 + 1 + 25)o, (v/4 + 3 + 4s)o,(v/8 + 2 + 2s)o]c | s €
Z(v-8)/16}

In both cases, the given blocks, along with their images under the powers
of m, form the desired design.

Theorem 2.2 Neither a bicyclic X —decomposition of D, nor a bicyclic
Y —decomposition of D, ezists which admit an automorphism consisting of
two cycles each of length v/2.
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Proof. Suppose such designs exist. The length of the orbit of each-block
in such a system is v/2. Therefore v/2 must divide the total number of

blocks v(v — 1)/4. This implies that v is odd, an obvious contradiction. [

Since a Z-decomposition of D, only exists for v = 1 (mod 4), we clearly
have:

Theorem 2.3 A bicyclic Z-decomposition of D, admitting an automor-
phism consisting of two cycles of length v/2 does not ezist.

3 Automorphism Consists of Two Cycles of
Different Lengths

In this section we consider g-decompositions of D,,, where g is an orientation
of the 4-cycle, admitting an automorphism consisting of two disjoint cycles,
one of length M and one of length N, where M < N. Throughout this sec-
tion, we suppose the vertex set of D, is {0p, 1o, .. ., (M—-1)0,01,1,...,(N—
1)1} and let the relevant automorphism be (0o, 1o, . . ., (M =1)0)(04,14,...,
(N —1)1). First, we prove some necessary conditions.

Lemma 3.1 The fized points of an automorphism m of a g-decomposition
of D,, where g is an orientation of the 4-cycle, form a subsystem of the
g-decomposition. That is, if m(a) = a, 7(b) = b and (a,b) is an arc of some
ab of the g-decomposition, then m(c) = ¢ and 7(d) = d where the vertez set
of gab is {a,b,c,d}.

Proof. Let gay be an element of a g-decomposition of D, where g is an
orientation of the 4-cycle and suppose 7(a) = a, 7(b) = b, and (a, b) is an
arc of ggp. Since arc (a,b) is in only one element of the g-decomposition,
and m((a,b)) = (a,b), it must be that m(ges) = gap. This can only happen
when the other two vertices of g, are fixed.

Lemma 3.2 If a bicyclic g-decomposition of D, exists, where g is an orien-
tation of the 4-cycle, admitting an automorphism consisting of two disjoint
cycles of lengths M and N, where M < N, then M = 1 (mod 4) and M |N.

Proof. Let 7 be an automorphism of such a g-decomposition where 7
consists of two cycles as described. Then 7™ has M fixed points and
by Lemma 3.1 we see that there must be a cyclic subsystem of the given
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decomposition. Therefore M =1 (mod 4).

Suppose each arc of the form (a1, b;) is in some copy of g whose vertex
set is of the form {a1,b1,c1,d1}. Then the system has a cyclic subsystem
of order N and N = 1 (mod 4). However, M = N = 1 (mod 4) and
v =M + N =2 (mod 4), a contradiction. Therefore, there must be some
g with vertex set of the form {ao0,b1,¢1,d1} and containing an arc of the
form (c1,d1). Applying #N to this g, we see that the vertex set of 7N (g)
is {wN (ao),b1,c1,d1} and 7((c1,d1)) = (c1,d1) is an arc of 7V (g). Asin
Lemma 3.1, 7V (ag) = ao and therefore M | N.

We now establish necessary and sufficient conditions for the existence of a
bicyclic g-decomposition of D,,.

Theorem 3.1 A bicyclic 4-circuit decomposition of D, admitting an auto-
morphism consisting of a cycle of length M and a cycle of length N, where
M < N, ezists if and only if M =1 (mod 4), v=M + N =0orl (mod
4),v#4,and M| N.

Proof. By Lemma 3.2, M = 1 (mod 4) and M | N. Since a 4-circuit
system of order v only exists for v = 0 or 1 (mod 4), v # 4, it follows that
v=M+N=0or1 (mod 4), v # 4. For sufficiency, we consider three
cases:

Case 1. Suppose M =1 (mod 4), M | N and N =0 (mod 8). Consider
the blocks:
{01, (28 + 1)1, (48 + 3)1, (28 + 2)1]c l S € Z(N_4)/4 \ {N/8 - 1}}
U{[00, 01, (3N/4)1, (N/4h e, (01, (N/4)1, (N/2)1, BN/4)c}
U{(01, (N/2 — 1)1, (N/4)1, (BN/4 + 1)ilc}
U{[Oh (23 + 1)0, (43 + 3)1, (23 + 2)0]0, [00, (2s+ 1)1, (48 + 3)0, (28 +
2)1]0 I s€ Z(M—l)/4}-

Case 2. Suppose M =1 (mod 4), M | N and N = 4 (mod 8). Consider
the blocks:
{01, (2s + 1)1, (45 + 3)1, (25 + 2h]c | s € Zv-aysa \ {(N — 4)/8}}
U{[00, 01, (BN/4)1, (N/4)]c, [01, (N/4)1, (N/2)1, (8N/4)]c}
U{(01, (N/2 — 1)1, (3N/4)1, (N/4 + 1)]c}

U{[01, (25 +1)o, (4s+3),(2s+ 2)o]c, [00, (25 + 1)1, (45 + 3)o, (25 +
2)1]0 | s € z(M—l)/d}-
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Case 3. Suppose M =1 (mod 4), M | N and N = 3 (mod 4). Consider
the blocks:

{[01, (28 + 1)1, (48 + 3)1, (25 + 2)1]c I sE Z(N_7)/4}

U{[OOs (M_l)la ((N"3)/2+M)1a MI]C’ [00’01’ ((N-3)/2)la ll]C}

UA{[0o, 11, (N=3)/2)1, (N=1)1)c, [0, (M —1)/2)1, (M—1)o, (3M -
1)/2hlc}

U{[Oo, (28 + 2)1, (48 + 5)0, (28 + 3)1]0, [01, (28 + 2)0, (43 + 5)1, (28 +
3)olc | s € Zip—s5)/4}-

In each case, the given blocks, along with their images under the powers
of the automorphism 7 and a collection of blocks for a cyclic 4-circuit
decomposition of Dy, form the desired design.

Theorem 3.2 A bicyclic X -decomposition of D, admitting an automor-
phism consisting of a cycle of length M and a cycle of length N, where
M < N, ezists if and only if M = 1 (mod 4), M # 5, M | N and
v=M+ N =0 (mod4), v#S5.

Proof. As in Theorem 3.1, it is necessary that M =1 (mod 4) and M | N.
The existence condition on v for a X-decomposition of D, also implies that
M#5andv=M+ N =0or 1 (mod 4), v # 5. Suppose such a system
exists with v = 1 (mod 4). This system contains a cyclic subsystem of order
M =1 (mod 4), and so N = 0 (mod 4). Therefore there are M(M - 1)/4
blocks in this system of the form [ag, bo, o, do]x . Blocks of any other form
in this system have orbits of length N and there are

M+NM+N-1) MM-1) NECM+N-1)
4 4 B 4

such blocks. Consequently, (2M + N — 1)/4 is an integer, a contradiction.
Therefore, no such system exists.

We show sufficiency in the remaining cases as follows. Define the fol-
lowing sets:

A = {[00, (M — 1)/2)1,((M - 1)/2))o,01]x, (01, (M — 1)/2)o,
(M —1)/8)1,((5M +3)/8)o]x }

U{[00, (M = 3)/2 = 8)1, (M —1)/2)0, (s + D1]x, [01, (M —3)/2
—8)o, (M —5)/2 = 28)1,(M — 1 —s)o]x | s € Zm—g)/s}

U{[0o, ((3M — 11)/8 — )1, ((M —3)/2)0, (M —1)/8 + sh]x,
[01, ((3M —11)/8—s)0, (M ~5)/4—2s)1,((TM+1)/8—5)0] x
| s € Zar-1y/8}
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B = {[OO’ ((M - 1)/2 - 3)1, ((M - 1)/2 + 3)01 (2S)I]Xs [oh ((M - ])/2
=5)o, (M +1)/2+ s)1,(1 + 25)o)x | 5 € Zm+3)/8}

U{[00, ((3M — 7)/8 — s)1, (M — 5)/8)o, ((3M +1)/4 + s)h]x,
01, ((3M —7)/8 — 8)o, (M — 1)/4)1, ((TM + 5)/8 + 5)o]x
| s € Z(rmr—s)/8}-
C = {[01, ((N - 3)/2 - 5)1, (N - 1)1, ((N - 11)/4 - 23)1]){
| s € Zin-11)/8}

U{[01,((3N = 1)/8 — $)1, (N = 1)1, (N = 3 — 2s)]x
| s € Z(n-3)8}

U{[01, 11, (N +1)/4)1, (N — 1h]x},

D = {[04, (N = 3)/2 = 8)1, (N = 1)1, (N — 11)/4 = 2s)}x, [0, (3N -
5)/8 - s)l,(N - 1)1,(N -4 - 28)1]){ | EXS Z(N—7)/8}

U{[Ola((N_S)/4)l)((N_ 1)/2)la(N_ 1)1]X}a

We consider 4 cases:

Case 1. Suppose M =1 (mod 8) and N = 3 (mod 8). Consider the set of
blocks: AU C U {[01,((3M — 3)/8)0, (N — 3)/4)1,((N —1)/2h]x}.

Case 2. Suppose M =1 (mod 8) and N = 7 (mod 8). Consider the set of
blocks: AU DU {[01,((3M — 3)/8)o, (N — 3)/4)1,(N — 2)1]x}.

Case 3. Suppose M =5 (mod 8) and N =3 (mod 8). Consider the set of
blocks: B CU{[01, ((TM — 3)/8)o, (N — 3)/4)1, (N —1)/2)1]x} -

Case 4. Suppose M =5 (mod 8) and N = 7 (mod 8). Consider the set of
blocks: BU DU {[01, ((TM — 3)/8)o, (N —3)/4)1, (N — 2)1]x}.

In each case, the given blocks, along with their images under the powers of
the automorphism 7 and a collection of blocks for a cyclic X-decomposition
of Dy, form the desired design.

Theorem 3.3 A bicyclic Y-decomposition of D, admitting an automor-
phism consisting of a cycle of length M and a cycle of length N, where
M < N, ezists if and only if M = 1 (mod 4), M > 9, M | N and
v=M+ N =0 (mod 4), v #4.

Proof. The necessary conditions follow as in Theorem 3.2. We now estab-
lish sufficiency. Consider the blocks:
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{[01,(45 +3)1,(85+9)1, (45 + 5hly | s€ Z(N_;-;)/4}

{[00, (M + 5)/2)1,(M + 3)o, (M + 1)/2h]y, [0, (M + 7)/2)1, (M +
3)o, (M = 1)/2)1]y, [01, (M +3)/2)0,31,21]y}

U{[Oo, (1 + 25)1, (1 + 45)o, (28)1]y | s € Z(M—l)/4}
U{[Oo, (M-2- 23)1, (M-3- 43)0, (M-1- 23)1]y | s € Z(M_g)/4}.

The given blocks, along with their images under the powers of the auto-
morphism 7 and a collection of blocks for a cyclic Y-decomposition of D
form the desired design. ni

Theorem 3.4 A bicyclic Z-decomposition of D, admitting an automor-
phism consisting of a cycle of length M and a cycle of length N, where
M < N does not exist.

Proof. As in Theorem 3.2, N = 0 (mod 4) is not possible and N = 3 (mod
4) is necessary. However, this implies that v = M + N = 0 (mod 4) and
such a system does not exist.

Necessary and sufficient conditions for the existence of a bicyclic g-decomp-
osition of D,,, where g is an orientation of the 4-cycle, are given in Theorems
2.1-2.3 and 3.1-3.4.
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