On Strongly k-Extendable Graphs

N. Ananchuen
Department of Mathematics
Silpakorn University
Nakorn Pathom 73000 Thailand

Abstract. Let G be a simple connected graph on 2n vertices
with a perfect matching. For a positive integerk, 1 Sk <n- 1,
G is k-extendable if for every matching M of size k in G, there
is a perfect matching in G containing all the edges of M. For
an integer k, 0 < k < n - 2, G is strongly k-extendable if
G - {u, v} is k-extendable for every pair of vertices u and v of
G. The problem that arises is that of characterizing
k-extendable graphs and strongly k-extendable graphs. The
first of these problems has been considered by several authors
whilst the latter has been investigated only for the case k = 0.
In this paper, we focus on the problem of characterizing
strongly k-extendable graphs for any k. We present a number
of properties of strongly k-extendable graphs including some
necessary and sufficient conditions for strongly k-extendable
graphs.

1. Introduction

All graphs considered in this paper are finite, connected, loopless and
have no multiple edges. For the most part our notation and terminology follows
that of Bondy and Murty [4]. Thus G is a graph with vertex set V(G), edge set
E(G), v(G) vertices, &(G) edges, minimum degree 8(G), connectivity k(G) and
independence number a(G). For V' ¢ V(G), G[V'] denotes the subgraph
induced by V'. Similarly G[E'] denotes the subgraph induced by the edge set E’
of G. Ng(u) denotes the neighbour set of u in G and N g(u) the non-neighbours
of u. Note that N g(u) = V(G) \ (Ng(u) U {u}). The join G v H of disjoint
graphs G and H is the graph obtained from G U H by joining each vertex of G to
each vertex of H.

A matching M in G is a subset of E(G) in which no two edges have a
vertex in common. M is a maximum matching if |M| 2 |M’| for any other
matching M’ in G. A vertex v is saturated by M if some edge of M is incident to
v; otherwise, v is said to be unsaturated. A matching M is perfect if it saturates
every vertex of the graph. For simplicity we let V(M) denote the vertex set of the
subgraph G[M] induced by M.

JCMCC 38 (2001), pp. 3-19



{

Let G be a simple connected graph on 2n vertices with a perfect
matching. For a given positive integer k, 1 <k <n - 1, G is k-extendable if for
every matching M of size k in G, there exists a perfect matching in G containing
all the edges of M. For convenience, a graph with a perfect matching is said to
be 0-extendable. For an integer k, 0 < k < n - 2, we say that G is strongly
k-extendable or simply k*-extendable if for every pair of vertices u and v of G,
G - {u, v} is k-extendable. A graph G is bicritical if G - {u, v} has a perfect
matching for every pair of vertices u and v. Clearly, 0*-extendable graphs are
bicritical and a concept of k*-extendable graphs is a generalization of bicritical
graphs. ‘

Observe that the complete graph K,, of order 2n is k*-extendable for all
k, 0 < k < n - 2 whilst the complete bipartite graph K, , with bipartition (X, Y) is
k-extendable, 0 < k < n - 2, but not k*-extendable since a deletion of any two
distinct vertices of X results in a graph K, . ; , which clearly has no perfect
matching. In fact, k*-extendable graphs are not bipartite. Further, since a

bipartite graph on 2n vertices with minimum degree at least %(n + k) is

k-extendable (see Ananchuen and Caccetta [3]), it follows that the classes of
k*-extendable graphs and k-extendable graphs do not coincide. Moreover, there
exists a k-extendable non-bipartite graph on 2n vertices, 0 < k < n - 2, which is
not k*-extendable. Such a graph is G = G' v G, where G’ = P; U (n - k - 2)K,,
P, is a path on 3 vertices, and G = Ky + ( see Figure 1.1). Note that in our
diagrams a “double line” denotes the join. It is not difficult to show that G is

G'=P3U(n'k'2)K2 G"=K2k+|
Figure 1.1

k-extendable. Let u be the vertex of P; having degree 2 and v any vertex of G”.
Consider G, = G - {u, v}. Clearly, G"- v contains a matching M of size k which
cannot extend to a perfect matching in G, since G, - V(M) = 2K, U (n - k - 2)K,.

A number of authors have studied k-extendable graphs. An excellent
survey is the paper of Plummer [9]. Lovasz [5], Lovasz and Plummer [6, 7] and
Plummer [8] have studied k*-extendable graphs for k = 0 (bicritical graphs)
whilst k*-extendable graphs for k = 1 have not been previously investigated. In



this paper, we focus on the problem of characterizing these graphs. We establish
a necessary and sufficient condition for k*-extendable graphs. In fact, we prove
that a graph G on 2n vertices is k*-extendable, 0 < k < n - 2, if and only if for all
ScV(G)

S|-2t, for |§|<2k+1
o(G-8)<
|S|-2t -2, for [§|> 2k +2

where t = min {|M(S) | , k} and M(S) denotes a maximum matching in G[S].
We also present a number of sufficient conditions for a graph to be
k*-extendable. We establish that a (k+2)-extendable non-bipartite graph on 2n
vertices; 0 <k <n - 3, is k*-extendable.

Section 2 contains some preliminary results that we make use of in
establishing our results. In Section 3, we establish a number of results on
properties of k*-extendable graphs. Some sufficient conditions for k*-extendable
graphs are given in Section 4.

2. Preliminaries

In this section we state a number of results on k-extendable graphs
which we make use of in our work. We state only results which we use; for a
more detailed account we refer to the paper of Plummer [9]. We begin with
some fundamental results of k-extendable graphs proved by Plummer [8]:

Theorem 2.1: Let G be a k-extendable graph on 2n vertices, 1 <k <n- 1. Then
(i) G is (k - 1)-extendable;
(ii) G is ( k + 1)-connected. a

Theorem 2.2: Let G be a graph on 2n verticesand 1 sk <n- 1. If8(G) 2 n +Kk,
then G is k-extendable. Q

Denoting the number of edd components in a graph H by o(H) we can
now state Tutte’s theorem which gives a necessary and sufficient condition of the
existence of a perfect matching in a graph.

Theorem 2.3: Tutte’s Theorem (see Bondy and Murty [4] p. 76)
A graph G has a perfect matching if and only if
o(G-S)< |s| forall S < V(G). Q

Our next result concerns a sufficient condition for a graph to be
hamiltonian (see Bondy and Murty (4] p. 54).



Theorem 2.4: If G is a simple graph with v(G) 2 3 and 6(G) > %v(G), then G is

hamiltonian. Q

We conclude this section by stating two results proved by Ananchuen
and Caccetta [1, 2].

Theorem 2.5: Let G be a graph on 2n 2 4 vertices. Then G is (n - 1)-extendable
if and only if G is K3, or K, p.

Lemma 2.6: Let G be a connected graph on 2n vertices with 3(G) 2 n - 1 having
a maximum matching M of size n - 1. Then for M-unsaturated vertices u and v
of G, Ng(u) = Ng(v). Furthermore, no two vertices of Ng(u) are joined by an
edge of M, and the vertices of V(G) \ Ng(u) form an independent set. a

3. Basic properties of k*-extendable graphs
Our first result concerns a necessary condition of k*-extendable graphs.

Lemma 3.1 : If G is a k*-extendable graph on 2n vertices; 1 <k <n-2, then G
is (k - 1)*-extendable.

Proof: Let u, v be vertices of G and G* = G - {u, v}. Then G* is k-extendable,
by Theorem 2.1, and so (k - 1)-extendable. Thus G is (k - 1)*-extendable as
required. Q

A consequence of Lemma 3.1 is the following corollary:

Corollary 3.2: If G is a k*-extendable graph on 2n vertices; | <k <n - 2, then
for 0 <t <k, G is t*-extendable. Q

The next result establishes a relationship between k*-extendable and
k-extendable graphs.

Lemma 3.3 : If G is a k*-extendable graph on 2n vertices; 0 <k <n - 2, then G
is (k + 1)-extendable.

Proof: Let M be a matching of size k + 1 in G and uv an edge of M. Since G is
k*-extendable, G - {u, v} has a perfect matching F containing M - {uv}. Thus
F U {uv} is a perfect matching containing M. This proves our result. Q

Theorem 2.1 and Lemma 3.3 imply the following corollary.

Corollary 3.4: If G is a k*extendable graph on 2n vertices; 0 <k <n -2, then G
is t-extendable for0 <t <k + 1. Q



Note that the converse of Lemma 3.3 is not true. The graphs G, and G,
in Figure 3.1 are both (k + 1)-extendable (see Ananchuen and Caccetta [1]) but
not k*-extendable since if we delete vertices u and v which are in diagonally
opposite Ky+1’ s (Ky and Ky.,) in the graph G, (G,), then the resulting graph is

not k-extendable.

()=

G,, k even G,, k odd

(=)

Figure 3.1

We have observed that if G is k*-extendable, then G is not bipartite.
The following lemma establishes that G - V(M) is also a non-bipartite graph for
every matching M in G of size at most k.

Lemma 3.5: Let G be a k*-extendable graph on 2n vertices, 0 <k <n-2. IfM
is a matching of size t < k in G, then G - V(M) is not a bipartite graph.

Proof : Suppose G’ =G - V(M) is a bipartite graph for some matching M of size
t<kinG. Let (V,, V,) be bipartition of G’. Since G is k*-extendable, by
Corollary 3.4, G' has a perfect matching. Thus IV, [ =| V2| =np-t2n-k22.
Let x and y be vertices of V, and G = G - {x, y}. Since G" - V(M) is a
bipartite graph with bipartitioning sets of order [V,| - 2 and |V,|(= |V, ]),
G" - V(M) has no perfect matching. Hence, G is not t*-extendable. This
contradicts Corollary 3.2 and completes the proof of our lemma. a

Our next two theorems yield a necessary and sufficient condition for
k*-extendable graphs.

Theorem 3.6: Let G be a graph on 2n vertices. For0 <k <n-2, G is
k*-extendable if and only if for every matching M in G of size t, 0 <t < k,
G - V(M) is (k - t)*-extendable.

Proof : Suppose G is k*-extendable. For a matching M, in G, of sizet, 0 £t <
k, let G’ = G - V(M). Further, let a, b € V(G') and consider G" = G’ - {a, b}.
For a matching M", in G", of size k - t, M L M" is a matching, in G - {a, b}, of
size t + (k - t) = k. Since G is k*-extendable, there exists a perfect matching F in
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G - {a, b} containing M U M". Thus F\ M is a perfect matching, in G”,
containing M"". Hence, G - V(M) is (k - t)*-extendable.

‘ Conversely, let x, y be a pair of vertices of G and M, a matching of size

k in G - {x, y}. By our hypothesis, G - V(M,) is 0*-extendable. Then

G - (V(M)) U {x, y}) contains a perfect matching F. Consequently, Fiw M, isa

perfect matching in G - {x, y} containing M,. Hence, G is k*-extendable. This

completes the proof of our theorem. a

Denoting a maximum matching in G[S] by M(S) for any S ¢ V(G) we
can now establish another theorem giving a necessary and sufficient condition for
k*-extendable graphs.

Theorem 3.7: Let G be a graph on 2n vertices. For 0 <k <n -2, G is
k*-extendable if and only if for all S ¢ V(G)

|s|-2t, for |s|<2k+1
o(G-8S)s
|s| -2t -2, for |52 2k +2

where t = min { | M(S) | , k}.
Proof: Suppose G is k*-extendable. LetS ¢ V(G)andt= min { | M(S) l, k}.
if |s| <2k+1, |M(S)] <k Thust=IM(S)|. Since G is k*-extendable, by
Corollary 3.4, G - V(M(S)) has a perfect matching. By Theorem 2.3,

o(G - ) = o((G - VM(S)) - (S \ V(MM < s vy | = [ -2,
as required.

Next we consider the case |S| = 2k + 2. For this case we distinguish

two subcases according to | M(S) l.

Case 1: |M(S)| <k. Thent=|M(S)|. Letx,y e S\ V(M(S)) and put
G'=G- (VM) v {x,¥})
and
S' =S\ (V(M(S)) v {x, ¥})-
Since G is k*-extendable, Corollary 3.2 implies that G’ has a perfect matching.
By Theorem 2.3,
oG-S < |s].
Thus o(G-S)=0o(G' -S)< |s'| = |s| -2t-2.

Case 2: |M(S)| 2k + 1. Then t=k. Let M’ be a subset of M(S) with |M’| =
kand x,y € S\V(M'). Put
G'=G- (VM) v {x,y})
and
S =S\ (VM) U {x,¥}).
By the same argument as in the proof of Case 1, we have
o(G-S)=oG"-s" < |s"| = |s| -2k-2=1s] -2t-2.



This proves sufficiency.
Conversely, suppose that for all S ¢ V(G)

s|-2t, for [s|<2k+1
o(G-S)<
|s| -2t -2, for |§] > 2k +2

where t =min { | M(S) l, k}. Let x, y be vertices of G and M a matching of size k
inG - {x,y}. Put
G'=G-(V(M) U {x,y}).
Let S'c V(G)and S =S U (VM) U {x, y}). Clearly,
|S|=19|+2k+222k+2
and
o(G'-S)=0(G - S).
By our hypothesis, o(G - S) < Is}-2k-2=]s]. Thus o(G' - §") < | 8] By
Theorem 2.3, G’ has a perfect matching. This proves that G is k*-extendable and
completes the proof of our theorem. Q

Theorem 3.7 implies a following corollary which was also proved by
Lovasz {5].

Corollary 3.8: Let G be a graph on 2n vertices. Then G is bicritical if and only

if for every S ¢ V(G), Is| > 2,G - S has at most |S| -2 odd components.
Q

4. Some sufficient conditions for k*-extendable graphs

In this section we establish a number of sufficient conditions for a graph
to be k*-extendable. We start with a following result:

Lemma 4.1: Let G be a graph on 2n verticesand 0 <k <n-2. If3(G)>n+k +
1, then G is k*-extendable. Further, the bound is sharp.
Proof: Let u and v be vertices of Gand G' =G - {u, v}. Since 8(G)=n+k +1,
8(GY=2(n+k+1)-2=(n-1)+k. By Theorem 2.2, G’ is k-extendable. Hence,
G is k*-extendable as required.

To see that the bound is sharp, let G, = K, G, = K, , and G =G, v
G,. Clearly, 8(G) = n + k. Let x and y be vertices of G, and M a matching of
size k in G, - {x, y}. But then M does not extend to a perfect matching in
G- {x,y} since G-(VM) U {x, y}) =K,.x.2Vv K,,. Thus G is not
k*-extendable. Q

Remark 4.1: There exists a graph on 2n vertices with minimum degree n + k +
1,0<k<n-2. Suchagraphis K; v Ky+x+1 Vv Kq.x.2 which is k*-extendable
by Lemma 4.1.



As a corollary we have:

Corollary 4.2: Let G be a graph on 2n 2 4 vertices. If3(G)2n + 1, then G is
bicritical. Q

Theorem 4.3: Let G be a (k + 1)-extendable non-bipartite graph on 2n vertices;
0<k<n-2,withd(G)=n+k. Ifn-k-1isevenorx(G)=2k+3,thenGis
k*-extendable.

Proof: The case k = n - 2 follows directly from Theorem 2.5. So we only need
to prove the remaining case 0 <k <n-3.

Let u, v be vertices of G and M a matching of size k in G - {u, v}. Put
G' =G - ({u, v} U V(M)). We need to show that G' contains a perfect matching.
First we assume that k(G) = 2k + 3. Then G' is connected. Suppose G’ has no
perfect matching. Clearly uv ¢ E(G). Further, since v(G') = 2n - 2k - 2 it
follows from Theorem 2.4 that 8(G')=n -k - 2.

Let M’ be a maximum matching in G'. Then IM'| <n-k-2. 1f M|
<n-k - 3, then M cannot extend to a perfect matching in G since G - V(M)
contains at least 2 independent vertices, a contradiction. Thus IM'| =n-k-2.
Let x and y be the M’-unsaturated vertices of G'. Since v(G") = 2n - 2k - 2 and
8(G) =n-k -2, it follows from Lemma 2.6 that N.(x) = Ng.(y). Further, no
two vertices of N ( x) are joined by an edge of M" and A =V(G')\ Ng.(x) is an
independent set. Consequently, | Ng(x) | =n-k-2and |Al =n-k

Letx' € Ng.(x). Ifux’ € E(G), then M; =M L {ux'} is a matching of
size k + 1 in G which does not extend to a perfect matching since G - V(M,)
contains A as an independent set of order n - k and v(G - V(M,;)) = 2n - 2k - 2.
Hence, ux’ ¢ E(G) for all X' € Ng(x). Similarly, vx' ¢ E(G) for all X' €
Ng (x).

Suppose 1 <k <n - 3. Since 8(G) = n +k, , there exists an edge ab of
M such that ua, vb € E(G). But then M, = (M \ {ab}) U {ua, vb} is a matching
of size k + 1 which does not extend to a perfect matching in G since G - V(M,) =
G', a contradiction. Hence, k = 0. If Ng.(x) is an independent set , then G is a
bipartite graph with bipartitioning sets A and Ng.(x) U {u, v}, contradicting the
hypothesis of our theorem. Thus there exists an edge x;x; of G with x, x; €
N4 (x). But then {x;x,} does not extend to a perfect matching in G - {x;, X2}
since G - {X,, X,} contains A as an independent set of order n - k = n and
V(G - {Xi, X2}) = 2n - 2, contradicting the extendability of G. This proves that G’
has a perfect matching.

Next we suppose that n - k - 1 is even. If G’ is connected, then by
applying a similar argument as above, G’ has a perfect matching. Hence we may
assume that G’ is disconnected. Since v(G’)=2n-2k-2and 8(G)2n-k -2,
G' contains exactly 2 components, H, and H, say. Further, v(H,) = v((H;) =
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n-k- 1. Then H, and H, are complete. Consequently, G’ has a perfect matching
since n -k - 1 is even. This completes the proof of our theorem. Q

Theorem 4.3 is best possible in the sense that there exists a (k + 1)-
extendable non-bipartite graph G on 2n vertices with 8(G) = n + k and x(G) =
2k + 2 but G is not k*-extendable whenn -k - 1 is odd. Let G = (Kxv Kyias )
v 2K, k-1 (see Figure 4.1). For n = 2k + 3 it is not difficult to verify that G is

G: ”

Figure 4.1

(k + 1)-extendable with 8(G) = n + k and x(G) = 2k + 2. But G is not
k*-extendable when n - k - 1 is odd, since G - (V(K ) U V(K ¢+ 2)) = 2Kp .-
has no perfect matching where G[V(K i) U V(K )] contains a pair of vertices
u and v and a matching M of size k for which V(M) L {u, v} = (V(K ) u
V(K y+2).

Theorem 4.4: Let G be a graph on 2n vertices with (G)=n+k;0<k<n- 2.
Ifn-k-1isevenand a(G) <n-k- 1, then G is k*-extendable.

Proof: Let u and v be vertices of G and M a matching of size k in G - {u, v}. Put
G'=G - ({u, v} U V(M)). Suppose G’ is disconnected. Since 8(G’) 2 n +k -
(2k+2)=n-k-2and v(G')=2n-2k - 2, G’ =2K,y.,. Clearly, G’ contains a
perfect matching since n - k - 1 is even. Next we suppose that G’ is connected
and has no perfect matching. Let M’ be a maximum matching in G’. By a
similar argument as that in the proof of Theorem 4.3, there are exactly two
M’ - unsaturated vertices of G’, x and y say. Further, V(G') \ Ng(x) is an
independent set of order n - k. This contradicts the hypothesis that o(G) <n - k -
1. Thus G’ has a perfect matching. This proves that G is k*-extendable and
completes the proof of our theorem. Q
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The condition in Theorem 4.4 is best possible in the sense that there
exists a graph G on 2n vertices with minimum degree n + k; 0 < k < n -2, which
is not k*-extendable when n - k - 1 is odd or a(G) =2 n - k. Such graphs are Ky . >
v 2K, . x.;and Ky v (Ka.xv Ka.W). Clearly, Ky + 2 v 2K, .- is not
k*-extendable if n - k - 1 is odd since deleting vertices u and v of Ky ., and a
matching of size k in Ky + 2 - {u, v} results in the graph 2K, . .,. Further, the
graph Ky v (K ,.¢ v K ,.}) which contains an independent set of vertices of
order n - k is not k*-extendable since deleting vertices x and y of one of Ka.i's
and a matching of size k in K results in a graph Ko-x-2v Koo

We need the following lemmas in establishing our main result in this
section.

Lemma 4.5: Suppose G is a (k + 1)-extendable graph on 2n vertices; 0 < k <
n - 2 and M is a matching of size t < k in G. For every non-empty even set A ¢
V(G) \ V(M) with Al < 2(n - k) there exists an edge e joining a vertex of A to a
vertex of V(G)\ (V(M) U A).

Proof: Suppose to the contrary that there exists a non-empty even set A ¢ V(G) \
V(M) with |A| <2(n - k) which vertices of A and B = V(G) \ (V(M) U A) are
not adjacent. Since G is (k + 1)-extendable, by Theorem 2.1, G is (k + 2)-
connected. So there are at least k + 2 vertices of V(M) which are adjacent to
vertices of A. Similarly, there are at least k + 2 vertices of V(M) which are
adjacent to vertices of B. Since |V(M)| = 2t <2k, there must be an edge of M,
X1y) say, such that xx,, yy, € E(G) with x € A and y € B. Then (M \ {x,y,}) LU
{xx,, yy:} is a matching of size t + 1 <k + 1 in G which does not extend to a
perfect matching in G since A \ {x} becomes an isolated odd component in G -
(VM) u {x, y}). This contradicts the (k + 1)-extendability of G and completes
the proof of our lemma. Q

Lemma 4.6: Suppose G is a (k + 1)-extendable graph on 2n vertices; 0 < k <
n-2. Letuand v be vertices of G and M a matching of size k in G - {u, v}. IfS
< V(G;) where G, = G - (VM) U {u, v}) with o(G, - S) 2 |S| + 2, then
G[V(M) U S U {u, v}] contains a maximum matching of size exactly k. Further,
S U {u, v} is an independent set.
Proof: Clearly, G, = G[V(M) U S U {u, v}] contains M as a matching of size k.
Suppose M, is a matching of size k + 1 in G,. Let
S =V(G))\ V(M)).
Then Isi| = IV(Gzﬁl - [vemy |
ﬁ2k|+ S| +2)-(2k+2)
= |S].
Since o((G - V(M) - $1) =o(G; - S) 2 | S| +2> |s,], M, does not extend to
a perfect matching in G, contradicting the (k + 1) - extendablity of G. Thus
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G[V(M) U S U {u, v}] contains a maximum matching of size exactly k and
hence S U {u, v} is an independent set, completing the proof of our lemma. QO

Lemma 4.7: Let G be a (k + 2)-extendable graph on 2n vertices; 0 <k <n - 3.
Suppose G, = G - (V(M) U {u, v}) has no perfect matching for some vertices u
and v of G and a matching M of size k in G - {u, v}. Then there exists a set S c
V(G,) such that

) o(G,-9)= | S| +2and G, - S has no even components, and

(i) each odd component of G, - S is a singleton set.
Proof: Since G, has no perfect matching, there exists, by Theorem 2.3, a set S ¢
V(G,) such that o(G, - S) > IS | Because v(G, ) is even, o(G, - S) and Is|
have the same parity. So o(G, - S) = |S| + 2. Since o((G - V(M)) - (S U {u,
v}) = o(G, - S), if o(G, - S) > Isr +2=|S U {u, v}|, then G - V(M) has no
perfect matching. This implies that M does not extend to a perfect matching in
G, contradicting the (k + 2) - extendability of G. Hence, o(G, - S) = |S| +2.

Next we will show that G, - S has no even components. Suppose to the
contrary that H is an even component of G, - S. Further, let §' = V(G) \ (V(M) v
V(H)). By Lemma 4.5, there exists an edge e = xy of G joining a vertex x of H
to avertexy of §'. Theny € S v {u, v}. But then M U {e} does not extend to a
perfect matching in G since the odd components of G, - S together with H - x
form at least | S| + 3 odd components of (G - (VM) L {x, y})) - ((Sw {u, v} \
fyHand [(SuU {u, v)\ {y}| = |S| + 1. This contradicts the fact that G is
(k +2) - extendable. Hence, G, - S has no even components. This proves (i).

Now we establish (ii). Suppose to the contrary that G, - S contains Ho
as an odd component with v(Hy) 2 3. Consider E, = {ab € E(G) |a € S {u, v};
b € V(Hp)}.

Suppose €, and e, are independent edges of E,. Then M, = M v {e,,
e,} is a matching of size k + 2. But then M, does not extend to a perfect
matching in G since v(Hp) 2 3 and

Isl +2=0(G,-8)= ol((<|3 - V(M) - (S Y {u, v)\ V(M2)))
> |S .
= [(su fu, vHrVMy) .

This contradicts the fact that G is (k + 2) - extendable. Hence, G; = G[E|] = K,
for some integer s > 1.

Let (V,, V,) be bipartition of K, ; where V, = {w}. Then w € V(H,) or
w € Su {u, v}. Suppose w € V(Hy). Figure 4.2 illustrates the situation with the
edges of M drawn in solid lines.
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Su{y, v} M

odd compor;énts of G1-S

Figure 4.2

Since v(Hy) = 3, there exists a vertex w' of Hy such that ww' € E(G). Let M; =
M u {ww'}. Clearly, |M3| =k + 1 and Hy - V(M;) becomes an isolated odd
component in G - V(M;). Thus M; does not extend to a perfect matching in G, a
contradiction to the (k + 2) - extendability of G. Hence, w ¢ V(H,).
Consequently, w € S U {u, v}. Figure 4.3 illustrates the situation.

O

odd componvents of G;-S

Su {u,v}

Figure 4.3

We will show that w is not adjacent to any vertex of V(G) \ (V(M) LU

V(Ho)). Suppose there exists a vertex w; € V(G) \ (V(M) U V(Hy)) such that
ww, € E(G). Let My =M U {ww,}. Clearly, |[M,| =k + 1. Since there is no
edge joining a vertex of (S L {u, v}) \ {w} to a vertex of V(H,) and v(H,) is odd,
M, does not extend to a perfect matching in G, a contradiction. Hence, w is not
adjacent to any vertex of V(G) \ (V(M) U V(Ho)). Let

A = V(Ho) U {w}
and

B=V(G)\(VIM) L A).
Figure 4.4 depicts the situation.
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Clearly, A ¢ V(G) \ V(M) which |A| is even and there is no edge joining a
vertex of A to a vertex of B, contradicting Lemma 4.5. This proves (ii) and
completes the proof of our lemma.

Now we are ready to prove our main result.

Theorem 4.8: If G is a (k + 2)-extendable non-bipartite graph on 2n vertices; 0 <
k <n - 3, then G is k*-extendable.

Proof: Suppose to the contrary that there exist vertices u and v of G and a
matching M of size k in G - {u, v} which does not extend to a perfect matching
inG-{u,v}. Let G, =G - (V(M) L {u, v}). Since G, has no perfect matching,
by Lemma 4.7, there exists a set S < V(G,) such that G, - S contains exactly | s|

+ 2 odd components, all of them are singletons. Let C be a set of vertices of
these components. Clearly, C is an independent set and |C| = |S] + 2.
Further, V(G) = V(M) U {u, v} U S U C. Note that, by Lemma 4.6, G[V(M) U
S U {u, v}] contains a maximum matching of size exactly k and S U {u, v} is
independent. This implies:

Claim 1: For every vertex w of S U {u, v}, if wx € E(G) where xy is an edge of
M, then zy ¢ E(G) for every z € (S U {u, v})\ {w}.

We now establish a number of further claims.
Claim 2: G[V(M) U C] contains a maximum matching of size exactly k. This
claim follows immediately from the fact that V(G) = V(M) U {u, v} U S U C,
S U {u, v} and C are independent and lcl=1|s| +2.

Claim 3 : Every vertex w of S U {u, v} is adjacent to at most one end vertex of
an edge e of M.
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Suppose to the contrary that there exist a vertex x’ of SU {u, v} and an edge e =
xy of M such that xx, x'y € E(G). By Claim 1, xy’, yy' ¢ E(G) forally’ e (Su
{u, v})\ {x'}. Let M, = (M\ {xy}) v {x'x}. Since G is (k + 2) - extendable,
there is a perfect matching F containing the edges of M,. Letyz € F. Clearly, z
is a vertex of C. Similarly, there exists a perfect matching F, containing the
edges of (M \ {xy}) U {x'y} and xz, € F, where z; € C. Then z = z,; otherwise,
M\ {xy}) v {xz,, yz} becomes a matching of size k + 1 in G[V(M) v C], a
contradiction to Claim 2. By Claim 2, xc, yc ¢ E(G) for all ¢ € C\ {z}. Further,
by similar argument to the one used in the proof of Lemma 4.6, G[V(M,) L C]
contains a maximum matching of size exactly k. Thus x'c ¢ E(G) for all ¢ €
C\{z}. Let

Al= {X,)’»Zax'}
and

B, = V(G)\(VIM\ {xy}) W A)).
By Lemma 4.5, there is an edge e = wb joining a vertex w of A, to a vertex b of
B,. This implies that w = z. Then y becomes an isolated vertex of G - V(M \
{xy}) U {zb, xx'}) since yy' ¢ E(G) forall y’ € (S U {u, v})\ {x'} and yc ¢
E(G) for all ¢ € C\ {z}. This implies that (M \ {xy}) u {zb, xx'} does not
extend to a perfect matching in G, contradicting the (k + 2) - extendability of G.
This proves Claim 3.

The above argument can be used to prove:

Claim 4: Every vertex ¢ of C is adjacent to at most one end vertex of an edge e
of M.

Claim 5 : If wx € E(G) for some w € S U {u, v} and xy € M, then xc ¢ E(G)
forallc e C.

Suppose to the contrary that there exist vertices w; € S U {u, v}, ¢, € C and
edge x;y; € M such that wyx,, xi¢; € E(G). Let F; be a perfect matching
containing the edges of (M \ {x,y,}) U {w;x;}. Thenyz € F,. Since G[V(M)
S U {u, v}] contains a maximum matching of size exactly k, z & (S U {u, v} \
{w;}. Then z € C. Since x,c; € E(G) and ¢, is adjacent to at most one end
vertex of an edge of M, z # ¢,. Consequently, (M \ {x;y;}) U {xic}, y;2} is a
matching of size k + 1 in G[V(M) v C], contradicting Claim 2. This proves
Claim 5.

Claim 6 : For every edge xy € M, if xw ¢ E(G) for all w € S U {u, v}, then yc
¢ E(G) forallc e C.

Suppose to the contrary that there exist edge X2y, € M and a vertex ¢; € C such
that x,w ¢ E(G) for all w € S U {u, v} but y,c, € E(G). Consider M, = (M \
{x3y2}) U {y262}. Clearly, |M,| =k. Since x,w & E(G) forallw € S U {u, v},
the set S U {u, v, x,} is independent. Because G - V(M,) contains S U {u, v, X2}
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and C - {c,} as independent sets of order || +3and S| +1 respectively,
G - V(M;) does not have a perfect matching. Thus M, does not extend to a
perfect matching in G. This contradicts the (k + 2)-extendability of G and
completes the proof of Claim 6.

Now let M = {xy|, Xa¥>, ... , Xyx}. Consider x;y,. If x,w ¢ E(G) for

allw € S U {u, v}, then, by Claim 6, y,c ¢ E(G) forall ¢ € C. Put
X| =Sv {u, V} U {Xl}

and
Yi=Cu{y}.

If x;w; € E(G) for some w; € S U {u, v}, then, by Claim 5, x,c ¢ E(G)
for all ¢ € C. Further, by Lemma 4.6 and Claim 3, y,w ¢ E(G) forallw € S u
{u, v}. Put

XI =Sv {ll, V} v {yl}
and
Y, =Cu {Xl}.
For each edge x;y; € M; 2 < i <k, we can construct sets X; and Y; in a
similar fashion as we do with the edge x;y;. Until the step k, we have
Xk=Su{uviu{a,a,..,a
and
Yy=Cu {b], bz, ey by}
where a; and b; (1 <i <k) are end vertices of edge a;b; = x;y; of M. Clearly | Xk |
= |yl =1Isl +k+2. Further, by our construction, there is no edge joining a
vertex of S U {u, v} to a vertex of {a,, a,, ..., a,} and a vertex of C to a vertex of
{by, by, ..., by}.

Since S v {u, v} and C are independent sets, to show that (X;, Yy) is a
bipartition of G it is sufficient to prove that {a,, a,, ..., a,} and {b;, b, ... , by}
are independent sets. Suppose to the contrary that {a;, a,, ... , a;} is not
independent. Without any loss of generality, we may assume that a,a; € E(G). If
b;w, € E(G) for some w; € S U {u, v}, then M; = {a,a,, bjw;} U {aib; | 3<i<
k} is a matching of size (k - 2) + 2 =k in G which does not extend to a perfect
matching in G since G - V(M;) contains (S U {u, v}) \ {w,;} and C U {b,} as
independent sets of order IS| +1and |S] +3 respectively. Thus byw ¢ E(G)
forallw e S U {u, v}. Similarly, b,w ¢ E(G) forallw € SuU {u, v}. Let

Az = {b}, by}
and
B,=CuSu {u,v}.
Figure 4.5 depicts the situation with the edges of M drawn in solid lines.
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Let M, = (M \ {a;by, azb,}) L {ayaz}. Clearly, |Ms| =k - 1. Notice that A, ¢
V(G)\ V(M,) and B, = V(G) \ (V(My) U A;). By lemma 4.5, there is an edge e
joining a vertex of A; to a vertex of B, which is impossible since b; and b, are
not adjacent to any vertex of C U 8 U {u, v}. This contradiction proves that
{a,, @, ... , &} is an independent set. Similarly, {bj, b, ..., b} is an independent
set. Hence, G is a bipartite graph with bipartition (Xy, Yi). This contradicts the
hypothesis of our theorem and completes the proof. Q

An immediate consequence of Theorem 4.8 is the following result of
Plummer [8].

Corollary 4.9: If G is a 2-extendable non-bipartite graph on 2n 2 6 vertices, then
G is bicritical. . Q

A converse of Theorem 4.8 is not true. For integersn, k; 0 <k <n-3,
let Gy =Kp+k+1, G2 = K ..x.1. Clearly, G =G, v G, is a graph on 2n vertices
with minimum degree n + k + 1. By Lemma 4.1, G is k*-extendable. Let M be a
matching of size k +2 in G;. Then G - V(M) =K;.¢.3 Vv K o-x.1 has no perfect
matching. Thus G is not (k + 2)-extendable.

For 1 <k <n - 1, let §(2n, k) denote the class of k-extendable non-
bipartite graphs on 2n vertices. Further, for 0 < k <n -2, let G*(2n, k*) denote
the class of k*-extendable graphs on 2n vertices. Then Lemma 3.3, Theorems
2.1 and 4.8 imply that these classes are “nested” as follows :

G(2n, 1) > §*(2n,0*) > §(2n,2) > §*(2n, 1*) > ... D G@2n,n-2)>
G*(2n, (n-3)*)> ¢(2n,n-1).
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