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Abstract. Tenacity is a recently introduced parameter to measure
vulnerability of networks and graphs. We characterize graphs having
maximum number of edges among all graphs with given number of
vertices and tenacity.

1. Introduction

The parameter tenacity of a graph was introduced by Cozzens,
Moazzami and Stueckle [3] as an alternative to connectivity, integrity and
toughness, to measure the vulnerability of interconnection networks. The
tenacity is a better vulnerability parameter as it measures both (i) the cost
involved in disrupting the network (like connectivity), and (ii) the extent to
which the network is disrupted. For a comparison of various vulnerability
parameters, see [3]. For a graph G, let p(G), €(G), w(G) and u(G) respec-
tively denote the number of vertices, edges, components, and the order of
the maximum component. All our graphs are finite, undirected and simple.
We refer to [1] for graph theoretic terminology. If Gy(V1, E}) and Ga(V2, E3)
are two vertex disjoint graphs, then (i) the union G UG; is the graph with
the vertex set V; UV, and edge set Fy U E2, and (ii) the join G; + G is the
graph with vertex set V; UV, and edge set EyUE,U{uv: u € V;, v € Vp}.
For any graph G, rG denotes the union of r copies of G. If A, B are disjoint
vertex sets of G then [A, B] is the set of all edges in G with one end in A
and the other end in B and [A] is the subgraph of G induced by A.

For a graph G(V, E), the score sc(S;G) of a set S C V, and the
tenacity T(G) are defined by

IS| + p(G - S)
w(G - 9)

A subset S is called a T-set if s¢(S; G) = T(G). Clearly, if H is a spanning
subgraph of G, then T(H) < T(G). A graph G is called a T-maximal
graph if T(G + z) > T(G), for every edge z € G°, and it is called a (p, T')-
maximum graph if it has maximum number of edges among all T-maximal
graphs on p vertices and tenacity 7. In this paper, we characterize (p, T)-
maximum graphs. While several extremal problems connected with the
parameters toughness and integrity are studied in [4], the tough maximum
graphs are characterized in [2).

s¢(S;G) = , and T(G) = min{sc(S) : S C V(G)}.
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2. Tenacity-Maximal Graphs

As with many other parameters, it is easier to characterize (p, T)-
maximal graphs than (p, T)-maximum graphs.

Theorem 1: A graph G is T-mazimal if and only if (i) G = K,, or
(i) G = Kp, UKp, U---UKp,, where pp = p2 > p3 > ==+ > pn, or
(it)) G = K, + {Kp, UKp,,U-- UK, }, wherepy =p2>p3> - 2> pn.

Proof: Let S be a T-set, and D,, Ds, ..., D, be the components of G — S.
n

Clearly each D; is complete and [S,UV(D:')] is complete; otherwise by
1
Jjoining a pair of non-adjacent vertices, we get a graph G’ with more num-

ber of edges and T(G') < s¢(S;G') = 5¢(S;G) = T(G) < T(G"). Thus G
is of the form K, + (Kp, UKp, U---UK,,), where |S| =5 >0, n > 1
and p; > p2 > -+ > pn. If p1 > pa, then again by joining a vertex =
of Kp, with a vertex y of K,,, we get a graph G’ with ¢(G') = ¢(G) + |
such that T(G') < se(S U {z};G") < s¢(S;G) = T(G) < T(G’"). Hence
p1 = p2. We conclude that G is as described in (i) or (ii) or (iii) according
as(s>0,n=1)or(s=0,n>2)or(s>1,n>2). o

3. Tenacity-Maximum Graphs

The characterization of tenacity-maximum graphs is complicated, since

a graph G can achieve tenacity —"1, either by the existence of a T-set S,

such that | Sy | +4(G — S1) = m and w(G — S1) = n, or by the existence of

a T-set Sz such that | Sz | +p4(G — S2) = Im, and w(G — S3) = In. In view

of these situations we first characterize pairs (p,T = E) for which there

n

exist a graph G with p vertices and tenacity T, and then show that if G

~and G; are p-vertex graphs with T-sets S; and S respectively, as above
and [ > 1, then ¢(Gy) < e(G2).

We separately identify connected and disconnected T-maximum graphs.

3.1. Connected Tenacity-Maximum Graphs

Clearly, for any connected graph G, 1 < T(G) < p, and moreover,
T(G) = p if and only if G ~ Kp; so K, is the unique (p, p)-tenacity-
maximum graph. Hence, in the following we consider only connected, in-
complete graphs; consequently, whenever G = K, +{Kp, UKp,U---UKp_}
is T-maximal, we assume that s > 1 and n > 2. For convenience, we
introduce the following classes of graphs.

o M = {G : G is connected, incomplete and T-maximal}.
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* G(p,T)={G € M :p(G) =p and T(G) = T}.
IfG(p,T) # &, (p,T) is called a c-valid pair.
e G (p.T)={G€G(p,T) : e(G) > e(H), for all H € G(p,T)}.

¢ G(p,m,n) = {G € M : p(G) = p, and for some T-set S of G,
| S| +p(G—S) =mand w(G-S)=n}.
If G(p,m,n) # ¢, (p,m,n) is called a c-valid triple.

* G*(p,m,n) = {G €G(p,m,n) : e(G) > e(H), for all H € G(p, m,n)}.
o G(pym,n,t) = {G € M : p(G) = p, and for some T-set S of G,
pu(G-S)=t,|S|=m—tand w(G-S) = n}.
* G*(p,m,n,t) = {G € G(p,m,n,1) : ¢(G) > e(H),
for all H € G(p, m,n,t)}.
Remark: Let T = %, where ged(m, n) = 1. If (p, T') is a c-valid pair, then

(p,m, n) need not be a c-valid triple, but (p, km, kn) is a c-valid triple for
some k.

Theorem 2: IfG = K, +{D,UD;U---UD,} is a T-mazimal graph with
|D1] = (G — S) and S is a minimal T-set, then S = V(K,), and hence
(G = S 1D

n
Proof: (i) Clearly, S D V(K,); otherwise T(G) = p.

(i) SN D; = ¢, for every ¢; on the contrary, if z € SN D;, for some i,
sc(S — {z}) < sc(S). Hence, S = V(Kj,). a

Theorem 3: An integral triple (p, m,n) is c-valid if and only if
m+n—1<p<mn—-n+1l.

Proof: Let (p, m,n) be c-valid and G be a connected graph with p vertices

having a T-set S with | S | +p(G — S) = m and w(G — S) = n. Let

Dy, Ds, ..., Dy be the components of G — 5, where | Dy |= p(G — S5). We
n

have p=m + Z D; > m+ n — 1. Next, since G is connected, |S| > 1 and
=2
consequently u(G — S) < m — 1. Hence,
n
p=m+Z|D.-|$m+(n—l)(m—l)=mn—n+l.
i=2

Conversely, for any triple (p,m,n) withm+n—-1<p<mn-n+1,
we construct a graph G(p,m,n) € G(p,m.n). Let k=p—m—n+1, and
u be the smallest integer such that k¥ < u(n — 1). Let k¥ = uq + r, where
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0<r<u and ¢g=0if u=0. By our assumptions on p, m,n, we have

E>0,u<m—2and n>q+1. Let G* = G(p,m,n) be the graph
I{m—u—l + (Dl U D2 u---u Dn)a

where Dy = Dy = --- = Dgy1 = Kuy1, D2 = Ken and D; = K, for

every i, g+2<i<n.

By Theorem 2, S = V(Kmn—u-1) is a T-set of G*. Moreover, | S |
+4(G*=8) = m and w(G*—S) = n. Hence, G(p,m,n) € G(p, m,n,u+1) C
G(p,m,n). . a

o In the paper, we will often refer to the graph G* = G(p,m,n) defined
above whenever (p, m,n) is c-valid; the integers k, u, ¢, 7 which are
functions of m, n will have the above meaning.

Combining Theorem 3 and Remark 1, we get the following characteri-
zation of tenacity-c-valid pairs.

Corollary 3.1: Let T = %, where ged(m,n) = 1. Then (p,T) is c-valid

if and only if for some positive integer k, (p, km, kn) is c-valid, that 1s,
km+kn—1<p<kPmn—kn+1. u]

A simple arithmetic yields the following result.

Corollary 3.2: If (p, km,kn), (p,!m,ln) are c-valid and k <1, then
(p, (I = V)m, (I = 1)n) is c-valid. o

A component D of a graph (7 is called trivial or non-trivial according as
|D|=1or|D|>1.

Theorem 4: Let G € G*(p,m,n) and let S be a T-set of G such that

| S| +u(G—-58) =m and w(G — S) = n. Then G — S has the following

properties:

(4.1) There are at least two non-trivial components in G — S if and only if
p>m+n-—1.

(4.2) There are either zero or at least two non-trivial components inG->5.

(4.8) There is at most one component D in G — S such that 1 <| Dik
p(G = 5).

(4-4) If k = p— (m +n — 1) and u is the smallest integer such that k <
u(n—1), then p(G—-S5) >u+1.

Proof: Let Dy, Da,..., D, be the components of G — S. where | Dy |>]
Dy |>--->| Dy |. Since G is T-maximal, D;’s are complete.
n

n
(4.1)  Since,p=| S| +Z| D;|=m+ Zl D; |, the statement follows.

i=1 i=2
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(4.2)  On the contrary, assume that D; is the only non-trivial compo-
nent in G — S. Let x € V(D;) and G’ be the graph with V(G') = V(G),
E(G') = E(G) U [V(D1) = {2}, U, V(Di)). Tf 8’ = SU V(D) - {=}),
then T(G) < T(G') < sc(S';G') = s¢(S;G) = T(G). Moreover, | S |
+u(G' = S') = m and w(G' — §') = n. So, G’ € G(p, m,n), a contradiction
to the maximality of e(G).

(4.3)  On the contrary, suppose there are two components D); and D;
such that 1 <| D; |<| Dj |< p(G = S5). Let z € V(D;) and G’ be the
graph with V(G') = V(G), E(G') = E(G) —{(x,y) : y € V(D)) U{(z.2) :
z € V(D;)}. Then, ¢(G') > e(G). By Theorem 2, T(G’) = T(G) and §
is a T-set of G’ such that | S | +p(G’ — S) = m and w(G' — S) = n. So,
G' € G(p, m,n) - again a contradiction to the maximality of e(G).

(4.4) By the definitions of G € G*(p.m, n), k and u, we have

(u=Dn-1)<k = p—(m+n-1)
= p—(|S|+(G-S)+w(G-S)-1)

n

Y (D] =1) < (u(G=5) = 1)(n—1).

i=2

Hence p(G - S) > u. a

Corollary 4.1: IfG € G*(p,m,n,t), then G = Kyt +(DUD5U- - UD,),
where Dy = Dy = -+ = Dgyy = Kt, Dgya = Kpyy, Di = Ky, for every
i, ¢+2< i< n, andq,r are defined by k = p—(m+n—1) = q(t—1)+r, 0 <
r <t— 1. Hence, G*(p, m,n,t) has at most one element. a

Theorem 5: If for some positive integers t and z, G(p, m,n,t) # ¢ and

G(p,m,n,t+ ) # ¢, then:

(5.1) G(p.m,n,t+x— 1) # ¢.

(5.2) If G; € G*(p,m,n,t) and Giyz € G*(p,m,n,t + ), then e(G;) >
C(Gt+x).

Proof: (5.1) Let G, € G*(p,m,n,t) and G¢4p € G*(p,m,n,t+z). By
Corollary 4.1, we have:

Gt = ]{m—-t“}'{Dl UDZU'U D"}

where D] = Dg == Dg41 = K, Dq1+2 = 1(,-].{.]. D; = K, for
every i, 1 +2 < i< nandgq, r aredefined by p—-m-—-n+1=4%k=
at—=1)+r, 0<rm<t-1.

Giyz = Kpot—z +{DjUDyU---UD;,}
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where D| = Dy = --- = Dy 4y = Kiyz, Do 4o = Krp1, Di = Ki, for
every i, g2+2 < i < n and g2, 72 are defined by k = g2(t +z— 1)+ 12, 0 <
ro<t+z-—1.

In two steps, we construct a graph Go € G*(p, m,n,t +  — 1), from
G4z as follows:

(1) We delete a set A of g3 + r2 + 1 vertices consisting of one vertex from
each D}, 1 <i< g2+ 1 and r vertices from Dy ,,. Next, add one of the
vertices, say a, of A to V(Kp,_;:—z) and form Km_;t—z41. The resulting
graph is

n—qz—1

6= Km-t—ct1+ {(g2 + DKero1 U ( |J [B])}

i=1

where [Bi]=K;, 1<i<n—g¢gs—1.

(2) Let g2+ 712 = Q(t+2z—2)+ R, where 0 < R < t+z—2. Let
A—-{a} = A1 UAU---UAqg U Ag41 be a partition, where for 1 < i <
Q, |Ai|=t+z-2, | Ag41 |= R. We next construct the required Go
from Gj.

Q
Go = Km—tez41 +{(g2+ 1) Ks 4z U (U [Bi UAi])U[Bg41 U Ag]
i=1
n—gz—1

u U B
1=Q+2
where [B; U A;] is a complete graph for every i, 1 <7< @ + 1. Hence,

Go=Km-t-eq1 +{(02+ Q@+ 1)Kt4o1 UKy U(n — 2 — Q@ — 2) Ky }.

This construction of Gy, of course, can be carried out provided @ < n —
g2—1,if R=0;and Q+1 < n—ga—1,if R > 0. So, we prove these
inequalities. Using the definitions of ¢1,7;, g2, 72, @ and R, we have

at—-1)+mn=k = qttz-1)+r
= qt+z-2)+Q(t+z—-2)+R
= (+Q)(t-1)+(2+Q)(z— 1)+ R.
So,q1> g2+ Q.
If R=0,then n > 1 +1 > g2+ Q + 1, as required. Next sup-
pose R > 0. If ¢ > g2+ Q, then againn > g1 +1 > ¢2+Q + 1.

So, assume that ¢ = ¢2 + @. In this case, since q;(t — 1)+ 7r = k =
(24 Q)(t—1)+(g2+Q)(z— 1)+ R, we have r; = (¢2+Q)(z—1)+ R > 0.

106



Hence, n > ¢1 + 2 > g2 + Q + 2, and so Gy is well defined.

By Theorem 2, § = V(Km—t—z+1) is a T-set of Go and T(G,) = %

Moreover, | S | +u(Go—S) = m, w(Go—S) =nand p(Go—S) =t+z—1.
Hence, Gg € G(p, m,n,t + = — 1), proving our first assertion.

(5.2) In view of (5.1), it is enough to show that if G; € G*(p, m, n, )
and Gi41 € G*(p,m,n,t + 1), then e(G:) > e(Ge41). Let G be defined as
in the proof of (5.1). Let

Giy1 = Km—(41) +{D1UDyU---UD;}

where D} = --- = D} oy = Keqrs Dgip = Keya, D} = Ky, for every

1, 2+ 2 < i< n, and gy, ry are defined by k = gat + 72, 0 < 7z < t. We
have to show that e(G:) > e(G¢41), that is,

(m5* ) +m-t@-m+n+@+0(:)+("F")
>(m 7 )+ m-t-De-mtt+ D+ @+ D( 3 )+
(1)
Since ¢; = [&j > [%j = g9, substituting ¢; = ¢2 + h, using the identity

( a;b ) = ( ’ ) + ( ’2’ ) + ab, and cancelling common terms on both

sides, we are left to show:
@—nﬂ+h(§)+("§’)>qﬁ+(";')

Since, by the structure of G;,, we have

n
P-—m=Z|D§|242(t+1)+1‘2+1>42l,

1=2

it is enough to show:

= () ()2 (7).

Ifh=0,thenr; = k—q;(t—1) = gat+r2—qi1(t—1) = qit+ra—qi(t—1) > ra.

Hh>mmmh(;)2(;)2(”;')

Hence, in both the cases (5.3) holds. o
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Corollary 5.1: If (p, m,n) is c-valid, then the graph G* = G(p, m,n), is
the unique element of G*(p, m,n).

Proof: By definition, G* E g‘(p,m n,u+ 1).
By Theorem 4, G*(p, m, n) U G (p, m,n,t), and by Theorem 5, e(G*) >

t>u+l
e(G), for every G € U G*(p,m,n,t). So,G*(p,m,n) = G*(p,m,n,u+1).
t>u+l1
By Corollary 4.1, G*(p, m,n,u+ 1) = {G*}. o

Theorem 6: If Gy € G*(p.lm,In) and G2 € G*(p, (1 + 1)m, (I + 1)n), then
e(G;) < C(Gz).

Proof: Let ky = p— (Im+In— 1), and u; be the smallest integer such that
ky < uj(ln—1). Let ¢y and r; be defined by the equation k) = qyu;+7r1, 0 <
r < u;. Likewise, let ks = p— (({ + 1)m + ({ + 1)n — 1), and uy be the
smallest integer such that ks < uz(({+1)n—1). Let g2 and r; be defined by
the equation ky = qaus+ 72, 0 < re < uz. Let gy =uy+1and gy = ua+1.
Sinceks=p—(Im+in—-1)—-m-n<k <uy(ln-1)<uy(ln+n-1),
we have uy < uy, by the definition of u;. So, us < uy. By Corollary 5.1.

Gy Kimep, +{D1UD2U---U Dy}

where Dy = Dy = -+ = Dg, 41 = Kp,, Dg,42 = Ky 41, Dy = K, for every
.1 +2<i<lIn;and

G2 ¢ Kimim-p, +{D{UDU---U Dinyn }

where D} = Dy =---= D ., = Ky,, Dy, 4» = Kr41, Dj = Ky, for every
i, q2+2<l§ln+n.

From the descriptions of G} and Gy, it is clear that GG3 can be obtained
from G, by

in
(1) shifting a set D C U V(D;) of (m+ py — p2) vertices to V(Kim—y, ) to
i=1 in
form Kipmtm—p,, and then (ii) regrouping the vertices of U V(D;) — D to
i=1
form (g2 + 1) K,,- components, one K,,41- component and (In+n — g2 —
2) K;- components. We distinguish three cases and apply the operations
(i) and (ii).
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Case 1: q) = qa.
Subcase 1.1: ry < 7.

We partition each V(D;), 1 < i< ¢; + 1 into two subsets A; and B; such
that | A; |= pe, | Bi |= p1 — g2, and delete the set of edges

Q1+l
B = | ([Ai, BJU[Bi]) U E(Dq, +2) to obtain the graph

i=1

G-B = K’m—ﬂl + {(ql + I)I{llz U
(g + D(p1—pa) +{n+ )+ (n—q —2))K,}
= [X]+{[Y]U[Z]} (-say, for notational convenience).
Clearly,

1Bl= (g + 1) [l - )+ (3% )]+ (5")-

Next, we (i) shift a subset D C Z of m + py — pa vertices to X to form
Kim+m-pu,, (i) add enough edges to Z — D to form one K, -component
and (iii) add the edges [D,(Y U Z) — D]. If A is the set of edges so added
to Gy — B, then G2 = G| — B+ A. Clearly,

lA|= ( mregTe )+(m+l11—ﬂz)(P—(lm—#l)—(m+"1"‘2))+( 3 )

Using p; > p2 and p — Im > qyp1, we can show that | A |>| B |, so that
e(G1) < e(Ga).

Subcase 1.2: ry > ry.

We partition each V(D;), 1 < i < ¢q;+1 as in Subcase 1.1. Furthermore, we

partition Dy, ;2 into two subsets Ag, +2 and Bg, 42 where | Ag, 42 |= r2+ 1,
a+2

| Bgy+2 |= r1 — r2, and delete the set of edges B = U ([Ai, B;]U [B;]) to
i=1

obtain the graph

G,—-B = k’lm—y, + {(ql + l)K,‘2 UK, 1 U

(g1 + 1) (g1 —pa)+ (r1—r2) +(In —q1 —2)) K1}
X1+ {[Y]u[Z]u[W]} (-say).

Clearly,

| B|=(q:1+1) [#2(/‘1 —ll2)+( mryhe )]+(7'2+1)(7'1—7‘2)+( L )
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Next, we (i) shift a subset D C W of m + py — pa vertices to X to form
Kim+m—u,, and (ii) add the edges [D,(YUZ U W) — D]. If A is the set of
edges so added to Gy — B, then G2 = G; — B+ A.

Clearly,

[Al= (™45 )+ (mt = ) (p — lm = m ot pg).

Using ntratl < py and ky — ks = m+n, we can show that | A |>| B |,

so that ¢(G1) < e(Ga).
Case 2: q1 < q2.
Subcase 2.1: ry + 1 < pa.

We partition V(D;), 1 <i < q; + 1, as in case 1, and delete the edges
U2t ([A;, Bi)U [B;]) U E(Dg, +2) to form the graph

=1
Gi1—-B = Kimepy, +{(nn+1)K,, U

((qu+ D)1 —p2) + (r1+ 1)+ (In —q1 — 2)) K, }
(X]+{[Y]u[Z]} (-say).

Clearly, |Bl=(q1+1) [pz(llx —p2) + ( s e )] +( r‘;l )

Next, we (i) shift a subset D C Z of m + py — up vertices to X to form
Kimtm—p,, (i) add enough edges to Z—D to form (g2—¢1) K,,-components
and one K,,4+1-component and (iii) add the edges [D.(Y U Z) — D]. If A
is the set of edges so added to G; — B, then G2 = G; — B + A. Clearly,

LAl (™44 Yk mbpn =) (p—tm—metpa)+(g2—a) ( % )+

(")
As in the previous case, we can show that | A |>| B |, so that e(G1) < e(G2).
Subcase 2.2: r1 + 1 > pa.

We partition V(D;), 1 < i< ¢y + 1, as in case 1, and partition V(Dy, 4+2)
into Ag, 42 and By, 42 such that | Ay 42 |= p2 and | By, 42 |[= 11 + 1 — g,
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n+2
and delete the edges U ([Ai, B;]U[Bi]) to form the graph

i=1

G,-B = Klm—un + {(ql + 2)[&’,,2 U
(g1 + (g1 —p2) + (r1 + 1 — po) + (In — q1 — 2)) K1}
= [X]+{Y]u[Z]} (-say).
Clearly,

I B|=(n1+1) [I‘Z(#l — H2) + ( s He )]+uz(r1+l—p2)+( 1kl b )

Next, we (i) shift a subset D C Z of m + puj — pg vertices to X to form
Kimtm—y,, (ii) add enough edges to Z — D to form (g2 — q1 — 1) K,,-
components and one K,,;-component and (iii) add the edges [D,(Y U
Z)— DJ]. If A'is the set of edges so added to G — B, then G = G; — B+ A.
Clearly,

AL = (T ) (m o ) (p — tm— ot ) +
(412—'11—1)( £l )+( ! )

Using Lt <r+1and gy + 7 + 1 < p —Im, we can show that

| A|>| B, so that ¢(G1) < e(G3).
Case 3: q1 > qo.

We first observe that vy + 1 < ug = gz — 1 < pu; — 1. We partition each
V(Di), 1 < i < g2+ 1 into two subsets A; and B; such that | A; |=

#2,| Bi |= 1 — pa. Furthermore, we partition V(Dy,42) into subsets

Ags+2, Bgy42, where | Ag, iz |= ro+ 1, | Bgg2 |= 1 —r2 — 1, and
g2+2 a+2

delete the set of edges B = U ([4:, B;]ju [B;]) U ( U E(D;)) to obtain
i=1 q2+3

the graph

Gi=B = Kimy +{(g2+ 1)Ky, U Krp41 U ((g2 + 1) (1 — p2)+

(p—r =D+ (@ —g2— D+ (r1+1)+(In-q —2)) K1}
X]+A{[YIu[Zlu[W]} (- say).

Clearly,
|B| = (Q2+1)[}l2(ﬂ1—#2)+( e )]+(7’2+1)(/11—7‘2—1)+
("= p " )+@-e-n(%)+("")
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Next, we (i) shift a subset D C W of m + py — p2 vertices to X to form
Kimtm—p,, and (ii) add the set of edges [D,(YUZ UW)— D]. If Ais the
set of edges so added to G1 — B, then G; — B+ A = G3. Clearly,

|Al= (™45 7% )+ (et — pa)p = Im = m+ ).

Using r» < gy and 2 < g1y, we can easily show that | A |[>]| B |, so that
e(G1) < e(G2). D

Theorem 6 implies the following characterization of connected (p,T)-
maximum graphs.

m

Theorem 7: Let p > | be an integer and T = 2, where ged(m,n) = 1.
Let L be the largest integer such that (p, Lm, Ln) is c-valid. If a connected
graph G is (p, T)-mazimum, then it is isomorphic with G(p, Lm, Ln). Con-
versely, among all connected graphs G such that p(G) = p and T(G) =T,
G(p, Lm, Ln) has mazimum number of edges. m]

3.2. Disconnected Tenacity-Maximum Graphs

In this section, we assume that G is disconnected, T-maximal and hence
of the form Kp, U Kp, U ---U Kp,. The characterization of disconnected
T-maximum graphs (Theorem 11) is not so complete as Theorem 7, since
Theorem 6 is false for disconnected T-maximum graphs.

Theorem 8: IfG = Kp, UK, U---UK,,, wherepy =p2 > -+ 2> pn, 1s
a T-mazimal graph , then T(G) = B, and moreover empty set 1s the only
T-set of G.

Proof: While se(¢) = Enl-, the score of any non-empty set is atleast

ptl g

n
Theorem 9: Let (p,m,n) be a triple of positive integers. There ezists a
disconnected T-mazimal graph G with p(G) = p, p(G) = m, w(G) =n and
T(G)=2 ifand only if 2m+n—-2< p < mn.

Proof: If G = Kp,UK,,U.. UK, ,wherem =p1 =p2 > p3>...2pn 2 |,
is a disconnected T-maximal graph on p vertices, with g(G) = m, w(G) =n
and T(G) = 2 then clearly, 2m +n -2 < Yipi=p<mn

Conversely, if (p, m,n) is a triple such that 2m +n —2 < p < mn, then
G=(g+2)KmUKr41 U(n—q—3)K;, where ¢ and 7 are defined by the
equation p— (2m+n—-2)=¢gm—-1)+r, ¢ >0, 0<r<m-—1,isa
disconnected, T-maximal graph on p vertices. o
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¢ (p,m,n) is called d-valid if there exists a graph G as described in
Theorem 9.

m

Let p > 0 be an integer and T = 7 where gcd(m,n) = 1. There
exists a graph G with p(G) = p and T(G) = T if and only if for some
integer k, the triple (p, km, kn) is d-valid; that is, if and only if, for some
k,2km +kn—1<p < k?mn.

Theorem 10: Let G be a disconnected T-mazimum graph with p(G) =
P, #(G) =m, w(G) = n and T(G) = 2. Then G = D(p,m,n) := (¢ +
EKn UK,y U(n—q—3)K,, wherep—(2m+n—-2)=¢q(m—1)+r, ¢ >
0,0<r<m-1.

Proof: By Theorem 1, G is of the form Kp, UK,, U K,, U---U K,, where
m=p =py >p3 > - > pn > 1. We next claim that, for at most
one i, 1 < p; < m. On the contrary, if there are p;, p; such that 1 <
pi < pj < m,let z € V(K,,). Defining the graph G’ with V(G') = V(G)
and E(G') = E(G) — {(t.4) : ¥ € V(Kp)} + {(2,2) : 2 € V(K,,)},
we have p(G') = p, u(G') = m, w(G') = n, T(G') = 2, and ¢(G') =
e(G) — (pi — 1) + p; > e(G), a contradiction to the maximality of e(G). So,
G = D(p,m,n). 0

o Let D(p,km,kn) ;== (¢ + 2)Kim U K;41 U (kn — ¢ — 3) K,
where p— (2km+kn—-2)=q(km—1)+r, 0<r <km- L.
Let A(p, km, kn) := e(D(p, km, kn)).

Theorem 11: Let p > 0 be an integer and T = 2, where gcd(m,n) = 1.
Let z be the largest integer such that 2zm + zn — 2 < p < z?mn. As-
sume that z exists. Let A*(p,m,n) = max{A(p,km,kn) : 1 < k < z}.
Let D*(p,m,n) = {D(p,km,kn) : 1 < k < z and e(D(p, km. kn)) =
A*(p,m.n)}. If a disconnected graph G is (p,T)-mazimum, then G €
D*(p, m, n). Conversely, among all disconnected graphs G such that p(G) =
p and T(G) =T, the elements of D* have the marimum number of edges.

Proof: The statements follow from the definition of D*(p, m, n). (8]

Finally, we combine Theorems 7 and 11 to obtain a characterization of
(p, T)-maximum graphs.

Theorem 12: Let p, T, z,D*(p, m,n) be defined as in Theorem 11 above.
Let L and be the largest integer such that (p, Lm, Ln) is c-valid. A graph
G is (p, T)-mazimum if and only if

Ge {G(p,Lm, Ln)}, if(p,T) is c-valid,
D*(p,m,n), if (p, T) is not c-valid but d-valid.
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Proof: Suppose G is (p, T)-maximum. If (p,T) is c-valid and not d-valid,
then G = G(p, Lm, Ln), by Theorem 7. If (p, T) is d-valid and not c-valid,
then G € D*(p,m,n) by Theorem 11. We next proceed to show that if
(p,T) is both c-valid and d-valid, then G = G(p, Lm, Ln). Let I be such
that A*(p, m,n) = A(p,{m,In). If (p,im,ln) is c-valid, then { < L and so,

Alp,Im,In) < e(G(p,Im,in)), (- easy to verify)
< e(G(p,Lm, Ln)), (by Theorem 6).

If (p,Im, In) is not c-valid, then it can be easily verified that (p, ({+1)m, ({+
1)n) is c-valid. Moreover, we can obtain G(p, (! + 1)m, (! + 1)n) from
D(p,lm,In), by using the techniques employed to prove Theorem 6, and
show that A(p,Im,In) < e(G(p, (I + 1)m, (! + 1)n)). Hence,

A (p,m,n) = Ap,lm,n) < e(G(p, (I + l)m, (I + 1)n)) < e(G(p, Lm, Ln)).

Conversely, (i) G(p, Lm, Ln) is (p, T)-maximum if (p,T) is c-valid, by
Theorem 7, and (ii) every element of D*(p, m, n) is (p, T)-maximum if (p, T)
is d-valid by the definition of D*. m]
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