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Abstract

The third author proved earlier [8] that if a Euclidean space is col-
ored with red and blue so that the distance one is forbidden for blue,
and translates of some k-point configuration are forbidden for red,
then the unit-distance chromatic number of the space is no greater
than k. Here we give a generalization.

1 Introduction

We shall freely employ the jargon wherein “...the set S is forbidden for the
color C...” means that not all points of S are colored C, which simply
means that S € C. Of course, it is rare to speak of forbidding a single set;
normally one says “the sets...[with a certain property]...are forbidden for
C,” meaning that each one of them is forbidden for C. A special case of
this is “the distance s is forbidden for C,” in which the forbidden sets are
the two-element sets consisting of pairs of points a distance s apart.

There have been brave attempts at unified approaches to Euclidean
Ramsey problems [2], but, in practice, it seems to have been just too hard
to work on any very general level in this area. Here are two particular kinds
of Euclidean Ramsey problems that have attracted attention, separately,
over the past forty years. '
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(1) Given S C R", determine x(S) = x(S, 1), the smallest number of colors
needed to color S so that the distance 1 is forbidden for all colors. [In
other words, x(S) is the chromatic number of the “unit-distance graph
on S”, the graph with set of vertices S and two vertices adjacent when
and only when they are a distance 1 apart. Of course, there is nothing
sacred about the distance 1, nor about IR"—see {1], for instance—but
let us not digress into maddening generality.]

As anyone the least bit familiar with Euclidean Ramsey problems is
aware, there has been a massive amount of work on this kind of problem
over the nearly 50 years since Nelson posed the problem of finding x(R?)
(see [7] for some history). Of the great many often spectacular results
that have been achieved in this area, we will need to refer here only to
the following,.

(i) 4 < x(R?) < 7; this is due to Hadwiger, Isbell, and Nelson—see
[7] for a clarification.

(ii) If n > 2,x(R™) > n+ 2; see [6] and [9]. (This result has been
eclipsed in the minds of many by the lower bound of Frankl and
Wilson [3], x(R") > (1 +0(1))(1.2)", but for smalln > 2,n+2is
still king of the lower bounds for x(R™).)

(iii) x(@*) = 4; see [1], [4], and [10].

(2) Given S C R", consider two-colorings of S, say with red and blue, such
that the distance one is forbidden for blue. What can be forbidden for
red, in such a coloring?

For short, let us refer to such a two-coloring (in which the distance one
is forbidden for blue) as a rather red coloring.

There is one great result on rather red colorings, due to R. Juhész [5]:
in any rather red coloring of the plane, the red set contains a congruent
copy of each four-point set in the plane.

In the same paper, Juhdsz gives an example of a twelve-point set in the
plane, and a rather red coloring that forbids congruent copies of the set for
red. And there the affair sits.

One could ask, what about forbidding ¢ranslates of four-point sets for
red, in a rather red coloring of the plane? While looking into this and
some related questions, the third author discovered the following relation
between problem types (1) and (2), stated here in slightly greater generality
than in [8], but with the same proof.

Theorem A Suppose that S C R" is closed under addition, and there

is a rather red coloring of S which forbids all translates of some k-element
subset of S for red. Then x(S) <k.
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It follows, in view of results quoted above, that

(i) in every rather red coloring of R?, the red set contains a translate of
each three-point set in the plane;

(i) more generally, in every rather red coloring of R”, for each n > 2, the
red set contains a translate of each (n + 1)-point set in R™; and

(iii) in every rather red coloring of @*, the red set contains a translate of
each 3-point set in Q*.

So far, applications of Theorem A have all been of this form, drawing con-
clusions about rather red colorings from knowledge about chromatic num-
bers. But deductions the other way provide a way of attacking chromatic
number problems. For instance, if a rather red coloring of R? were found
which forbids translates of some six-point planar set for red, it would follow
that x(R?) < 6.

In the next section we give a generalization of Theorem A that we hope
will find application in Ramsey problems outside the realm of Euclidean
geometry. The result has to do with two-colorings, and chromatic numbers,
but we expunge all references to distance and translation, in the usual sense.

2 The Results

A hypergraph is a pair H = (V, £), in which V (the set of vertices) is a non-
empty set, and £ (the set of hyperedges) is a collection of non-empty subsets
of V. If £ contains no singletons, the chromatic number of # (sometimes
called the weak chromatic number of ), denoted x (%), is the smallest
number of colors necessary to color V' so that no hyperedge is monochro-
matic; i.e., so that no E € £ is contained in any color (or color class, as
some say).

Lemma Suppose that U and V are non-emply sets, and R, B partition
UxV. Let &gy = {S C U; for each v € V,(S x {v}) N R # 8} and
Ev = {SCV; for each u € U,({u} x S) N B #£ @}; let Hy = (U,&v) and
Hv = (V,€v). Then either Ev =B or x(Hu) < mingee, |E|.

Proof. Supposing £v # @, let E € &y be a hyperedge of minimum cardi-
nality. We will color U with the elements of E so that no hyperedge of Hy
is monochromatic, thus demonstrating the desired inequality.

For each u € U, ({u} x E) N B # 0; color u with some v € E such that
(u,v) € B. [If E is uncountable, this step will require the Axiom of Choice.]
U is now colored by the elements of E.
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If F € &y, and if every element of F is colored with the same v € E,
then F x {v} C B, contradicting F € £y. Thus the coloring is proper, i.e.,
no F € &y is monochromatic.

Remarks &y = 0 if and only if &y contains a singleton, i.e., if and only
if {u} x V C R, for some u € U.

To make better sense of the theorem, for S C V,u € U, let us call
{u} x S the u-copy of S (in U x V) and for S C U,v € V, let us call S x {v}
the v-copy of S (in U x V). Let us consider the partition of U x V into R
and B to be a two-coloring of U x V with red and blue. Then Hy is the
hypergraph on U whose hyperedges are those subsets of U whose V-copies
are forbidden for blue, and Hy is the hypergraph on V whose hyperedges
are those subsets of V whose U-copies are forbidden for red. The conclusion
of the theorem is that, unless some U-copy of V is all red, the chromatic
number of Hy is no greater than the minimum hyperedge cardinality in
Hv (and, of course, a dual statement holds with the roles of / and V and
of red and blue reversed).

The proof is so tautologically simple that it might be suspected that
the whole business is quite trivial. Perhaps it is, but the following Corol-
lary shows that the theorem may have its uses, since Theorem A does, and
Theorem A is a corollary of the Corollary, taking V' = S and * to be vector
addition in R".

Corollary Suppose that V is a non-empty set, x is a binary operation
onV, and R, B partition V. Let Hy = (V, &) and Ha = (V, E2) be defined
by&={ECV,; foreachveV,(Exv)NR#D} and &2 = {E C V; for
each u € V,(ux E)N B # 0}. Then either £2 = B or x(#1) < mingeg, |E|.

Remark Exv = {exv;e € E}, and u*E is defined analogously. Call these
the right and left translates of E by v and u, respectively, with respect to
*. Switch to the language of red-blue colorings and forbidden sets to see
that this Corollary is a generalization of Theorem A.

Proof. Apply the theorem with U = V, and with V' x V partitioned into
R = {(v1,v2);v1 *v2 € R} and B = {(u1, u2); u; * uz € B}. The details are
straightforward. [ |

3 Remarks on Applications
We have hopes that the Corollary, at least, will eventually find application

to a variety of Ramsey-type questions involving two-colorings. For instance,
suppose one wonders whether it is possible to color the integers 0,..., N —1

126°



with red and blue so that certain arithmetic sequences are forbidden for
red, and certain arithmetic sequences are forbidden for blue. It would seem
that the Corollary, with V = {0,..., N — 1} and * being addition mod N
[no harm in forbidding arithmetic sequences mod N, if you want to forbid
arithmetic sequences], would come in handy in looking at such problems.

In another major Ramsey-type endeavor, two-coloring the edges of a
graph with red and blue so that certain subgraphs are forbidden for red,
and certain others for blue, the drawback to application is not only our
ignorance of the chromatic numbers of exotic hypergraphs, but, before that,
the problem of choosing a binary operation * on the edges of the original
graph. But perhaps the Theorem can be applied directly in such situations,
letting unordered pairs reappear as pairs of ordered pairs.

We are indebted to Bill Martin for suggesting that the Corollary be
applied with V = §? | the unit sphere in R3, and with * being defined by
u*v = the result of applying to u the rotation of S? that takes (1, 0,0) into
v, when v # (—1,0,0). When v = (~1,0,0), let u % v = —u. Here is one
straightforward result that can be deduced.

Clearly for s > 0 sufficiently small, the graph with the points of §2
as vertices, and two points adjacent if and only if they are a distance s
apart, has chromatic number at least 4. In a coloring of S? with red and
blue, with the distance s forbidden for blue, we see that the simple edges
of this graph are also hyperedges of the hypergraph H; referred to in the
Corollary (with R, B standing for the sets of red and blue points, of course).
From the Corollary we conclude: for all s > 0 sufficiently small, for any
coloring of S? with red and blue such that the distance s is forbidden for
blue, for each three-element set {1, v2,v3} C 52, there exists 4 € S? such
that u * vy, u * v3, and u * v3 are all red. [We say “are all”, but there may
Just be one or two of them.]

This result is not particularly memorable, and it does not settle any
outstanding problem that we know of, but it seems non-trivial. We certainly
would never have arrived at this result but for the strange path taken here,
starting from Theorem A.

Our thanks to the referee for certain suggestions, and especially for
noting -that () * (—1,0,0), above, was not well-defined, in the original
manuscript. The definition given here is one of many possible.
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