Isomorphism for Digraphs and
Sequences of Shop Scheduling
Problems*

Heidemarie Brasel Martin Harborth Per Willenius

Otto-von-Guericke-University Magdeburg
Faculty of Mathematics
Institute for Algebra and Geometry

PF 4120, D-39016 Magdeburg, Germany
Email: harborth@mathematik.uni-magdeburg.de

Abstract

The computational complexity of the graph isomorphism prob-
lem is still unknown. We consider Cartesian products K, X Km of
two complete graphs K, and K. An acyclic orientation of such a
Cartesian product is called a sequence graph because it has an appli-
cation in production scheduling. It can be shown that the graph iso-
morphism problem on the class of these acyclic digraphs is solvable
in polynomial time. We give numbers of non-isomorphic sequence
graphs for small n and m. The orientation on the cliques of a se-
quence graph can be interpreted as job orders and machine orders of
a shop scheduling problem with a complete operation set.

Keywords: complexity; graph isomorphism problem; acyclic digraphs;
Latin rectangles; sequences; open shop scheduling

*supported by Deutsche Forschungsgemeinschaft (DFG), Project ScheMA

JCMCC 37 (2001), pp. 115-128

1 Introduction

Much effort has been made to find efficient algorithms for the graph isomor-
phism problem; i.e., the problem of deciding whether two given finite graphs
are isomorphic. Up to now no fast (i.e., polynomial-bound) algorithm for
this problem has been developed and it is unknown if such an algorithm
can exist.

Informally, a decision problem is said to be in P if there is a deterministic
algorithm which solves the problem in polynomial time. A decision problem
is in NP if a positive solution can be verified in polynomial time (i.e., it
exists a nondeterministic polynomial algorithm). A decision problem in
NP is called NP-complete if it has the following property: if the problem
belongs to P then all problems in NP also belong to P (i.e., P = NP).
See [6] for precise notation and an overview of the area. The main open
question in complexity theory is if P = NP holds. An interesting role in
this question plays the graph isomorphism problem which is known to be
in NP, but it is not known to be NP-complete, neither is it known to be in
P.

For certain classes of graphs the computational complexity of graph iso-
morphism has been determined. For example, MILLER [13] showed that the
isomorphism problem for undirected graphs generated from Latin squares
is decidable in O(n!°8"tO()) time. Polynomial-time algorithms for the
graph isomorphism problem have been developed for some other classes of
graphs, e.g., planar graphs (HOPCROFT and WONG [8]), graphs of bounded
valence (LUKS [11]), cyclic tournaments (PONOMARENKO [15]), and graphs
of bounded average genus (CHEN [3]). Clearly, the isomorphism problem
for undirected graphs is polynomial-time reducible to a corresponding iso-
morphism problem for directed graphs since each undirected edge can be
replaced by two anti-parallel arcs. On the other hand, there exists also
an opposite reduction, see MILLER [14]. Therefore, the problems of undi-
rected graph isomorphism and directed graph isomorphism are polynomi-
ally equivalent.

The goal of this paper is to study a restriction on an additional class
of graphs in order to get a polynomial-time algorithm for the correspond-
ing isomorphism problem. We consider acyclic digraphs generated from
Hamming graphs. These digraphs can be viewed as sequences of open shop
scheduling problems with a complete operation set.

An open shop scheduling problem is characterized by a set {J1,...,Jn}
of jobs and a set {My,...,Mp} of machines. Each job consists of opera-
tions where the operation of job J; on machine M; has to be processed for
the processing time p;;. In general, some processing times may be zero and
corresponding operations are considered as nonexistent but we assume that
all operations do exist; i.e., we have a complete operation set. A machine

116

can always work on at most one job at a time and no two operations of the
same job can be processed simultaneously. Each machine order (i.e, the
order on the operations belonging to the same job) and each job order (i.e.,
the order on the operations belonging to the same machine) can be chosen
arbitrarily. A feasible combination of all machine orders and job orders is
called a sequence. A schedule contains the completion times of all opera-
tions. The time when the last operation of job J; is finished is the comple-
tion time C; of job J;. The maximum completion time Crax = max;{C;} is
called the makespan of a schedule. The problem is to find a schedule with
minimum makespan. This problem is studied in various ways (e.g. see [7]).
A sequence is optimal if it generates a schedule with minimum makespan.

There is a partial order on the set of sequences with the property that
at least one optimal sequence is in the set of minimal elements of this
partial order independent of the given processing times. This partial order
is part of a concept of irreducibility for sequences introduced by BRASEL
and KLEINAU [2].

We describe a polynomial time algorithm for solving the restricted
isomorphism problem on acyclic digraphs associated with open shop se-
quences. This algorithm allows us to give computational results for the
number of such non-isomorphic digraphs of a given format. This number
can be used to decrease the set of corresponding sequences which have to
be examined for characterizing the minimal elements of the partial order
mentioned above.

2 Terminology and Preliminaries

In general we use notation well understood in graph theory. Whenever we
refer to a graph or digraph it is assumed to be finite, and additionally,
neither (anti-)parallel edges nor loops are allowed.

2.1 Hamming graphs

The Cartesian product G = H; x H; of two graphs H; = (V;,E;) and
H, = (V,, E,) is the graph G = (V, E) where the set of vertices is the
Cartesian product V = V; x V3 and two vertices, denoted by two 2-tuples
(n1v2), (wyws) € V with v;, w; € V; for (i = 1,2), are adjacent if and only
if v, = w; and (’Uz'lUg) € E, or v, = we and (vlwl) € E; holds.

The Hamming distance between two t-tuples z = (z;...2¢) and y =
(¥1-..9t) is said to be the number of positions in which the entries in z
and y differ. Formally,

d(z,y) = |[{i : @i # yi}|.

117

A Hamming graph is the Cartesian product of complete graphs. Let H
be such a Cartesian product of ¢ complete graphs. The vertices of H can
be labeled with ¢-tuples such that any two vertices v = (v;...v;) and
w = (w; ...w;) are adjacent if and only if d(v,w) = 1. In general, the
Hamming distance d(v,w) is the shortest path distance in H between any
two vertices v = (v;...v;) and w = (wy...w;). Such a labeling of the
vertices of H is called a Hamming labeling.

A special Hamming graph is the n-cube Q, often also referred to as
the n-dimensional hypercube or binary Hamming graph, which can be in-
terpreted as the Cartesian product of n copies of the complete graph K.

This paper deals only with Hamming graphs Ky, X Kmm. Such graphs are
of order nm and each of them contains m disjoint subgraphs isomorphic to
K, (so-called n-cliques) as well as n disjoint subgraphs isomorphic to K,
(so-called m-cliques).

2.2 Sequence graphs

A directed acyclic graph is often abbreviated to dag. In the following we
define dags which are based on Hamming graphs.

Definition 2.1 An n xm sequence graph D is an acyclic orientation of the
Hamming graph K, X Km. We write (i), 1 <i<n, 1<j<m, for the
vertices of D. The symbol Dy, denotes the set of all such dags of format
nXxXm.

Note, that the term ‘sequence’ shows a relation to sequences of production
scheduling, which will be given in Section 4.1.

A tournament is an orientation of a complete graph. Due to REDEI
[16] each tournament contains an oriented Hamilton path. Then it is easy
to see that each acyclic tournament is transitive and that such a tourna-
ment contains exactly one Hamilton path. So, a sequence graph contains
n subgraphs isomorphic to tournaments of order m ("row tournaments”)
and m disjoint subgraphs isomorphic to tournaments of order n (" column
tournaments”), and each tournament of a sequence graph is spanned by a
unique path.

2.3 Latin rectangles

Recall that a Latin rectangle L(n,m,r) is an n x m matrix with values from
the set {1,2,3,...,r} such that each value occurs at most once in each
row and each column. A Latin square of order n is a Latin rectangle with
n = m = r. Many problems concerning these special matrices are discussed
by DENES and KEEDWELL [4],[5]. The following definition connects Latin
rectangles with sequence graphs.

118

Definition 2.2 Let L = L((ij)) = L(n,m,r) be a Latin rectangle with
elements (ij), 1 < i < n, 1 < j < m. We write I(ij) for the value of
element (i7). The graph D(L) denotes the associated n x m sequence graph
of L with vertices (ij), 1 <7 < n, 1 £ j < m in which two vertices (ij)
and (st) are connected by an oriented arc ({(i5), (st)) if one of the following
holds:

L (i=3) A (I(z7) <IGt)),
2. (G=1t) A () < Usp))-

The vertices of this graph are identified with the elements of the Latin
rectangle, and informally, each pair of vertices in a row and in a column is
connected with an arc oriented from the smaller to the larger value in the
corresponding Latin rectangle. Obviously, such digraph associated with a
Latin rectangle does not contain any cycle, therefore it is a dag and the
above definition for sequence graphs is fulfilled. In this manner we are able
to assign a unique sequence graph D € Dy, p, to a Latin rectangle L(n,m,).

Conversely, if we want to assign a unique Latin rectangle to a given
sequence graph we have to reduce the set of Latin rectangles by an addi-
tional constraint. For this purpose the introduction of the term ‘sequence’
follows.

2.4 Sequences

Definition 2.3 A Latin rectangle L(n,m,r) is called a sequence S((j)) =
S(n,m,r) if for each value s(ij) > 1 the number s(ij) — 1 occurs as a value
in row i or in column j.

Now we are able to formulate the desired correspondence between these
special Latin rectangles and the sequence graphs introduced above. This
result was proved by BRASEL and KLEINAU [1].

Proposition 2.4 There is a one-to-one correspondence between sequences
S(n,m,r) and sequence graphs D € Dy, ;.

This can be proved by giving a unique assignment of sequences S(n,m,r)
to given sequence graphs D € Dy, ,, based on the longest paths in D. As
an example for this one-to-one correspondence, Figure 1 shows a sequence
S and its associated sequence graph D(S).

119

21 4 3
54 3 2
3 251
A sequence S = 5(3,4,5).

The sequence graph D(S).

Figure 1.

3 Isomorphism and Recognition

As it will be shown in Section 4.1, a sequence can be interpreted as a feasible
combination of machine orders and job orders of a shop scheduling problem
with a complete operation set. On the other hand, there is a correspondence
between sequences and sequence graphs given in Proposition 2.4. For this
reason it is interesting to study the structural characteristics of sequences
and sequence graphs, respectively, by distributing them to classes with same
properties.

3.1 Sequence isomorphism

Our intention is to focus only on the main structural differences between
sequences of open shop scheduling problems. Therefore, we introduce the
term ‘isomorphism’ for sequences as follows.

Definition 3.1 Two sequences S; and S, are called isomorphic if there
exists a row permutation 7g and a column permutation m¢ in S; such that
S, or the transposed of Sa can be obtained.

A sequence S(n,m,r) with n = m =r is a Latin square and Latin squares
can be viewed as multiplication tables of quasigroups. Usually, two Latin
squares are said to be isomorphic if their corresponding quasigroups are
isomorphic; i.e., if we are able to transform one square into the other by
application of the same permutation of rows, columns and symbols simul-
taneously (see DENES and KEEDWELL [5]). Following this Latin square iso-
morphism, the Latin square graph is defined (e.g. see MILLER [13]). Note,
that the definition for isomorphism of Latin squares viewed as quasigroups
differs from the corresponding definition for sequences above. In this paper
we consider only Definition 3.1 for isomorphic sequences, which is based on

120

possibly different permutations of rows and columns and on a reflection in
the main left-to-right diagonal.

In order to get an elegant algorithm for testing sequence isomorphism it
is useful to consider only certain standard sequences. Thus, using permu-
tations of rows and columns as well as transposing we can always put a
sequence in a so-called normal form.

Definition 3.2 A sequence S((ij)) = S(n,m,r) with n < m and values
s(ij) is called normal if s(11) = 1 holds and if the order on the first row
and the first column is increasing.

Theorem 3.3 Letn < m < r withn,m,r € N. The isomorphism of n xm
sequences is decidable in O(n?m) time.

Proof: The following simple algorithm decides whether two given n x m
sequences are isomorphic.

The Sequence Isomorphism Algorithm
Input: Two n xm sequences S, T'. Let ¢(ij) be the value of element
(i) in T.
Output: An isomorphism (row and column permutations) if it exists.
1. Put S in an arbitrary normal form, say S’, by suitable row and column
permutations, say ws, and msc.
2. For all t(ij) = 1in T do:
(a) Put T in the normal form with ¢'(11) = #(ij), say T", by suitable
row and column permutations, say 7, and 77..
(b) If T = S, return the isomorphism by the given permutations
wspmy, and Wscﬂ;;. Stop.
(¢) fn=mdo:
i. Set T'" = transposed of T".
ii. If T'* = §’, return the isomorphism by the given permuta-
tions wsnw;‘: and 7g, w;cl as well as transposing. Stop.

If the Sequence Isomorphism Algorithm terminates without returning an
isomorphism, S and T cannot be isomorphic. The correctness of this algo-
rithm follows from the previous discussion, especially from Definition 3.1
and Definition 3.2.

Concerning the time complexity, note that the row and column permu-
tations of step 1 and step 2(a) of the algorithm can clearly be performed in
O(nm) time. Furthermore, the steps 2(b) and 2(c) also need O(nm) time.
Obviously, there are at most n different normal forms of a given sequence
T. Thus, step 2 has to be repeated at most n times and we get the bound
O(n?m) for the entire time complexity of step 2. (]

121

3.2 Sequence graph recognition

At first, we investigate the time complexity for the recognition of sequence
graphs. We refer to a couple of algorithms which take a directed graph as
input and checks whether it is a sequence graph.

Theorem 3.4 Let D = (V, E) be a digraph. The problem of deciding if D
is a sequence graph is solvable in O(|E|) time.

Proof: The recognition of a sequence graph can be divided into two dif-
ferent algorithm parts. At first, it has to be determined if the underlying
undirected graph of D is a Hamming graph of the form K, x K,,. The
second part consists of the verification of an acyclic orientation of D.

Some recently published results concerning the problem of recognition
Hamming graphs can be used for the first part of the proof, see IMRICH
and KLAVZAR [9]. The authors show that for a given undirected graph G
with ¢ edges it is possible to decide in O(g) time whether G is a Hamming
graph. Given the digraph D we consider the underlying graph G(D) which
is the undirected graph obtained from D by ignoring the orientations of its
edges. The Hamming Graph Algorithm in [9] can be applied to the graph
G(D) with the modification that we search only for Cartesian products of
two complete graphs. Thus, the first algorithm of the proof for checking
the structure of the given digraph D = (V, E) needs O(|E|) time.

The second part of the proof leads to the problem of topological sorting.
A topological sorting of a digraph D = (V, E) is a linear order vy, vz, ... ,vp
of its vertices such that whenever (v;v;) € E, we have i < j. It is well
known that a digraph D is acyclic if and only if there exists a topological
sorting of D. Thus, we can use the Topological Sorting Algorithm (e.g. see
[10]) which tries to find such a linear order so that we are able to verify if the
given digraph is acyclic. The computational complexity for this algorithm
with input digraph D = (V, E) is O(|]V| + | E|), first stated by KNUTH [10].
Since the number of arcs in an oriented Hamming graph cannot be smaller
than the number of vertices we can simplify this bound to O(|E]) in this
case. Thus we get the proposition of Theorem 3.4. a

Now we are searching for an efficient method to retrieve the sequence from
a given sequence graph according to the one-to-one correspondence stated
in Proposition 2.4.

Theorem 3.5 Let n < m with n,m € N. The sequence according to a
given n x m sequence graph D = (V, E) can be computed in O(nm?) time.

Proof: Let D be an n x m sequence graph on nm vertices. Roughly, the
construction of the corresponding sequence is as follows. Each vertex of

122

D is associated with an element in an n x m matrix S = ((¢7)). For each
vertex (ij) we write its rank as the corresponding value s(ij), where the
rank of a vertex (ij) denotes the number of vertices on a longest path from
a source to vertex (ij) in D.

Analogously to the proof of Theorem 3.4, this sequence construction
from a sequence graph can be divided into two algorithm parts: vertex
labeling with labels (ij), 1 <7 < n, 1 £ j < m and rank determining for
each vertex.

For the first part we use the Labeling Algorithm of IMRICH and Klavzar
(9], again applied to the underlying undirected graph G(D). This algorithm
is an essential part of the mentioned Hamming Graph Algorithm since the
procedure of labeling is the same but now we know that a Hamming graph
is given. The Labeling Algorithm can be used for the graph G(D) with
the two modifications that we search only for Cartesian products of two
complete graphs and that the canonical Hamming labeling is replaced by
a corresponding labeling beginning from the label (11) instead of the label
(00) for the first chosen vertex. We use this modified labeling in order to
have labels which allow the identification of the vertices with the elements of
an associated sequence in the usual manner. Again, we have the complexity
of O(|E|) for a digraph D = (V, E).

The second part of the sequence construction, rank determining, can
be solved also by a certain version of the Topological Sorting Algorithm
mentioned in the proof of Theorem 3.4. Instead of determining only one
source in each step as in the simple version of the Topological Sorting
Algorithm we now mark all sources. If we proceed by deleting the sources
and the incident arcs, then marking all new sources again and so on, we
are able to determine the rank for each vertex, too. The computational
complexity for this algorithm with rank determining is also O(|V| + |E|)
for a digraph D = (V, E). This bound can be clearly simplified to O(|E|)
if D is a sequence graph.

Since the number of arcs of each sequence graph D € D, ,, is exactly

o(3) +m(3)

and assuming that n < m, we can derive the more specified complexity
bound O(nm?) for the Topological Sorting Algorithm and the Labeling
Algorithm in an n X m sequence graph. a

Given a sequence graph D = (V, E), let us consider the spanning subdi-
graph H = (V, F) with F C E containing only the arcs which belong to the
Hamilton paths of the row and column tournaments in D. The time com-
plexity for the Topological Sorting Algorithm of such a graph H reduces
to O(nm) since the number of arcs is decreased to (n — 1)m + n(m — 1)

123

by the deletion of the redundant arcs of each tournament. But from such
a dag we can no longer uniquely retrieve the corresponding sequence rect-
angle structure. Therefore, if we want to associate a certain application in
scheduling (as in Section 4.1) we have to use sequence graphs which results
in higher time complexity.

3.3 Sequence graph isomorphism

The sequence graph introduced in Section 2.2 is a natural representation of
a sequence in terms of graph theory. We transfer isomorphism of these
sequences (i.e., special Latin rectangles) to the corresponding sequence
graphs, because then we will be able to give an algorithm for sequence
graph isomorphism consisting of two parts: retrieving the sequences from
the given sequence graphs and checking these sequences for isomorphism.

Lemma 3.6 Two sequences S and S’ are isomorphic if and only if their
associated sequence graphs D(S) and D(S') are isomorphic.

Proof: A sequence graph contains n + m subgraphs isomorphic to tourna-
ments. There aren row tournaments of order m and m column tournaments
of order n. Two tournaments are vertex disjoint if and only if the tourna-
ments are either different row or different column tournaments. Therefore,
the adjacencies are preserved if we permute rows, permute columns, or if
we reflect in the main left-to-right diagonal of a sequence. a

Finally, using this Lemma 3.6 together with Theorem 3.5 and Theorem 3.3
we obtain the following Theorem 3.7.

Theorem 3.7 Let n < m with n,m € N. Isomorphism of n x m sequence
graphs is decidable in O(nm?2) time.

4 Applications

In the following, we give the connection between the sequences and sequence
graphs of the previous discussion with sequences of open shop problems in
scheduling theory. We also present numerical results for the implementation
of the Sequence Isomorphism Algorithm considered in Section 3.1.

4.1 Production scheduling

As already mentioned a sequence graph D € D, ,, contains n + m acyclic
tournaments as subgraphs (n disjoint row tournaments of order m as well
as m disjoint column tournaments of order n). Each tournament is spanned

124

by a unique oriented Hamilton path. This well known fact (e.g. see [16])
is important for our application of sequence graphs and corresponding se-
quences in shop scheduling.

A sequence of an open shop problem in scheduling theory is a feasible
combination of its machine orders and its job orders. A sequence graph
D can be interpreted as such an open shop sequence for an open shop
problem with a complete operation set in the following way: each vertex
(ij) of D is identified with the operation of job J; on machine M;. The
unique oriented spanning path of the i-th row tournament (spanned by the
vertex set {(i1),(42), ... ,(ém)}) corresponds to the machine order on job
J; and the spanning path of the j-th column tournament (spanned by the
vertex set {(15), (27),...,(nj)}) corresponds to the job order on machine
M;.

This associated combination of job orders and machine orders is feasible
because the underlying sequence graph does not contain any cycle.

Following the intention of [2], we are interested in sequences of open shop
problems for which small maximum completion times can be expected.
The number of vertices on the longest paths of such reasonable sequences
is relatively small. There is a partial order P on the set of sequences using
this property such that the minimal elements of P are good in the sense
that there is always a minimal element which is optimal with respect to
the maximum completion time and independent from the given processing
times.

In order to get a more precise view of the different sequence structures we
want to examine only the main structural characteristics of the sequences.
Thus, it is useful to consider the isomorphism classes of sequences. In the
following section, we give numbers of such non-isomorphic sequences.

4.2 Numbers of isomorphism classes

Without loss of generality we now assume n < m for Latin rectangles
L(n,m,r), sequences S(n,m,r), and sequence graphs D € Dy m, because
it is always possible to formulate the dual proposition if we interchange
rows with columns, i.e., if we interchange jobs with machines in terms of
scheduling (see Section 4.1).

A sequence is called reduced if the order on its values of the first row is
increasing and the order on its values of the first column beginning from the
second element is increasing as well. It is easy to see that the total number
of n X m sequences with maximum value r is m! (n — 1)! R(n, m,r), where
R(n, m,r) denotes the number of reduced n x m sequences with maximum
value r.

An n x m Latin rectangle L(n,m,m) is called normalized if its values

125

of the first row and its values of the first column are in natural order (see
McKAy and RoGoYSKI [12]). Obviously, this definition is only significant
for ‘classical’ Latin rectangles; i.e., Latin rectangles with m = r. Since such
classical Latin rectangles also fulfill the additional condition for sequences
we use the term ‘normalized’ for sequences with m = r, too. A normalized
sequence is reduced but not necessary vice versa.

In [1], BRASEL and KLEINAU give an enumeration algorithm for se-
quences. This algorithm together with the Sequence Isomorphism Algo-
rithm described in the proof of Theorem 3.3 gives us the ability to de-
termine the number of sequence isomorphism classes for small n and m.
For example, the enumeration of all reduced and non-isomorphic 3 x 4 se-
quences needs a CPU-time of 80 seconds on a fast HP-UX Workstation
(model 9000/770/J210), whereas only the enumeration of all reduced 4 x 4
sequences already takes 17.33 hours on the same machine. For determin-
ing all isomorphism classes we apply the Sequence Isomorphism Algorithm
naively. We turn out a list of non-isomorphic sequences in the following
way. As input, we have a list of all reduced sequences which are also nor-
mal. The first sequence of this list is written into the so far empty output
list of non-isomorphic sequences. Then, step by step we compare each ele-
ment of the input list with the elements of the output list. If a sequence is
not isomorphic to any of the sequences of the output list it is appended to
this list until all input sequences have been examined.

By the implementations of these algorithms we get the computational
results summarized in Table 1. Here, R(n, m) denotes the total number of
reduced sequences for all maximum values r, m < r < nm, and the symbol
I(n,m) stands for the number of their isomorphism classes. Note, that the
number of non-isomorphic 4 x 4 sequences is not determined so far.

For comparison, we also give the number N(n,m) which is the number
of normalized n x m sequences, stated by MCKAY and RoGovyski [12].

5 Concluding Remarks

In this paper we have considered isomorphism algorithms for special Latin
rectangles, the so-called sequences. The identification of such sequences
with acyclic orientations of 2-dimensional Hamming graphs allows us to
examine the main characteristics of the associated open shop scheduling
sequences for problems with a complete operation set.

There are some generalizations for these problems, e.g. an analogous
consideration for open shop problems with a partial operation set or a
transfer to job shop problems, which are left for further investigation.

126

[m[n] Rm) [I(nm)] [N(n,m)]

(o] T 1] T
21 1 1 1
212 7 3 1
311 1 1 1
312 34 17 1
313 1597 280 1
411 1 1 1
41 2 209 106 3
413 77772 25924 4
4 | 4 || 48205504 ? 4

Table 1. Numbers of reduced sequences, non-isomorphic sequences and
normalized sequences.

References

[1] H. BRASEL, M. KLEINAU, On the number of feasible schedules of
the open-shop-problem — an application of special Latin rectangles,
Optimization 23 (1992), 251-260.

(2] H. BRASEL, M. KLEINAU, New steps in the amazing world of se-
quences and schedules, Math. Methods Oper. Res. 43 (1996), 195-214.

[3] J. CHEN, A linear-time algorithm for isomorphism of graphs of
bounded average genus, SIAM J. Discrete Math. 7, 4 (1994), 614-631.

(4] J. DENES, A. D. KEEDWELL, Latin Squares and their Applications,
Academic Press, New York and London, 1974.

[5] J. DENES, A. D. KEEDWELL, Latin Squares: New Developments in
the Theory and Applications, vol. 46 of Ann. Discrete Math., North-
Holland, Amsterdam, 1991.

[6] M. R. GAREY, D. S. JOHNSON, Computers and Intractability - a
Guide to the Theory of NP-Completeness, W. H. Freeman & Co, New
York, 1979.

[7] T. GonNzaLEZ, S. SAHNI, Open shop scheduling to minimize finish
time, J. Assoc. Comput. Mach. 23, 4 (1976), 665-679.

(8] J. E. HopPCcrOFT, J. K. WONG, Linear time algorithm for isomor-
phism of planar graphs, in Proc. 6th ann. ACM Symp. Theory Com-
put., 1974, 172-184.

127

[9) W. IMRICH, S. KLAVZAR, On the complexity of recognition Hamming
graphs and related classes of graphs, Buropean J. Combin. 17, 2/3
(1996), 209-221.

[10] D. E. KNUTH, Fundamental Algorithms, The Art of Computer Pro-
gramming 1, Addison-Wesley, 1st ed., 1968.

[11] E. M. Luks, Isomorphism of graphs of bounded valence can be tested
in polynomial time, J. Comput. Syst. Sci. 25, 1 (1982), 42-65.

[12] B. D. McKay, E. RoGoYskI, Latin squares of order 10, Electron. J.
Combin. 2 (1995), Note 3, approx. 4 pp. (electronic).

[13] G. L. MILLER, On the n'°8" isomorphism technique, in Proc. 10th
SIGACT Symp. on the Theory of Computing, 1978, 51-58.

[14] G. L. MILLER, Graph isomorphism, general remarks, J. Comput. Sys-
tem Sci. 18 (1979), 128-142.

[15] 1. N. PONOMARENKO, Polynomial time algorithms for recognizing and
isomorphism testing of cyclic tournaments, Acta Appl. Math. 29, 1/2
(1992), 139-160.

[16] L. REDEL, Ein kombinatorischer Satz, Acta Litt. Sci. Szeged 7 (1934),
39-43.

128

