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ABSTRACT. In this paper, we show that some graphs are cir-
cuit unique by applying new tool, which is the character of the
matching polynomial. Some properties of the character of the
matching polynomial is also given.

1 Introduction

The graphs considered here are finite and simply graphs [1]. Let G be
a graph, V(G) be its vertex set, E(G) be its edge set, Ng(v) = {u|u €
E(G), w € E(G)} for v € V(G), p(G) = [V(G)|,4(G) = |E(G)I-

Let G be such a graph,we define a circuit with one and two vertices in G
to be a vertex and a edge respectively. Circuits with more than two vertices
are called proper circuit. A Circuit cover of G is a spanning subgraph of G
in which all the components are circuits. Let us associate an indeterminate
or weight W,, with each circuit & in G and the monomial W(S) = [] Wa,
where product is taken over all the components in cover S. Then the
definition of the circuit polynomial of G is as follows.

Definition 1.1. [2]. Let G be a graph. Then the circuit polynomial of G
is

C(G,w) =) _ W(S)
Definition 1.2. [2]. Let G be a graph .We say that G and H are cocircuit,

if C(G,w)=C(H,w). If C(G,w) = C(H,w) implies that G = H, then
G is called circuit unique.
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Definition 1.3. [13]. Let G be a graph, the matching polynomial of G is

M(@.w) = 2 Gl

where n = p(G) and a;(G) denote the number of with i-matching in G, i.e.,
the number of subgraphs formed from k vertex-disjoint edge.

We list some classes of graphs (see figure 1):
(1) P,,C, denote path and cycle with n vertices.

(2) Tn(ly,1,1s) or simply T'(l;, l2, I3) denotes a tree obtained by extending
three paths from one vertex. The lengths of the three paths are
ly, 1o, I3, respectively.

(3) Q(s1, s2) denotes a graph from identifying a vertex of degree 2 in C,,
with a vertex of degree 1 in P,,.

(4) U, denotes a graph by identifying any vertex of degree 1 in P,_4 with
center of K 2.

(5) T(t1,t2) will denote graph from identifying a vertex of degree 1 in
Ui, +4 wit;h a vertex of degree 1 in Py, ;.

(6) TS denotes a tree which has two vertices of degree 3 only.
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Figure 1

For convenience, we introduce some notations:

(1) For a graph G, let e = v1v3 € E(G), Ng(e) = Ng(v1)|J Ng(v2) —
{v1,v2} and dg(e) = [Ng(e)|.

(2) Let e € E(G), G — e denotes the graph obtained from G by deleting
edge e.

(38) (G)g denotes edge-induced subgraph of G.

(4) For a graph, let e = i35 € E(G), called dx(e) = did; the product
degree of the edge e. TI(G),IIx(G) and ) II«(G) will be used the
sequence of degree of G, the sequence of the product of degree of G,
and Y7, dx(e;) respectively.
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In this paper, a new parameter R,,(G) (Called the character of the
Matching polynomial) is introduced as tool, and some good properties of the
R, (G) is given. The circuit uniqueness of some graphs is also discussed.

2 Preliminaries

We now give some results which have already been established and which
will be useful in the material which follows.

Lemma 2.1. [3]. Let G be a graph and uwv € G. Then
C(G,w) =C(G —uv,w) + w2C(G —u — v,w) + C(G*,w)

where G* is the restriction graph G, which wv must be part of a proper
cycle.

Lemma 2.2. [3,13]. Let G be a graph consisting of components G, Ga, - - -,
Gx. Then

k k
c,w) =[] cG:w), M(G,w) =] M(G:,w)

i=1 =1

Lemma 2.3. [9]. Let G be a graph. Then
C(G,w) = M(G,w) +C(G*,w)
where G* is a polynomial over w, containing all the monomials correspond-

ing to circuit covers of G with at least one proper cycle.

If G has no proper cycles, then C(G*,w) = 0. In particular, let T be a
tree, then C(T,w) = M(T,w).

From Definition 1.2 and Definition 1.3, the coefficient of wf,w{"zwg,
wP™4w? and wP 8w} in C(G,w) equal ao(G), a1(G), a2(G) and a3(G), re-
spectively. Hence we have

Lemma 2.4. [10]). Let G be a graph, ag, a,, a3, and a3 be the coefficient

of wh, wh 2wy, wP™ w2 and wiSw} of the matching polynomial or the

circuit polynomial respectively. Then
(1) 8(C(G,w))=p
(2) a0 =1
(3) a1 =g

0ue(3)-20(4)
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®a=(1)-@-2L( %)+ (% )+Ty@-n
(dJ' - 1) - Nr,
where Nt denotes the number of K3 in G.

Since }°7_, ( d ) 337 1 d? — g, hence,
an = q+1 _ l i d‘z
2 9 2
Similarly ,a3 can be written as follows.
a3 = =q(g® +3q+4) - "+2 Zd3+ Zd3+2dxd ~ Nr
6

The following Lemma 2.5 is easly proved by definition of the circuit poly-
nomial.

Lemma 2.5. The coefficient of w!™*w), equal Ni(G)
where Ni(G) denotes the number of cycle of length k.

3 The character of the matching polynomial and graph classifi-
cation

Definition 3.1. The character of the matching polynomial of a graph,
denoted by R,.(G), is defined as follows:

0 ifq(G) =
Rm(G) = { a2(G) - ( ‘“(Gz) -1 )+ao(G) ifg(G) >0

where ag(G), a1 (G), and a3(G) are the coefficients of w}, w}~ 2wy and wh ™ wd
of the M (G, w) respectively.

Theorem 3.2. Let G be a graph consisting of components G1,Gg, Gs,- - -,
Gi. Then

k
Rm(G) =) Rm(Gi)
i=1

Proof: It suffices to prove the cases k = 2.
Let G = G1|JG2, |V(G:)| =pi(i =1,2), and V(G)N = V(G2) = ¢
Let the matching polynomial of G and G2 be as follows:

78



M(Gl,w) = 'wf‘ +a1w’1"_2w2 + azwm -4 w2 2 + -
M (G2, w) = w* + bjuwh? 2wy + bow??~ 4w2 +-
By Definition 3.1:

Rn(G1) =az — ( a12—1 )-I—l,

R,,.(Gg)=b2—( ot )+1

From Lemma 2.2, M(G,w) = M(Gl,W)M(Gz,W) = wP'*P? + (o +
b1 )w§ 32wy + (a2 + by + arby Jwb TP 4w +
By Definition 3.1:

Rm(c)=a2+bz+alb1—(“l+”l‘1 )+1

......

2

=ap— ( “‘2’1 )+1+bz— ( b‘2_1 )+1
= Rn(G1) + R (G2)
Theorem 8.3. Let G be a graph and e € E(G). Then Rn(G) = Rn(G —
e)—dg(e) — A +1
where A. denotes the number of the triangle with e in G.
Proof: By Lemima 2.4, a,(G — w) = a;(G) — 1,

(G —uv) = ( q(G’—;w)+1 )—% 3 d?(G'—uv)

p—2
=(Q(§ )) (Zdz(G wv) + di(G — wv) + d3(G — wv))

We note that d,(G — uv) dy(G) — 1,dy(G - wv) = d,(G) — 1 and
do(uv) = dy(G) + dy(G) — Auw — 2, hence

P
oG —w) = (M9 ) g 2 d(6) - 2du(©) + () +2)
i=1

= a2(G) - a1(G) +dg(wv) + Ayy + 1
R (G — uwv) = a3(G) — a1(G) + dg(uv) + Ayy + 1

(“‘(C';)_z)ﬂ

= az(G) — ( al(Gz)—l ) + 14+ de(uwv) + Auw — 1
Rn(G — wv) = Ry (G) + do(uv) + Auy — 1
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Namely, Rn(G) = Rn(G —€) —dg(e) — Ac + 1.
Theorem 3.4. Let G be a connected graph. Then:

(1) Rn(G) £ 1, and the equality holds if and only if G € {Pa}
(2) Rm(G) =0 if and only if G € {Cp, T(l1, 12, 13), K1}
(3) Rm(G) = —1 if and only if G € {Q(s1, 52),T°}.

Proof: (1) By induction on ¢(G)
Since R (K1) =0, and Rn(K2) = 1. Hence (1) holds when ¢(G) < 1.
Suppose g(G) > 2. Choose e € E(G) such that (G — e)g is connected.
Clearly, dg(e) > 1, Rin(G —€) = Rn((G — €)g). By the induction hypoth-
esis, Rn(G — €) < 1. From Theorem 3.3,

Rn(G) = Rm(G —¢) —dg(e) — Ae +1
SRm(G_e)—Ae
<1

If Rn(G) = 1, then dg(e) = 1, A. = 0 and R,(G —e€) = 1. According to
the induction hypothesis, (G — e)g € {Pa}(n > 2). Therefore G € {P,}.

Conversely, by Rn(P;) =1 and R (G) = Rn(G —€) —dg(e) ~ Ae + 1,
Rm(Pr) = Rn(Pa-1) =---=Rn(P2) = 1.

(2) By induction on ¢(G).

Since Rm(K1) = 0, and Ry, (K2) = 1. Hence (2) holds if ¢(G) < 1.

Suppose g(G) > 2. Choose ¢ € E(G) such that (G — €)g is connected.
Then R, (G —¢) < 1. Since Rpn(G) =0, Ry(G —€) = dg(e) + Ae — 1 by
Theorem 3.3. Hence 1 < dg(e) < 2—- A. and 0 < Ry(G —¢) < 1. We
consider only the following two cases:

Case 1. R,(G —€e)=1and dg(e) =2 - A,

When A, =1 and d¢(e) = 1, (G — e)g € {Pn} by the induction hypoth-
esis. Hence G = K3. When A, = 0 and dg(e) =2, (G—e)g € {Pa} by the
induction hypothesis. Therefore G € {Cp(n > 4), T(l, 2, 13)}.

Case 2. R,(G —€e)=0and dg(e) =1— A.

Since dg(e) > 1, hence dg(e) = 1, A. = 0. By the induction hypothesis,
(G —e)g € {Cn('n. >3), T, 1y, 13)}. Therefore G € {T(ll, ls, 13)}.

Conversely, Since Rp(P2) = 1, Rm(K1) = Rm(T(1,1,1)) = 0and R(C3) =
0. From Theorem 3.3, Rn(Ca) = Rm(Pa)—1 = 0ifn > 4 and Rm(T(l1, Iz, 13))
= Rn(T(1,1,1))=0.

Therefore R, (G) =0 if G € {Cn(n > 3),T(l1,l2,13), K1}

(3). We can also prove (3) by the induction on ¢(G).
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Since Rm(K1) =0, and R (K2) = 1. Hence (3) holds if ¢(G) < 1.

Supposed ¢(G) = 2. Choose e € E(G) such that (G — e)g is connected.
Then R,(G — ¢e) < 1. Since R, (G) = —1, R(G —¢) = dg(e) + A, — 2
by Theorem 3.3. Hence 1 < dg(e) £3— A.and -1 < R,,(G—¢) < 1. We
consider only the following three cases:

Case 1. R,(G—¢e)=1and dg(e) =3 - A,

If A, =2, then dg(e) = 1, (G —e)g € {P,} by the induction hypothesis.
Since P,|J K1 + e and P, + e have one triangle at most, hence A, # 2.
If Ac = 1, then dg(e) = 2. By the induction hypothesis, (G —e)g €
{Pn}. Hence G = Q(3, s2). If Ac =0, then dg(e) = 3, by the induction
hypothesis, (G — e)g € {P,}. Therefore G = Q(s1, s2)(s1 = 4).

Case 2. R,(G —€e)=0and dg(e) =2 - A,

When A. = 1 and dg(e) = 1, (G —e)g € {Cn(n > 3),T(l1,l2,13), K1}
by the induction hypothesis. Hence G = Q(3,s2). When A, = 0 and
dg(e) =2, (G — e)E{Cn(n = 3),T(l,l2,13), K1} by the induction hypoth-
esis. Therefore G € {Q(s1, s2)(s1 > 4), T?}.

Case 3. R,(G—e)=—1and dg(e)=1- A,

Since dg(e) 2> 1, hence dg(e) = 1, A, = 0. From the induction hypothe-
sis, (G — e)g € {Q(s1, 82), T®}. Therefore G € {Q(s1, 52), T%}.

Conversely, by R,,(G) = Rn(G — e) — dg(e) — A. + 1 and Theorem
34 (1) (2)1 R’"(Q('ga 32)) = Rm(T(lal) 32))'_1 = _17R'm(Q(sla32)) =
Rm(T(la 51_1:32))—1 =-1 ifS] 2 41 an(Ts) = Rm(T(lvlrlQr 13))_1 =-1.

Therefore Ry (G) = —1if G € {Q(s1, 52), T®}.

4 The circuit uniqueness of some graphs

The circuit uniqueness of some the well known families graph was obtained
in [4-9]. We now show that T'({;, Iz, Is), Q(s1, s2), Un and T'(¢;, t2) is circuit
unique. The Lemma 4.1 follows immediate from Lemma 2.4 and 2.5.

Lemma 4.1. If C(G,w) = C(H,w). Then
(1) p(G) = p(H), and ¢(G) = q(H)
(2) Ni(G) = Ni(H)
(3) Rm(G) = Rm(H)

(4) In particular, if G is a tree, then H is a tree also,
where Ni(G) denotes the number of cycle of length k in G.

Ifw= (ww,- - ,w), we called M(G,w),C(G,w) the simply matching
polynomial and the simply circuit polynomial of G respectively. h(G,z)
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denotes the adjoint polynomial of G, which was introduced by Liu in [11].
The following Lemma have been given in [11] and [12].

Lemma 4.2. [11] If G is K3-free, then h(G,z) = M(G, z).
Lemma 4.3. [12] Let l; <lp <3, <ty <t3. If (I1,02,13) # (81, 82,¢3),
then h(T(ll, lg,lg), z:) # h(T(tl,t2, t3),z).

From Lemma 2.3, Lemma 4.2 and Lemma 4.3, we have
Lemma 4.4. Let I} <lp <l3,t; <ty <t3. If (Iy,12,l3) # (81,82,13), then
C(T(l, 2, 13), w) # C(T(t1,t2,t3), w).
Theorem 4.5. Let I; <l < l3. Then T(l4,l2,13) is circuit unique.
Proof: Let C(H,w) = C(T(ly,12,13),w), By Lemma 4.1, H =2 T,p(H) =
p(T(ly,l2,13)) =li + 2+ la+1, and Rn(H) = Rm(T(l1,l2,13)) =0

From Theorem 3.4, H = T(t,,12,t3) and lj + l2 + I3 = t; + t2 + &3,
LSk

By Lemma 44, t, =11,t2 = la,t3 = I3. Therefore H = T(ll, lo, I3).

Lemma 4.6. Let a3(G) denote the coefficient of w’l"swg of the circuit
polynomials. Then

a3(Un) < a3(T(t1,¢2)) < a3(T)

wheren > 7 and T € {T%\{Un, T(t1,t2)}}, 9(Un) = a(T) = ¢(T(t1, ), t1 2
3,t2 > 3.
Proof: According to Lemma 24,
P P
PBLAS I
i=1 i=1
P
t32 %

Nl'—‘

1
a3 =zq(¢"+3q+4) -

-,

+ Zdidj — Nr
ij

P

225

We note that any two trees Ty, T € T®, ¢(T1) = ¢(T2), p(T1) = p(T2), II(T1)
= II(T,) and N, = 0(i = 1,2). Therefore we consider only II,(T).

Let m x b denote m edges with the product degree b. Since II14(U,) =
{(qg—6) x 4,2 x 6,4 x 3}, I (T(t1,t2)) = {(g—7) x 4,3 x 6,3 x 3,1 x 2}.

Hence

aa(Un) = a3(T(t1,12)) + 3 M (Un) = ST x (T(t1,22))
= aa(T(t, 12)) - 1.

Let T € {T5\{Un, T(t1,t2)}}. Then the product degree sequence of T is
the following seven cases:

=—q(q +3¢+4) - +ZHX(G)—NT

[~}
w‘-l— to|+
() N

oaln-t

.
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Ox(T1)={(g—6)x4,1x9,1x6,3x3,1x2},

Ox(T2) ={(g—8) x4,4x6,2x3,2x 2},

Ox(T3) ={(g—7)x4,1x9,2x6,2x3,2x2},

Ny(Ty) ={(g—8)x4,1x9,3x6,1x3,3x2},

My (T5) = {(g — 10) x 4,6 x 6,4 x 2},

M (Te) ={(g—9) x4,1x9,4x6,4 x2},

Nx(T7) ={(g—-9) x4,1x3,5%6,3x2}

By calculating, " I« (T(t1,¢2)) < Y Mx(T3)(1 < i < 7). Therefore
a3(T(t1,12)) < as(Ty).
Theorem 4.7. Let n > 6. Then Uy, is circuit unique.

Proof: Let C(H,w) = C(Up,w). By Lemma 4.1, H = T,p(H) = n and
Rn(H) = Rn(U,) = —1. By Theorem 3.4, H € {T%}. If n > 6, since
bs(H) = b3(Uy), H 2 U, by Lemma 4.6. If n = 6, p(T) = 6 and T € {T®}
if and only if T" 2 Us.

Lemma 4.8. [10] (1) C(Pn,w) = ¥, ( Pk ) wPk

(2) C(Pn,w) = w(C(Pp-1,w) + C(Pn-2,w))
where n > 2.

Lemma 4.9. Let {g:(w)}() be the sequence of polynomials with integers
coefficients and gn(w) = w(gn—1(w) + gn-2(w)). Then:

(1) gn(w) = gn—k(w)C(Pe, w) + wn—k—1(w)C(Pe—1,w)
(2) If t1 + to = 81 + s2, then gy, (W)C(Pyy, w) = gs, (W)C(Ps,, w) if and
on]y if gtl—m(w)C(Ptz—m’ ’l.U) =G5 —m(w)C(Psa—m’w)
Proof: (1) By Lemma 4.8 and gn(w) = w(gn-1(w) + gn—2(w))

gn(w) = wPgn_s(w) + wPgn_3(w) + wgn—2(w)
= C(P2, w)gn—2(w) + wC(P1, w)gn-3(w)
= wC (P2, w)gn—3(w) + wC (P2, w)gn—4(w) + wC(Py, w)gn-3(w)
= C(P3, w)gn-3(w) + 'wC(Pg,w)g,._4 ('w)

= C(Px, w)gn—k(w) + wC(Pe—1, W)gn—k—1(w)

(2) Since &1 + t2 = 51 + 52 and g¢, 41, (w) = gp, (W)C(Pey, w) + g1, —1(w)
C(Ptz—liw)' 981+82(w) = Gs (w)C(Psmw)+981—1(w)C(P82—1:w) by Lemma
4.9 (1). Then

94 (w)C(Ptzsw) —Gs (w)C(Paza w)
=w(ge, -1(w)C(Pry—1,w) — g5, -1(w)C(Ps; -1, w))
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Therefore gi, (w)C(Pyy, w) = gs, (w)C(Ps;, w) if and only if gt —1(w)
C(Ptz—l)w) = gal—l(w)C(Paz—ls ’U)).
Hence (2) can be proved by repeating the above process.

Lemma 4.10. Let Z,, denote T(1,1,n — 3) and ¢; + 12 = 81 + s2. Then
C(Zy,, w)C(Py,,w) = C(Z,,,w)C(Ps,,w) if and only if t, = s1,t2 = s2.
Proof: We construct a sequences of polynomials {g;(w)}, which defined by
the following recursive formulas:

01(w) = 2w, ga(w) = w? and gn(w) = w(gn—-1(w) + gn—2(w))

By the recursive formulas, g3(w) = w®+2w? and gi(w) = C(Z, w) when
k>4

Let m = min{s), s2,%1,¢2} — 1.By Lemma 4.9,

It need only prove g, —m(w)C(Pry—m, w) = g5, ~m(w)C (Psy—m, w) if and
only if t; = s1,t2 = s2

Hence it is only necessary to the following two cases:

Case 1. min{s, s2,t;,t2} = 57 OT ¢;.

Let min{sl, 89,14, tz} = 8. Then

9, —m(w)C(Pf»n—"‘hw) = 2WC(P82—mvw)

Since tg —m > 1,52 —m > 1,¢; —m > 1 and the leading coefficients
of gs,—m(w), C(Psy—m,w) and C(Piyy—m,w) is 1 if ¢ty —m 2 2,59 —m 2>
1,to—m > 1. Hence t; —m =1, and s, = ¢;, 83 = to.

When min{sy, s9,t1,t2} = ¢, the proof is entirely similar to the above.

Case 2. min{s), s2,%1,t2} = 82 or t2.

Let min{sy, s2,t1,%2} = s2. Then

g, ~m(W)C(Pey—m, w) = wgs, —m(w)

Since t; —m > 1,t —m > 1,5, —m > 1 and the leading coefficients of
gty —m(w), C(Pyy—m,w) and g5, -m(w) is 1ifty—m > 2,t-m > 1,51 —-m >
2. Hence we have:

Ifty—m =1 (or s; —m = 1), then 5y —m =1 (or t; —m = 1). Therefore
81 = t1,82 = ta.

If sy —m = 2, then

w®= gt —m (W)C(Pey—m, w) (1)

The equation (1) holds if and only if ¢; —m = 2, and ¢t — m = 1. Hence
81 =1t1,8 =1y,
If sy —m =3, then

w3(w + 2) = gu —m(w)C(Ptz—M7w) (2)
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Since C(P,, w) = w?+w, C(Ps,w) = w*+2w?, g1 (w) = 2w, 8(gey —m(w)) >
1 and 8(C(Py;—m,w)) = 4 if t2 — m > 4. Hence the equation (2) holds iff
t; —m =3, and £y — m = 1. Therefore sy = ty, 53 = t3.

If sy —m >4,ty —m =1, then s, = 19,80 = ¢t5.

Ifs; —m>4,ty —m > 2, then

wc(ZBI —-m) w) =gy —m(w)C(Ptn —ms w) (3)

Since t; — m > 2, Ru(gi(w)) = 0(2 = 2,3) and Ry(gi(w)) = Rm(Z;) =0
if ¢ > 4. According to Theorem 3.2, 3.4, Ry(Z5,—-m) = 0, Rn(Pey—m) = 1.
Hence Rn(Zs,—-m) # Rm(9t,—m) + Rm(Pe—m), it is a contradiction.

The sufficiency of Lemma 4.10 is easy proved .
Theorem 4.11. Let t; > 3,t2 > 3. Then T'(t1,t3) is circuit unique.
Proof: Let C(H,w) = C(T(t;,t2),w). By Lemma 4.1, H = T, P(H) =
P(T(t,t2)) and Rn(H) = Rn(T(t1,t2)) = —1. By Theorem 3.4, H €
{T®}. H = T(sy,s2) and sy + s2 =t; + t2 by Lemma 4.6.

It need only prove C(T'(sy, 82), w) = C(T(t1,t2),w) iff 81 = t1,82 = ta.

From Lemma 2.1,

C(T(31$ 32): w) = wC(Z81 +82+1:W) + wC(Z,, +1, w)C(Psz—ly w)
C(T(tla tz), w) = wc(Ztl +iz2+1y w) + wC(Zh-H: w)C(Ph—l’ w)

By Lemma 4.10, C(Z;, +1,w)C(Psy—1,w) = C(Z4, +1,w)C(Pi,—1,w) iff
s1=ty, 52 =12
Hence H = T'(t;,15).

Lemma 4.12. [5] Let G be circuit unique graph without cycle. Then
GU(U; Cn,) is circuit unique.

Corollary 4.13. Let G € {T(ly,12,13), Un, T(t1,t2)}. Then GU(J; Cn.)
is circuit unique.

Theorem 4.14. [9] Let s; > 2,s2 > 2. Then Q(s, s2) is circuit unique.

Proof: Supposed C(H, w) = C(Q(s1, 52), w). Since p(Q(s1, 52)) = a(Q(s1,
s2)) and Q(s;, s2) has only one cycle. Hence H has only one cycle and it is
connected (Otherwise there exist a component H; in H such that q(H;) >
p(H1)+1 or there exist two components H;(i = 1,2) in H such that g(H;) =
p(H;), however H have two cycles at least, it is a contradiction). From
Lemma 4.1, R, (H) = R (Q(51,52)) = —1 and Ng(H) = Ni(Q(s1,52)) =
s1. By Theorem 3.4, H £ Q(s1, 52)-
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