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Abstract

We continue the study of graphs defined by a certain adjacency
property by investigating the n-existentially closed line-critical graphs.
We classify the 1-e.c. line-critical graphs and give examples of 2-e.c.
line-critical graphs for all orders > 9.

1 Introduction

For a fixed integer n > 1, a graph G is called n-existentially closed or n-e.c.
if for for every n-element subset S of the vertices, and for every subset T'
of S, there is a vertex not in S which is joined to every vertex in T and to
no vertex in S\ T. N-e.c. graphs were investigated by Caccetta, Erdés, and
Vijayan [4]; they referred to n-e.c. graphs as graphs with property P(n).
Although almost all finite graphs are n-e.c. for a given n (as labelled struc-
tures; see Fagin [6] and Blass and Harary [2]), very few explicit examples
of n-e.c. graphs are known, especially for n > 2, with the exception being
large Paley graphs (see Ananchuen and Caccetta [1]).

Induction is a potent tool when proving results about finite graphs.
Graphs which are critical or minimal with respect to a given property play
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no longer n-e.c.. In particular, we proved that there is a unique 2-e.c. min-
imal graph, and we found 2-e.c. criticals of all orders > 9. One of the main
tools of [3] was the operation of replicating an edge (see Definition 4 below).
Replicating an edge preserves 2-e.c. and in some situations preserves 2-e.c.
point-criticality.

[3] did not investigate the n-e.c. line-critical or n-e.c.l.c. graphs, which
in this article we abbreviate as n-l.c. graphs: n-e.c. graphs with the property
that when any edge is deleted the remaining graph is not n-e.c.. An easy
exercise is that each n-e.c. graph has a spanning subgraph that is n-l.c..
Therefore, one way to find examples of n-l.c. graphs is to strategically
delete edges in known n-e.c. graphs. In Section 2 we present a complete
classification of the 1-l.c. graphs. In Section 3 we provide explicit examples
of 2-l.c. graphs of all possible orders. Replication again proves valuable,
and in Theorem 5 we find sufficient conditions for replication to preserve
2-l.c..

The countably infinite random graph R is the unique countable graph
that is n-e.c. for all n > 1. As described in [5], R satisfies a first-order
sentence ¢ in the language of graphs if and only if almost all finite graphs
satisfy ¢. Further, for any vertex z and edge ¢, R — = and R — ¢ are
isomorphic to R, so that for all n > 1, R is neither n-e.c. point- or line-
critical. We leave it as an exercise to verify that the properties of being
n-e.c. point- and line-critical are first-order definable. Thus, almost no
finite graphs are n-e.c. point- or line-critical.

Throughout, all graphs are finite and simple. For a graph G, V(G) will
denote the vertex-set of G and E(G) will denote its edge-set. (G may be
dropped if it is clear from context.) The order of G is [V(G)|. We denote an
edge by zy, or sometimes (z)(y) to avoid confusion. We recall the following
definition from [3).

Definition 1 Let G be a graph, and let n > 1 be fized.
in

{z1,...,2n} is an n-element subset of V(G), and for 1 < j < n,
i; € {0,1}.

1. Ann-e.c. problem in G is a 2 xn matriz ( ;.cll o ) , where

1 vee X

2. A solution to an n-e.c. problem is a vertex y €

cee i
V(G) so that if i; = 1 then yz; € E(G) and if i; = 0 then yz; ¢ E(G)
andy £ zj .

Observe that a graph G is n-e.c. if and only if each n-e.c. problem in G
has a solution.
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2 The 1-l.c. graphs

As was mentioned in [3], the 1-e.c. minimal graphs are 2K3, C4, and Py;
observe that 2K, is the only 1l-e.c. minimal that is 1-l.c.. Recall that a
graph is a star if it is one of the graphs K ,, for some n > 1. The following
theorem completely classifies the 1-l.c. graphs, and reveals that they have
a relatively simple structure.

Proposition 2 A graph G is 1-l.c. iff each component of G is a star and
G has at least two components.

Proor. Sufficiency is easy, so we prove necessity only.

Claim 1: G is 1-l.c. iff G is 1-e.c. and for all e = 2y € G, one of z,y is
isolated in G — e.

We prove the forward direction of the claim; the reverse direction is
trivial. Fix e = zy € E(G). Then G — e is not l-e.c. so there is a l-e.c.
problem that cannot be solved in G — e, and this 1-e.c. problem must be

z

1
deletion of e isolates one of z, y.

Fix a connected component, say C, of G.

for some z € V(G). But then z must be one of z,y and so the

Claim 2: If [C| > 3 then C has exactly one vertex of degree > 2.

If each vertex of C had degree 1, then C = K, contrary to assumption.
Now assume that both z,y have degree > 2. We claim that zy € E(G). If
not there is a path with length > 2 and endpoints z, y, so that = is joined
to some vertex z; # y on the path, and z; is joined to y or to some vertex
z3 # y. As deg(z) > 2, there is some z¢ joined to z distinct from z,. If
we delete zz; then neither = nor z; is isolated in G — e: z is joined to xp
and z, is joined to z» or y. This contradicts Claim 1. Hence, zy € E(G).
Since deg(z), deg(y) > 2, we can find 2’ # y joined to z and ¥ # z joined
to y, where ¥ may not be z’. Deleting xy leaves neither z nor y isolated in
G — e, and so Claim 2 follows.

From the claim, each component is a star; thus, for the graph to be
l-e.c. it must have at least two components. 0

3 2-l.c. graphs of all orders

We do not have a complete classification of the 2-l.c. graphs. However,
we have found examples of 2-1.c. graphs of all possible orders. Before we
present these examples we recall some results from [3].
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1. The Cartesian product of K3 with itself, written K30Kg3, is the unique
2-e.c. minimal graph. See Figure 1.

Figure 1: K3UK3.

2. Define a graph G = G*(k) where k is even and k > 6 as follows
(arithmetic is mod 2k): V(G) = {1,...,2k + 1}. Each even vertex i
is joined to all other even vertices except i + k, and is joined to i — 1
and i + 1. Each odd vertex # 2k + 1 is joined to ¢ — 1,141, 2k + 1,
and i+ k. 2k +1 is joined to all of the odd vertices. Each graph G* (k)
is 2-e.c. and 2-e.c. critical (when a vertex is deleted, the remaining
graph is not 2-e.c.). We include a table, from [3], which will be useful
later, which proves that G*(k) is 2-e.c.. By symmetry we may omit
the first two rows of the “2nd only” column.

joined to
vertices both neither 1st only 2nd only
i,jodd # || 2k+1 odd¢ Ji-1if
2k+1 {i,5,i+k, J#T—2

j+k} i+ 1 else

i,j even even¢ 2k+1 i—1if

{i,7,i+k, J#i-2

i+ k} i+ 1else
i even, j—1if oddé¢ even¢ 2k +1
jodd# |igi—14k | Gitkiz1, | {iith,
2k+1 j+1else i+1,2k+1} |j—-1,j+1}
iodd # i+ k evené i+1 odd¢
2k+1, {i-1,i+1} {i, 2k +1,
2k+1 i+ k}
i even, i—-1 itk even£i+k [i+3
2k+1
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K30OK3 is 2-1.c. as it is the unique 2-e.c. minimal graph. We claim that
the following graphs H and J are 2-l.c. of orders 10 and 13, respectively
(see Figures 2 and 3; note that J is a spanning subgraph of G*(6).)

Figure 2: The graph H.

Figure 3: The graph J.

We leave it as an exercise to show that H is 2-e.c.. For the line-criticality
of H, we supply the following table that lists a problem that cannot be
solved if the given edge is deleted. Symmetry covers the remaining cases
as 12 ~ 56, 18 ~ 45, 19 ~ 59, 23 ~ 67, 24 ~ 68, 28 ~ 64, (2)(10) ~ (6)(10),
34 ~ 78, 39 ~ 79 and (3)(10) ~ (7)(10), where e ~ f means there is an
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automorphism of the graph which maps the ends of e onto the ends of f.

edge deleted 12 18 15 19 23

cannotsolve(ls)(l2)(19)(15)<3 4)
1 1 1 1 1 1 1 1 1 1

edge deleted 24 28 (2)(10) 34 37

cannot solve (‘; 3)(} %)(}3 i)(‘; ?)(1;» ?)

edge deleted 39 (3)(10)
9 7 10 2
1 1 1 1

We verify that J is 2-1.c.; we leave it as an exercise to show that J is
9-e.c.. For line-criticality of J, we supply the following table.

cannot solve (

zy deleted (?)(7 + 6), (3)(13), (H(E+1),

i odd# 13 i odd# 13 i odd# 13
cannot solve ( 21 13 ) ( 11+6 }3 ) ( zl 11—1 )
zy deleted ) - 1), (2)(10) @) +2),

i odd#£ 13 (4

2) is similar ) | ¢ even
8
1

) G

cannot solve ioitl 2
1 1 1

3.1 Orders > 17, =1 (mod 4)

For each even k > 8, define a graph G**(k) which is a spanning subgraph of
G* (k). All the edges are the same except between even vertices. In G** (k),
an even i is joined to i & 2, and to i + 4/ # i + k with I > 1 (mod 2k).

Theorem 3 G**(k) is 2-l.c. for each k > 8.

ProOOF. There are two cases. In the first case, k = 0 (mod 4); here,
i, even, is joined to i + k % 4 but is not joined to i + k £ 2. In the second
case, k = 2 (mod 4); here, i, even, is not joined to i + k + 4 and is Jjoined
to i+ k = 2. We give the proof for the first case; the second case is similar.
We first show that G**(k) is 2-e.c.. We consider 2-e.c. problems of the

form ( : g ) , where p,q € {0,1}. G**(k) is obtained from G*(k) by

deleting some edges between even vertices. So for 2-e.c. problems where 1)
z,y are both odd, 2) p, ¢ are both 0, or 3) the solution z in G* (k) is odd,
a solution in G*(k) is a solution in G** (k).
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The remaining problems are of the form i) 1
. odd # 2k + 1
ii) ( 1 1 a

2k+1)

even

even

iv)(l o

z 2k+1

VM1 oo

vertex that z is joined to.

y

iii) f H

even

even

odd # 2% + 1

),iii)(1 0

), for z even, is solved by = + 2 or any other even

even
1 )

),and

) , Where z is even and y is odd, y # 2k + 1, is solved by

any even vertex that z is joined to other than y — 1 and y + 1.

i) Consider

f 31’ where z,y are both even. Without loss of gen-

erality, we can assume that £ = 2 and that y € {4,6,....,k + 2} (the

remaining cases follow by symmetry). We have: ( ?

2 6
11

solved by 6 +4(1 —1). If I > 0,6 +4{+2 # k + 2 then (

is solved by 6 + 41.

ii) Consider

2 k42
11

)issolvedby4. Ifl>1,6+4l#k+2, then (

) is solved by k — 2.

4
1

is solved by 3,

2 644 .
11 is
2 6+4+2
P )

:18 "1/ where z is even, y odd# 2k + 1.

Without loss of generality, we may assume that 2 = 2and y € {3,...,k+

1}.For3<y< k-

on the position of y). ( 11

60

2 k+1

) is solved by 1.

is solved by either y—1 or y+1 (depending

We next show line-criticality of G**(k). The majority of cases are han-
dled in the following table.

zy deleted ()i + k), (1) (2k + 1), () (E+1),
ﬁﬁiodd;é2lc+1 todd #2k+1 | ¢ odd
cannotsolve‘ (¢ ZkFLN | i+k (i i_l)
’ 1 1 1 1 1 1
zy deleted % (H(E-1), (5)(: +2),
| todd#2k+1 | ieven
cannot solve ( tl 11+1 ) ( zl 11+1 )
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The last case is when i, j are both even and i—j # +2 (mod 2k). As before,
by symmetry we may assume i = 2 and j € {6,....,k — 2}. If we delete 26

then we cannot solve ( 2 I ) (since k > 8,7 < 1+%,s0 1 and 3 cannot

1
solve the problem). If we delete (2)(6 + 4!), where ! > 1and 6 +4l < 2+ &
then we cannot solve f (15+ -1 ) . o

3.2 Orders =0,2,3 (mod 4)

We can realize the rest of the odd spectrum of 2-l.c. graphs with the aid of
the following definition that played a crucial role in [3].

Definition 4 Let G be a graph and let e = ab € E(G). The replicate,
R = R(G,e), is the graph with vertices V(G) U {a’,b'} and edges E(G) U
{a'b'}Yu{d’c : ac € E(G) and c # b}U{b'c: bc € E(G) and c # a} (in other
words, add new nodes @’ and b’ and edge a'V’ to G, join o’ to N(a) — {b}
and do the analogous for V').

As was shown in [3], if G is 2-e.c. then for any e € E(G), R(G,e) is
2-e.c.. We now present conditions for replication to “preserve 2-l.c.”.

Theorem 5 Let G be 2-l.c. and fiz e = ab € E(G). Suppose G satisfies:

1. For edges f incident with e,

(a) if f = au, there is a vertez c such that u is the unique solution

a c¢ .
to ( 11 ) in G;
(b) if f = bu, there is a vertex ¢ such that u is the unique solution
to b e in G;
1 1 ’

2. For edges f = uv, where u,v are distinct from a, b, there erists a vertex

¢ such that v is the unique solution to 11‘ i in G or there exists

‘a vertez d such that u is the unique solution to ( 11) ‘11 ) in G.

Then R = R(G,e) is 2-l.c..

Proor. Fix f € E(R). We consider cases based on the location of f.

. _ a d
(i) If f = e, then 1 0

problem has no solution in R — f.

is uniquely solved by b in R, so this
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(ii) If f = au, there exists a vertex ¢ such that u is the unique solution
to ‘11 (1: . This problem cannot be solved in R — f since neither a’ nor
b’ is joined to a. Case (1b) is analogous.

(iii) Suppose f = uv where u,v are distinct from a,b. Suppose Case
(2) holds so there exists a vertex ¢ such that v is the unique solution to

u ¢

1 1

) in G. Suppose this problem is solved by a’ in R. By hypothesis
u # a, and since a’c € E(R), u,c # a. Thus a solves ( voe ) in G, a

1 1
contradiction. Similarly, & cannot solve ( llt ;' ) . The other case of (2)

is analogous.
(iv) Suppose f € E(R) — E(G).
/

a) If f = o'V’ then ( ¢ cannot be solved in R — f.

a
1 0
b) Suppose f = a’u for some u € V(G) — {a,b}. Then au € E(G). By

(1a) there is a vertex ¢ # u such that u is the unique solution to ‘11 i

!
in G. We claim that { ¢ ¢ ) has no solution in R — f. Otherwise, say

1 1
d solves this problem in R — f, so that d # u. Then a'd,cd € E(R — f).
Since a’d € E(R), d # a,b.

If ¢ = b then d # a/, b’ so that ad € E(G). Hence, ( (11 i ) is solved

by d # u in G, which is a contradiction.

We therefore assume that ¢ # b. If d = b’ then cb' € E(R) so that
chb € E(G) as ¢ # a,b. But then ‘11 ; ) is solved by & # u in G, which
is a contradiction. Thus, d # ' and so ad € E(G); therefore, d # u solves
( (11 i in G, which is a contradiction. a

We leave it to the reader to check that the conditions of Theorem 5 are
satisfied by K3[0K3 when e = 15 (or, for any other edge, since K3(K3 is
edge-transitive). For J, we claim the conditions of Theorem 5 hold when
e = 17. The verification of this is similar to the case for K3[Kj3 except
for the edges (2)(10) and (4)(12). (2)(10) is not incident with 17, so we
show (2). But 10 is the unique solution of f 21; ) . (4)(12) is handled
similarly.

For G** (k) we let e = (1)(1+ k). We leave it to the reader to verify that
the conditions of Theorem 5 hold for all edges f = zy when one of z or y
is odd. Hence, we verify the conditions of the Theorem only for z,y both
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even. We can assume z = 2, and 4 < y < 2+ k. Note that 4 is the unique
. 2 3
solution for ( 11
the fact that k& > 8). We now consider edges of the from (2,6 + 4l), with
1>1,64+4#24F.
Case 1. k =0 (mod 4).

) and 6 is the unique solution for ( ? I ) (using

2 744
1 1
7+4l is joined to 6 +4/,8+4!,2k+1, and 7+ 4l + k. Note that T+4l+kis
joined to 2 only if (all arithmetic mod 2k) either 7) 7+4l+k =1=1+2k,
or ii) T+ 4l +k = 3 = 3+2k. For i) 6+ 4l = k. But 2 is not joined to & in
Case 1. As 2 is not joined to 8 + 4{ or 2k + 1 our claim follows.

For ii) 6 + 4l = 2 + k, which is not joined to 2.

Case 2. k = 2 (mod 4).

. . . . 2 544

We claim that y = 6+ 4! is the unique solution to ( 11 ) . The
argument is similar to that of Case 1 and so is omitted. Hence, we have
found 2-l.c. graphs of all odd orders > 9.

For even orders, we rely on the following lemma. Fix G and e = ab €
E(G). Define Ri(G,e) = R(G,e), and Rn11(G,¢) = R(Rn(G,¢),€); the
replicated edge in R, 4+1(G,e) is denoted en41 = @nt1bnt1.

We claim that y = 644! is the unique solution to ( . Now

Lemma 6 If G is 2-l.c. and G and e € E(G) satisfy the conditions of
Theorem &5, then R,(G,e) is 2-l.c. for each n > 1.

PROOF. We prove the lemma by induction on n > 1; the case for
n = 1 follows by Theorem 5. Assume R, = R,(G,e) is 2-l.c. and for each

1 < j € n, a; is the unique solution of lij g and b; is the unique

. a; a
solution of ( L0
Fix an edge f in Rn41 = Rn41(G,e); we show that R — f is not 2-
e.c.. The cases when f is one of the edges {e,e1,...,e,} follow by remarks
at the end of the preceding paragraph. a,4i is the unique solution of
I;""‘l (b) , and so R — en4 is not 2-e.c..

Case i) f € E(G) — {e}.

The argument in this case is similar to Cases ii) to iii) in the proof of
Theorem 5, replacing the roles of a’ and ¥ by a; and b;, respectively, and
using the facts that each of ¢; and b; are not joined to a, b nor any of the
ay,br when k # j.

Case ii) f € E(R) — (E(G)U{e1,...,ens1}).
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The argument in this case is similar to that of Case iv) of Theorem 5,
again using the fact that each a; and b; are not joined to a,b nor any of
the ax,br when k # j. O

For examples of 2-1.c. graphs of even orders, we first note that from the
above tables, H satisfies the conditions of Theorem 5 with e = 15. Now use
Lemma 6 to replicate the edge 15 in H repeatedly.

Since the complement of an n-e.c. graph is n-e.c., the complements of
our 2-l.c. graphs are 2-e.c. graphs that are critical the “other” way: adding
an edge that is not already there results in a graph that is not 2-e.c.. We
thank the anonymous referee for this and other useful remarks.
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