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1 Introduction

What is the world’s most interesting class of integral polynomials, i.e. what
is the world’s most interesting set of polynomials, one of each degree, that
have integer coefficients? Some people might say {z"}; well this class is a
little boring. Can we do better? Write down your favorite class {f,(z)} of
integral polynomials and let’s see how they stack up for interesting proper-
ties against the following.

Our favorite class begins as follows. Let a be an integer and define

Do(z,a) =2
Dy(z,a) =z
Dy(z,a) = 2% — 2
Dsi(z,a) = z° — 3az
Dy(z,a) = z* - 4az?® + 24?
Ds(z,a) = z° — 5az® + 54z

.........................

In general we have the following recurrence
D.(z,a) = 2Dp_1(z,a) — aD,_2(z,a), n>2

where the two initial polynomials are Do(z,a) = 2 and D;(z,a) = .
There are several ways of viewing our polynomials and as an exercise,
we ask that you derive each.
As a closed form we have

L2l n n—1
Dyp(z,a) = Z n_?;( i

=0

)(_a)izn—%’
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where |n/2] denotes the largest integer < n/2. A second closed form is
given by

T+ Va2 —4da z—+vVzt—4da
Dn(.'lt,a) = (____2__)71 + (___2____)71-
There is a functional equation so that if = can be written as z = u+a/u

for some u, then
n

a
Dyp(z,a) =u™ + e
We also have the generating function
oo
2—zz
Dp(z,a)z" = ———8 .
; n(,a)z 1-—zz+ az?

The polynomials satisfy second order differential equations which corre-
spond to the well known differential equations for the Chebyshev poly-
nomials. In particular, the polynomial Dn(z,a) satisfies the differential
equation

(22 — da)y” + 2y’ —nPy =0.

For those of you with more classical tastes, we point out that our poly-
nomials Dy, (z,a) are not unrelated to a well studied class of polynomials.
Consider the classical Chebyshev polynomials T(z) defined for each inte-
ger n > 0 by Tn(z) = cos (n arccos z). Working for the moment over the
complex numbers, let u = '™ so that z = u + 1/u = 2cos a. Then, as is
easily checked,

Dn(z, 1) =u"+u " ="+ e~ = 2 cos(na) = 2Tn(cosa) = 2Ty (z/2).

Hence our polynomials are related to the classical Chebyshev polyno-
mials, and in fact some authors use the latter terminology.

L.E. Dickson was the first to seriously study various algebraic and num-
ber theoretic properties of these polynomials. In particular, he studied
these polynomials as part of his Ph.D. thesis at the University of Chicago
in 1896; see also Dickson [7). In 1923 I Schur (23] suggested that these
polynomials be named in honor of Dickson and so we will continue with
this convention to call the polynomials Dy(z,a) Dickson polynomials as
was the case in [16].

2 Solvability by radicals

In teaching courses on abstract algebra, it is of interest to have classes of
polynomials that can be solved by radicals. Unfortunately it is not easy
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to find concrete examples of such polynomials for each degree n > 1 other
than minor variations of £ for which it is possible to explicitly write down
the solution in terms of radicals. Dickson polynomials however come to the
rescue.

Consider the polynomial equation Dypyq(z,a) = b. Then

(b+m e

(1)

is a solution. Check! Such a derivation was first obtained by Dickson
[7] and later in [25] Williams provided the following proof. Since every
mathematical paper ought to have at least one proof, we will include the
argument by Williams as follows.

Let z be a root and consider A2 — zA + a = (A — a)(A — B) = 0 so that
z=a+p8,a=ap. Hencel -z +ad? = (1 —a))(1 - B)). We then have

log(1 — zA + aA?) = log(1 — a)) + log(1 — BA)

°°ﬁm)\ o) +ﬂm m
=_Z _Z—:l - Za A

m=1

Since log(1 — zX + aA?) = log(1 — A(z — a))), the above becomes

lm/2J
_ f: Z 1)3( . s)asxm—%)\m'

Equating coefficients of A we have

mAm

. | /2]
a™ + " Z 1 (m - s)(—a)srz’"‘”.
m m-—-3S S
=0

Let m = 2n+1 so that a1 +8%"+! = D,, . (x,a). Thus the quadratic
equation y2 — Doy 41 (2, @)y + a®**! = y2 — by + a®*! = 0 has roots a?n+!
and $?*+!, On the other hand by the quadratic formula

b+ ,/b‘z — 4g2n+1
y = 2

and hence

ons1 _ D+ Vb2 — da?ntl o b - VIZ — dgen+T
a - 2 ‘ﬁ - 2 .

Finally since z is a root of the equation Doy y1{z,¢)-b=0and z = a+ 4,
we have the complete solution of our original equation.
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Actually Dickson used this method to show that if (2n+1,p% — 1) =1,
then Dyp41(z,a) induces a permutation on the finite field F, wherepis a
prime so that on substitution of the elements of F, for x, we obtain all of
the elements of F,. We note from the solution (1) that if (2n+1,p?—1) =1,
then in the field Fj2 one can take (2n + 1)-roots in the field. Certainly one
can then also take square roots as every element in F,, has a square root in
the quadratic extension field Fp.

3 Permutations

Let p be an odd prime and consider reducing an integral polynomial f(x)
modulo p, i.e. reduce the integer coefficients modulo the prime p so that
we may now view f as a function f : F, — F,, where F}, denotes the field
of integers modulo the prime p.

For which primes p and what values of a does D,(z,a) induce a per-
mutation of the p elements in the field F,,? Could we be so lucky that a
single condition works for all values of a? Unfortunately we aren’t quite
that lucky but if @ = 0, our problem is easy since D, (z,0) = z™ is a per-
mutation if and only if (n,p—1) = 1. Why is this the case? Recall that the
set F) of nonzero elements of F, forms a cyclic group under multiplication
of order p — 1. The rest of the argument is easy.

Now what about the general Dickson polynomial D, (z,a) where a # 07
We note from the functional equation that if z = u+a/u, then v’ —zu+a =
0. This is a quadratic equation which will always have a solution in the
quadratic extension field Fjz of F,. Moreover, x will be the sum of the
roots of the equation and a will be the product.

Could it be since we are working in the quadratic extension field Fp,
that (n,p? — 1) = 1 is the right condition to ensure that for a # 0, D,.(z, a)
permutes F,? If only mathematics was always so easy to make the right
conjecture! You prove using the functional equation that fora #0€ F,,
indeed D,(x,a) permutes the field F}, if and only if (n,p? — 1) = 1.

Cohen (5] shows that if p is a large prime compared to the degree of
f, then the permutation polynomial f essentially comes from a Dickson
polynomial; i.e. f(z) = fa(fi(z)) where f2 is a monic polynomial and
f1(z) = Dy, (z™2,a) + o with @ # 0 and a € F,; see [5] or (16] page 167.

Mathematicians are often greedy and not quite satisfied with conditions
for single primes. Therefore we ask: could it be that D, (x,a) permutes F,
for many different primes p? A finite number? An infinite number? You can
no doubt very quickly convince yourself that a given polynomial D, (z,a)
can permute a number of fields F}, so let’s not waste our time; let’s see if
we can decide whether it might permute infinitely many such prime fields
F,.
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Let’s first look at the slightly simpler case of the polynomial D,(z,0) =
z". Remember that in order for =" to induce a permutation on the field
F,, n must satisfy (n,p — 1) = 1. Thus what we need is to see whether we
can round up infinitely many such primes p with (n,p — 1) = 1. How do
we proceed?

Fortunately there is an old theorem of Dirichlet from 1837 that will do
the trick for us. Dirichlet’s theorem says that if (a,b) = 1, then the sequence
ak + b of integers contains infinitely many primes p as k runs through the
positive integers; see Apostol [1], page 146. Now back to our polynomial
z", assume that n is odd, (if n is even z" = (-z)"), i.e. that (n,2) = 1.
Now by Dirichlet’s theorem, the sequence nk + 2 contains infinitely many
primes p. Note that for each such prime p, we have (n,p — 1) = (n,nk +1)
and if some prime say r, divided both n and p — 1, it would thus have to
divide 1, a contradiction! Thus for each of these infinitely many primes p
from Dirichlet’s theorem, we have (n,p—1) = 1 and hence for each of these
infinitely many primes p we have that D, (xz,0) = z" induces a permutation
on the field F,.

Ok, does something similar work for the Dickson polynomial D,(z,a)
where a # 0?7 And if so, how does it work? Convince yourself that if
(n,6) = 1, then D,(z,a) induces a permutation on F, for infinitely many
primes p.

Now that you are feeling pretty good about how to find integral poly-
nomials that permute F, for infinitely many primes p, we ask if there are
others? Sure there are, simply take some linear polynomial like az +b where
a, b are integers with a # 0. Then clearly az+b will permute any field F, as
long as p doesn’t divide a,-and since a only has a finite number of divisors,
then we are in business: az + b will permute infinitely many prime fields
F,.

Can you construct others? In 1923 Schur conjectured in [23] that the
answer is essentially, no; He conjectured that if f € Z[z] (when considered
modulo p) is a permutation of F, for infinitely many primes p, then f must
be a composition of binomials az™ + b and Dickson polynomials. The first
proof of this conjecture was given by Fried [10] in 1970 using considerable
mathematical machinery including Riemann surfaces. Quite recently in [24]
Turnwald gave an elementary (without complex analysis) but still not easy
proof of this result. There is no truly easy proof known.

One might note that in the above cases, when considering polynomials
of degree n, we needed the conditions (n,2) = 1 for " and (n,6) = 1 for
Dy(z.a) with a # 0 to permute F, for infinitely many primes p. Does
anything of interest arise when one considers (n,30) = (n,2-3-5) =1 and
(n,2-3-5-7) = 1 etc.? Mullen showed in [19] that using such conditions one
can get a matrix analogue of Schur’s conjecture. In particular let m > 2
be a fixed integer. If f € Z[z] induces a permutation on the ring F;"*™
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of all m x m matrices over F, for infinitely many primes p, then f is a
composition of linear polynomials o;z + f; € Q[z] and Dickson polynomials
Dy, (z,a;) with a; # 0 € Z where every n; is either an odd prime with
(n,2TT2 (2% - 1)) = 1 or a prime ! dividing [}~ (2% —1) with { > 2m +1.
In the above @ denotes the field of rational numbers.

We refer to Parshall [20] for a discussion of various other work of Dick-
son related to permutations (which Dickson called substitution quantics of
degree n) as well as a summary of his work related to linear groups.

4 Value sets

Given a polynomial f over Fp, i.e. with coefficients in Fp, we define the
value set Vs of f by Vy = {f(a)|le € F,}. Recalling that a polynomial of
degree n over any field can have at most n roots, and noting that there are
p distinct elements in Fy,, we clearly have

-1
IE—]+1<1Vi<p.

Hence a polynomial whose value set achieves the value p induces a permu-
tation and those which achieve the above lower bound are called minimal
value set polynomials, see Mills [18]. As noted in Gomez-Calderon and
Madden [12}, polynomials of degree n with value sets of small cardinality
(less than twice the minimum) come from Dickson polynomials.

If one considers a polynomial f over F, and asks for the cardinality |V|
of the value set V; of f, it is in general a very difficult problem to determine
|Vf|. For example if f(z) = z° +28 +5z% —3z+15 is viewed as a polynomial
over Fy7, can you quickly determine |V|? What is |V, | for your favorite
class {fn(z)} of polynomials?

In fact there are very few classes of polynomials for which the cardinality
of the value set is known. The reader should check that over F;

-1
[Vin| = EJ— +1,6=(np-1)=1.
As for Dickson polynomials Dy (z,a) over F, with a # 0, should we expect
an analogous formula? Sure, since by now we have noticed that whenever
something happens for z*, something analogous usually happens for the
corresponding general Dickson polynomial of the same degree. The poly-
nomials D, (z,a) are indeed interesting and, in fact, we have from [4] that
fora #0€ F,
p-1 p+1

v, = +a,
Vb, (=00l 2(n,p—1)+2(n,p+ ne

where a = 0, or 1/2, or 1. In fact as indicated in (4], usually o = 0.
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5 Commutativity properties

What about various commuting properties? Of course our polynomials
commute, as do polynomials from any class, under polynomial addition
and multiplication. What about functional composition; i.e. is f(g(z)) =
g(f(z)) for any two polynomials in our class? When are our polynomials
closed under functional composition? Well certainly the class {x"} of power
polynomials is closed under composition since (z")™ = z"™ = ™" =
(xm)n’

Here we must concede ground, although grudgingly, as not all Dickson
polynomials with integral coefficients are closed under composition. How-
ever as indicated in [16] page 13, over an integral domain and hence in
particular over the integers, they are closed under composition if and only
fa=0ora=1

If a class (called a permutable chain) of integral polynomials (one of
each degree > 1) commutes under composition, i.e. if any two integral
polynomials in the class commute under functional composition, then this
class must come essentially from only two classes (This result actually also
holds over any integral domain.). You guessed that one of the classes is the
class {z"} and from the above, we suspect you might guess that the other
class must be the class {Dn(z,1)}, see page 13 of [16] for details.

By the way, how is your favorite class {fn(z)} of polynomials faring?
How many of the above properties do they share? If you are yet to be con-
vinced that our polynomials are more interesting than yours, let’s continue
our efforts at convincing you.

6 Irreducible polynomials

In many applications of algebra, in particular in algebraic coding theory for
the error-free transmission of information and in cryptology for the secure
transmission of information, one often needs to construct a field Fy. of
dimension n over Fp; i.e. we need an irreducible of degree n over a prime
field F,. While we know, see for example Lidl and Niederreiter [17) page
93, that for each integer n > 2 and any prime p there is an irreducible of
degree n over Fy, it is not an easy problem to construct such an irreducible.

Here again Dickson polynomials come to the rescue, at least for some
degrees. For example in [11] the following is shown. Let n > 3 be odd and
let a,b € F, with a # 0. Let 22 + bz + o™ = (z — B1)(z — B2) where the
multiplicative order of g; is e;. Then Dy(z,a) +bis irreducible over Fj, if
and only if each prime factor of n divides e; but not (p? —1)/e;. Ok, this is
a little technical, can we use it for example to get irreducibles of infinitely
many degrees n over the field F, where p is odd? You bet we can! As a
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corollary of the above, if p is a primitive element (recall this means that
p multiplicatively generates the group F, of all nonzero elements of F,),
then the polynomial D,(z,1) — (p + p~!) is irreducible of degree n over Fp
for all

n= r'l"‘ mrf‘,
where 7y, ..., 7, are distinct odd prime factorsof p—1,and k; > 0,....k, >

0 are nonnegative integers.

7 Bases

The finite field Fj» may be viewed as a vector space over the base field F,
and in this way, it is a vector space of dimension n over F,,. A particularly
useful basis to have handy is a normal basis; an element a € Fy,» generates
a normal basis if the elements

rn—1

2
a,af, o ,...,af

form a basis. Thus these elements must be independent and they must span
the field Fy,.» over F,. Eisenstein [9] conjectured the normal basis theorem
for finite fields; and Hensel [13] was the first of many authors to give proofs
of this important fact that every extension field has a normal basis over the
base field.

Why is a normal basis useful and important for finite field calculations?
The reason is as follows. In doing calculations in the field F,» one oftens
needs to take p-th powers A7 of an element 8. If

n—1
B=aa+aa? +---+a,_16° ,

then .
B =an_100+ apaf +--- +ap_2a”

since for any ~ in the field F,.,¥?" = . Thus taking a p-th power 8° of
an element § simply reduces to a cyclic shift of the vector representing the
coefficients of 8 in the normal basis.

In 1987 Lenstra and Schoof [15] proved the primitive normal basis the-
orem; namely that every extension field has an element & which not only
generates a normal basis of Fy« over F}, but that element o may be taken
to be a primitive element of Fj..

Recall that the field F,. has a subfield of order p? if and only if d
divides n. Since we are greedy, might there be an element a € F,. which
simultaneously generates a normal basis over both F« as well as over the
base field F,,? Being even greedier, might there be an a in Fj» which
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simultaneously generates a normal basis over Fpu for all d dividing n, i.e.
« simultaneously generates a normal basis over all intermediate subfields?
With a difficult and technical argument, Blessenohl and Johnsen [2] showed
that this is indeed the case. Such elements o are said to be completely
normal.

Surely you must be thinking that Dickson polynomials can’t possibly

play a role in this rather complicated computational setting. Wrong! For
a polynomial f(z) of degree n, define the reciprocal polynomial f*(z) by
f*(z) = =™ f(1/x) so that f*(z) is also of degree n and note that if f(z)
is irreducible or primitive, then so is the reciprocal polynomial f*(z). In
[22] Scheerhorn proved that if n > 3 is odd and a, b e F, with D,(z,a) -
b irreducible over Fj,, then the polynomial (D,(z,a) — b)" is completely
normal over Fj,. Here by completely normal polynomial we simply mean a
polynomial whose roots are completely normal elements and recall that we
already have conditions to help us determine when D,,(z,a)—b is irreducible
over Fy, see {11). Thus we're in business to construct some completely
normal bases.

We also point out that when the polynomial D,(z,a) — b is irreducible
over Fy, if a is a root of this polynomial, then we obtain a basis of Fu
over F, of the form {1,a,a?,...,a" !}, called a polynomial basis. This
terminology arises from the fact that the elements of the extension field
F,. may be viewed as polynomials in o of degree < n with coefficients in

F,.

8 Combinatorics

For those readers with a combinatorial bent, we present two areas where
Dickson polynomials play roles in combinatorics. If

(Zh=z(z-1)(z—-2)-- (z-n+1)

is the usual falling factorial, consider the expansion

"= Snk) )k n=01,... (2)
k=0
where S(n, k) denotes the Stirling number of the second kind. If Z, =
{1,2,...,n} and Z,,, = {1,2,...,m}, then as discovered by Stirling, with
z = m both sides of (2) count the number of functions from Z, to Z,,. In
[14] this was generalized to

n
Dy(z,a) — e Z (n, k; a)(zla)y, n=01,...

k=0
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where
(zla)n = (z —a)(z—a—-1)---(x—a-n+1),

withcg =1and ¢, =0for k> 1.

This provides a Dickson-Stirling number of the second kind. Moreover
in [14] the following combinatorial refinement of Stirling’s result above was
obtained: Let m > 1,n > 1 and 0 € a < m be integers. Then D,(m,a) —
D, (a,a) counts the number of functions f : Z, — Z, that take at least one
integer of the set {a+1,a+2,..., m}, and such that no integer of Z, occurs
consecutively as an image in the cyclic sequence f(1), f 2),...,f(n), F(1).

Since for @ = 0 there are no elements < a in the range of any func-
tion f, we immediately obtain the case first discovered by Stirling. Other
combinatorial results related to the Dickson-Stirling numbers are given in
(14].

By a latin square of order n is meant an n X n array consisting of n
distinct symbols with the property that each row and each column contains
each of the n symbols exactly once. Two such squares are orthogonal if
when superimposed, each of the n? possible ordered pairs occurs exactly
once, and a set of squares is orthogonal if each pair of distinct squares is
orthogonal.

Label the rows (and columns) of a ¢ x g square with the elements of Fy,
the field with ¢ elements where ¢ = p® with p prime and e > 1 an integer.
For b € F; and (n,¢* — 1) = 1 (so that Dy (z,b) permutes F,), place the
element

gb(z,y) = bDn(z,a) + Dy (y,a)

at the intersection of row z and column y of the b-th square. We leave it to
the reader to check that this indeed gives a set of ¢ — 1 mutually orthogonal
latin squares (MOLS) of order ¢. In fact it is not possible to construct more
than g — 1 MOLS of order q. Why is this? See Dénes and Keedwell [6] page
158. When n = 1 the above construction reduces to that of Bose [3] who
also proved in the same paper that for a positive integer m > 2, there exist
m — 1 MOLS of order m if and only if there exists an affine plane AG(2,m)
of order m.

When ¢ is a prime, a long standing conjecture postulates that any two
affine planes of the same prime order are desarguesian, i.e. every set of
q — 1 MOLS of prime order ¢ is equivalent to those constructed above.
Here two sets of MOLS are equivalent if one set be obtained from the other
by some fixed permutation of the rows, a (possibly different) permutation
of the columns and a (possibly different) permutation of the symbols of the
squares; see [6] pages 168 and 276.
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9 Cryptographic applications

Ok, so you think all of these properties are rather theoretical in nature and
of no practical significance at all. Wrong! We now briefly outline several
practical applications of Dickson polynomials that involve various crypto-
graphic systems for the secure transmission of information. We point out
that cryptosystems are indeed widely used in today’s information hungry
society.

We first recall the very important RSA public key cryptosystem which
is based upon the Dickson polynomial Dy (z,0) = 2. We choose two large
primes p and g which are kept secret but their product n = pq is made
public. Assuming that Alice wants to send her friend Bob an important
message m, Alice looks up in a public directory Bob’s enciphering key ep
which is an integer with (eg, #(n)) = 1, where ¢(n) denotes Euler’s function
which counts the number of integers < n which are relatively prime to n.
Alice then enciphers her message m as ¢ = m®” (mod n).

Since Bob knows the two primes p and ¢, he is able to solve the congru-
ence egdg = 1 (mod ¢(n)) for his private deciphering key dg. Try finding
#(n) without knowledge of the two primes p and ¢ whose product is n!
Upon receiving c, in order to obtain the original message m Bob simply
deciphers by calculating c?# = (m®")%# =m (mod n).

We note that Alice can verify (authenticate is the fancy word) that the
message came from her and not from one of Bob’s many other girlfriends, i.e.
Alice can sign her message. She simply calculates mé+ = s (mod n). Bob
knows that only Alice is able to obtain d4 (which she calculates analogously
to the way Bob calculated dg). Hence when Bob receives s he verifies
that the message m came from Alice by calculating s¢4 = (mfr)er = m
(mod n).

As we by now expect, the general Dickson polynomial Dy, (z,a) with a #
0 can also be used in an analogous way to build a public key cryptographic
system; see [16] section 7.1. We must however restrict our attention to the
case where a = 1 in order that the Dickson polynomials are closed under
composition. As in the earlier case we assume that Alice and Bob each
have public enciphering keys e4 and eg. Alice now enciphers her message
m as D,,,(m.a) = ¢ (mod n), where (eg, (p*> - 1)(¢* = 1)) = 1.

Bob calculates his deciphering key dp from the congruence egdg =1
(mod (p? —1)(¢% — 1)) and then deciphers to obtain the original message m
by calculating Dy, (c,a) = m (mod n). In this setting Alice is able to also
sign her messages; she simply begins the process by calculating Dq,, (m,a) =
s (mod n), and Bob then calculates De,(s,a) = De,(Dd,(m, a),a) =m
(mod n). See [16] section 7.1 for details.

How do Alice and Bob exchange a common key without the use of a
courier? One method is to use the Diffie-Hellman key exchange system
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which works as follows, and which once again uses properties of Dickson
polynomials. Choose a primitive element g in the field F},. Alice has a secret
integer ¢ and so she sends to Bob the field element g* who in turn with
his secret integer b then calculates (g¢)® = g°®. Similarly Bob calculates g®
which is sent to Alice who calculates (g®)® = g% and their common key is
the field element g = gb¢. This process is viewed as being quite safe since
the discrete logarithm problem is generally believed to be difficult to solve.
This problem asks for the value of ¢, given that you see the field element §
which we know to be written in the form 6 = g* where 0 <t < p -1, and
¢ is a primitive element in the field F,.

You can devise an analogous Dickson key exchange system by taking
a = 1. Why? We must however be a little more careful in choosing g
which we take as in [16] to be g = v?~! +y~(P~1) where 7 is a primitive
element in the field Fp2. Alice calculates Do(Dy(g,1),1) = Das(g,1) and
Bob calculates Dy(D,(g,1),1) = Dpa(g,1) and thus the common key is
D¢p(9,1) = Dpa(g,1). We refer to ([16], page 159) for details.

10 Conclusion

Hopefully by now you’ve come to the conclusion that the Dickson polyno-
mials {Dy(z,a)} are pretty interesting creatures. These are often called
Dickson polynomials of the first kind. Are there other fascinating proper-
ties yet to be discovered? Most likely! For a survey of some algebraic and
number theoretic properties as well as applications of Dickson polynomials,
we refer to [16].

There is a closely related class of polynomials E, (z,a) called Dickson
polynomials of the second kind, see [16]. They satisfy the same recurrence
except that one changes the constant polynomial from Dg(z,a) = 2 to
Eo(z,a) = 1. One might think that such a trivial change will not make life
too difficult if one wants to develop properties of the Dickson polynomials
E,.(z,a) of the second kind. We leave it to you to see what analogous
results you can obtain for these polynomials.
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