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Abstract

The theory of hypergeometric functions is brought to bear on a
problem—namely, that of obtaining a certain power series ex-
pansion involving the sine function that is inclusive of the Cata-
lan sequence and which serves as a prelude to the calculation
of other related series of similar type. A general formulation
provides the particular result of interest as a special case, into
which Catalan numbers are introduced as desired.

Introduction

Based on a 1988 paper by Luo [1], Larcombe discussed the rather surpris-
ing role of the Catalan sequence {co,¢1,¢2,¢3,¢c4,...} = {1,1,2,5,14,...},

defined by
1 2n
c"_n-l-l( n ), n=0,1,2,..., (1)

in the infinite series representation (in odd powers of sin(a)) of the trigono-
metric function sin(ma) for integer m even [2]. It was observed that, be-
ginning with an appropriate expansion of sin(2a), those for subsequent
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functions sin(4a), sin(6c),sin(8a), etc., could in turn be generated via the
recursion (valid for m > 2 and simple to establish)

sin[(m + 2)a] = 2 {[1 — 2sin%(a)Jsin(ma) — (1/2)sin[(m - 2)a]} .  (2)

From certain cases examined it was shown how the series for sin(ma) starts
explicitly with the first m odd powers of sin(e), followed by higher order
terms each possessing a coefficient dependent upon a specific linear function
of %m Catalan numbers. The sequential nature of building up expansions
was explained in detail by example, with the result initiating the whole
process being

sin(2a) = 2 {sin(a) -3 [ 2“;‘;_‘1] sin?n+1 (a)} 3)
n=1

(converging for || < 7/2) in which the appearance of the Catalan sequence
is critical. This additional communication presents a means of arriving at
(3) other than by the short proof detailed in [2].! It is found through a
particular case of a pertinent general expansion of the sine function, whose
formulation as a series in hypergeometric form has very much a first prin-
ciples flavour to it and is felt to be both mathematically instructive and
enlightening. In line with this, remarks have been made within the text
where deemed appropriate and, in the context of the work, some further
comments on the amenable nature of hypergeometric functions in develop-
ing other series forms comprise a final section before the Summary.

General Formulation

As indicated, we make use of hypergeometric function theory, writing
o0
ay,az (al)n(a2)n 2"
F z) = AA/mAem 2 4
( h ) Z (®1)n n! “)

n=0
to denote the hypergeometric function of Gaussian type (with 2 upper pa-
rameters ay, az, 1 lower parameter by and argument z—all possibly complex
variables),2 where (u), is the rising factorial function

(wp=u(w+1)(u+2)(u+3) - (u+n-1) (5)

defined for integer n > 0 ((u)o = 1); we do not adopt the popular notation
oFy, in favour of F, for the simple reason that the only hypergeometric

INote that the shifted sequence {c1,¢2,¢3,¢4,¢s5,...} = {1,1,2,5,14,...} was em-
ployed in [2] for consistency with [1].
2For typographical convenience we will also sometimes write F(a1,a2;b1]2).
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function dealt with here is of ‘2-1’ (Gaussian) type (excepting Remark 5).

Consider the classic equation

&y

dz?
in applied mathematics. It describes, in differential form, simple harmonic
motion (of frequency n, assumed non-zero) with general solution

+n2y=0 (6)

y(z) = Asin(nz) + Bcos(nz) (7

for arbitrary constants A, B. Given any functional change in the indepen-
dent variable z by a substitution z = z(z), say, it is easy to show that

@ dzd (a)” d?

woamat\&) @@ (8)

and using the particular relation z(z) = sin?(z) (6) is transformed to

d%y 1 dy n\2
z(l—z)m-i-(E—z)E-i‘(a) y=0 (9)

in y(z). This is but a special case of the well known differential equation
(termed the generalised hypergeometric equation)

x(l—z):—g-+[’r—(l+a+ﬁ)z]§—i——(aﬂ)y=0, (10)

where « = £%, f = F5 and v = % (invariance of (10) under the inter-
changing of a, f is obvious); we choose to take a = —%, = %.

It is known that the hypergeometric equation (10) has regular singular
points at z = 0,1 and co. Concentrating on the singularity at £ = 0, then
following the (standard) method of Frobenius a trial solution of the form

y(z) = z:"Za,a:' (11)

r=0

yields roots ¢ = 0,1 — v of the associated (quadratic) indicial equation. If
4 is not a negative integer the exponent ¢ = 0 gives rise to

(7 19) w
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as a solution of (10), whilst for y not a positive integer the exponent ¢ = 1—y
generates a further solution

zl_-yF a+1—7’ﬁ+1—7
2-9

:c) . (13)

Close to the system origin, therefore, the complete solution of the gener-
alised hypergeometric equation is, subject to the stated restrictions on =,
the general linear combination of (12),(13)

o x) + Dz!'-F ("“"7"9“_7 Im) (14)

4
=CF| "’

say, which converges for |z| < 1. For arbitrary C, D it thus follows that the
general solution to (6) around z = 0 is, in hypergeometric form,

sin2(z))

N '12' - %) % +
+ Dsin(2)F 2

yo) = CF(‘%'%

i
2

[OH]

sin® (z)) , (15)

which converges for |z| < 7/2. If we now impose the condition y(0) = 0
then (7) simplifies trivially to
y(z) = Asin(nz), (16)

as does (15) to

y(z) = Dsin(z)F (% B %;% +3 sinz(z)) . (7)
2

Furthermore, matching these two equivalent solutions in dy/dz at z =0, it
is found that D = An upon which (16),(17) immediately give

b-3.3+3
sin(nz) = nsin(z)F 3

sinz(z)) , lz| < /2. (18)

Remark 1 Convergence of the hypergeometric here over the open interval
z € (—%, %) is established as a direct consequence of the methodology used,
and we can examine its convergence properties at the endpoints to check
(18) in two combined special cases. For z = +£% the argument of the hy-
pergeometric F(1 — 3,1+ %; 3|sin?(z)) is 1, and under such circumstances
any Gaussian function (4) converges if and only if Re{b; — (a1 + a2)} > 0
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(see, for example, [3-5]). Moreover, we can deduce that the hypergeomet-
ric in (18) converges to the same value at both interval extremes. Gauss’
Theorem gives this as I'($)T'(3)/[T(1 — 2)I'(1 + 2)], which simplifies to
7r/[nI‘( 2)I'(1— 3)] using the r%ult sI'(s) =T'(1+s) (s # 0) together with
I‘( ) = \/_, whereupon (18) reads sin(+%F) = +x/[[(3)I(1 — 3)]. This
is a self-consistent equation, which conﬁrms the parity of the sine function
at &Y, since it is known that I'(s)['(1 — 5) = n/sin(sm) (for s non-zero and
non-integer).

Remark 2 Whilst Bailey [3] does not include such a result as discussed
here, Slater [4] (with no working shown) has an incorrect version of (18)
merely listed as equation (1.5.6) on p.17. These are longstanding treatises
dedicated to hypergeometric function theory which are still consulted today.

Remark 3 There is, of course, another result which emerges readily from
the approach taken to the formulation of (18), being the natural comple-
ment to it. It is found that by first applying the condition y'(0) = 0 to the
two general solutions (7),(15), and then matching them at y(0), the follow-
ing relation is obtamed (the reader is invited to check this as an exercise):

cos(nz) = F(—2,%; 1]sin?(2)) (Jz] < 7/2). For the purposes of this paper,

however, it lies outside our remit of interest.

Special Case

It remains only to show that the above formulation of sin(nz) as a hyper-
geometric series leads directly to (3) (for completeness, its agreement with
a formula attributed to Euler is demonstrated in the Appendix). Changing
z to a, then for n = 2 (18) becomes explicitly

sinz(a))
= 2§:( 2)" -sin?"+!(qa)

n=0

= 2 {sxn(a) + Z C 2)" sxn2"+l(a)} (19)

n=1

-13
sin(2a) = 2sin(a)F ( 22
2

Consider, now, forn > 1,

(. = (D)



- _(%)nys.s- e .@n=5)-(2n-3).  (20)

After some elementary algebraic manipulation, the product of odd numbers
can be written as a function of the nth Catalan term c,-; as

n!

1-3-5- --- -(2n—5)-(2n—3)=-2—mc,._1, n>1, (21)

so that .
(=%)a 1

n! B R

Since this also holds for n = 1 (for which both sides are —%), (19) yields
the required result (3).

n>1 (22)

Remark 4 We mention here that a quicker route to (3)—which is per-
haps more obvious—is offered by taking advantage of the known iden-
tity (1 — z2)~* = F(a,B;p|z) (B arbitrary, being either non-integer or
an integer > 0), for then (1 — 2)/2 = F(—3,0;P|z) which yields 1 —
2 [en—1/22"1)sin?"(a) = cos() (convergent for |a| < 7/2) on setting
z = sin®(a) and using (22) (valid for n > 1 as just observed). This, how-
ever, amounts only to a reproduction of the result used to prove (3) in the
previous paper of Larcombe [2].

Further Remarks

The usefulness of hypergeometric functions in a variety of mathematical
settings is well known, and as a matter of interest we can illustrate this by
simply deriving a different expanded form of sin(nz) which consists of odd
powers of cos(}z), rather than sin(z), by first considering the identity

o, B
F(a+ﬂ+§

2a,28
a+B+3

€0-0)=F(

Q (23)

given in Bailey [3] as the quadratic transformation of Gauss. Putting aside
the issue of convergence, for a = 3 — 2, = 3 + } this leads to

2
E Rk L Rk A B l-n1+n
F 3 sin®(z) ] = F 3
2

%[1 + cos(z)])

2

_ F(l—n;1+n
2

sinz(z/2)) , (24)
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choosing to take the negative sign. Thus, (18) now reads

sin(nz) = nsin(z)F (1 B nél tn sinz(z/2)) , (25)
2
and since Euler’s identity [3] gives
[1—sin?(z/2)]} F (1 - "’; tn sinz(z/2))
2
= F (’21' + "j - sinz(z/2)) , (26)
2

then writing sin(z) = 2sin(z/2)cos(z/2) = 2sin(z/2)[1 — sin®(2/2)]? equa-
tion (25) becomes
1 1_
sin(nz) = 2nsin(z/2)F (2 e
2

sin?(z/ 2)) . 27

The constant n is arbitrary so that the equivalence of this result to (18) is
clear, validating the above procedure. We can, however, equally make the
same line of argument—beginning by taking the positive sign in the first
line of (24)—to yield

1 1_
sin(nz) = 2ncos(z/2)F (2 + n;"’ "

2

cos?(z/ 2)) ; (28)

as a partial check on this we note that for n = 1 (28) reduces to sin(z/2) =
F(3,~1; 3|cos?(2/2)), which is just the standard hypergeometric represen-
tation F(—3, B; Blz) of (1 - 2)'/? (see Remark 4 earlier) with # = 2 and z
replaced by cos?(z/2). -

Remark 5 It goes without saying that other established results involv-
ing hypergeometric forms can be applied to obtain series for sin(nz), al-
though some avenues of thought prove not to be usefu] when pursued.
Using the transformation F%(a,8; & + B + |2) = G(2,28,a + B;2(a +
B),a + B+ |z) first published by Clausen in 1828 (where G is a ‘3-2’ hy-
pergeometric function, see [3]), then squaring up (18), for instance, gives
sin?(nz) = n%in?(z) F2(% — 2,1 + 2; 3|sin?(2)) = n?sin?(2)G(1 — n,1+
n,1;2, %Isinz(z)), where for integer n > 1 the r.h.s. is a finite series. Writ-
ing now sin(nz) = nsin(z)v/G, then for each n odd the appropriate known
finite expansion, in odd powers of sin(z), is recovered, whilst for n even the
only way to obtain an infinite series in such odd powers is by expanding
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v/G binomially (the reader may care to check the first few simple cases
n=1,2,3,4,..., as the authors have); the point here is that no new results
emerge in either case.

Remark 6 It is worth reminding readers that a transformation between
hypergeometric forms does sometimes carry with it validity conditions. As
an example, according to Bailey [3] (23) is valid inside that (left hand)
loop of the lemniscate [4((1 ~ ¢)| = 1 which surrounds the origin of the
complex plane (the general equation of a lemniscate is |( — k1||{ — k2| = &
for real £ > 0 and k;, k> complex constants). Writing { = z + 4y, it is
straightforward algebraically to show that the equation of the full (two
loop) region is, in Cartesian co-ordinates, (z? + ¢*)[(z — 1)? + %] = %.
This describes a lemniscate—in this case a ‘horizontal’ figure-of-eight (see
Figure 1 below)—centred at (},0) and extending across the z axis from
(4(1-+v2),0) to ((1 +v?2),0) with a respective maximum and minimum
value of +} for 2 = ;2 v/3) (the four extremal points corresponding to
the intersections of the said lemniscate and the ¢ircle (z— )%+ = ; with
co-incident centre and radius -;-) For ( real the region of validity becomes
the open interval (3(1—v2), 1), so that in (24) sin?(z/2) € [0, 3). In other
words, sin(2/2) € (—715, ;}5), which means (24) only holds for |z| < 7/2.
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Figure 1: The Lemniscate [4¢(1 —¢)| = 1.
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Summary

The introduction of Catalan numbers into the series form of sin(2«) in odd
powers of sin(a) is a necessary requisite for their retention in subsequent
expansions (with the same structure) for sin(4e),sin(6a),sin(8a), and so
on, which have been discussed at length in [2] in proper historical context.
In adding to the earlier publication, we have shown here how this can be
achieved using a special case of a general expansion of the sine function
which is expressed in hypergeometric form and which does not naturally
contain elements of the Catalan sequence. Regarding the latter, the for-
mulation employed makes an appeal to some fundamental hypergeometric
function theory and is an illuminating one.

Appendix

Replacing n with m, and likewise z with a, (18) reads (for |a| < 7/2)

l_m 1 +z
sin(ma) = msin(e)F | ? 2 '§2 2 | sin?(a)
2
2 E-2)E +2), sin?H(a
= mz(z 2;2 2/n ’() (A].)
ne (5)" n:
If (0)o is taken to be unity (as is standard) then this holds Vm integer

(including m = 1), in which case, noting that (1 — 2o = G+2)0=1,

then for n > 1 we see that

1 m 1 m 1 m 1 m
(5*7),, = (‘z‘*?) (5*3“)(5*5“)'“

1 m ‘1 m

(1:|:m)(3:!:m)---[(2n—3):l:m][(2n—1):|:m]'

(A2)
on
Thus, (A1) can be split as
sin(ma)
m
(E-z n i + = n 2n+1
= s1n(oz)+n§1 (3 22%53 2)n  sin — (a)
= sin(e) +
o — m2)(32 — m?).-. N2 _
Z (1 )(3 (2n)+ 1)[!(2"' 1) m ] Sln2"+l(a) (A3)



since it is easy to show that

3 2n + 1)!
n !

equation (A3) is, according to Luo [1], due to Euler and gives both finite
and infinite series for sin(ma), as appropriate, for all integer m.
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