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Abstract

The spectrum Q(k, ) of coset difference arrays has played an im-
portant role in Lu’s work on asymptotic existence of resolvable bal-
anced incomplete block designs. In this article, we use Weil’s theorem
on character sums to show that if & = 2\ + 1, then for any prime
power ¢ = 1 + 2k (mod 4k), ¢ € Q(k,\) whenever ¢ > D(k) =

2
-"ﬂ@) where B = (k — 2)k(2k — 1)(2k)*~1 — (2k)* +1 and

C = Q—'lé'ﬂ(Zk)"’l. In particular, we determine the spectrum
Q(3,1). In addition, the degenerate case when k = A 41 is also
discussed. ’

1 Introduction

For any integers k and A, let Ao = ged(k — 1,)) and § = (k — 1)/XAo. Let
g=ef +1 be a prime power. Denote by H® the unique subgroup of order
f of the cyclic multiplicative group GF(q)*. The cosets Hf, Hf, -+, HZ_,
of H¢ are defined by
Hf = ¢'He,
where £ is a primitive element of GF(g). Denote I, = {0,1,:--,m—1}. A
coset difference array, denoted (g,k,A\) — CDA, is a § x k array B = (b;;)
satisfying:
(i) by € HY,, for any i € I5 and any j € Ix;
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(ii) bi; — bij» and bo; — boj» belong to the same coset of H*® for any
i€ ls and any j,5' € I (§ # 5');

(iii) for any coset of H* there are exactly Ao of the k(k— 1) differences

— boje (4,5’ € Ir, j # 5') belonging to the coset.

Note that the condition (iii) means By = (boo,bo1, " ,bo(k—1)) has
evenly distributed differences on cosets of H*® and so By leads to a (g, k, Ao)
difference family. The condition (ii) means that the i-th row B; = (b;o, bi1,
-++ by(k—1)) also leads to a (g, k, Ap) difference family since it has evenly
distributed differences too. The condition (i) requires that the k§ entries
of B form a set of distinct representatives of the cosets (SDRC).

Example 1.1 In GF(79), take k = 3, A =1 and £ = 3. We have )y = 1,
§=2and

HG_{1 18, 8, 65, 64, 46, 38, 52, 67, 21, 62, 10, 22},

= {3,54,24, 37, 34,59, 35, 77,43, 6328 30,66},

H"_{Q 4,72,32,23,19, 26, 73, 50, 31, 5, 11, 40},

HS = {217, 12 58 17 69 57,78,61,71, 14 15, 33,41},

H{ = {2, 36,16, 51,49, 13,76, 25, 55,42, 45, 20, 44},

HE = {6,29,48, 74, 68, 39, 70, 75, 7, 47, 56, 60, 53}.

It is easy to see that
B= 1413
“\ 369 74
is a (79,3,1) — CDA.

Let Q(k, A) denote all prime powers g such that a (g, k, A) -C DA exists.
The spectrum Q(k, A) for coset difference arrays has played an important
role in Lu’s work on asymptotic existence of resolvable balanced incomplete
block designs. For details, we refer the reader to [12], [16], [9] and [7]. For
general background on combinatorial designs, see [2] and [3]. The following
lemma. is implicit in the work of Lu [12] and first explicitly stated in [16].
Similar theorems can be found in [9).

Lemma 1.2 ([12], [16], [9], [7]) If ¢ € Q(k,A) ann RTD(k,6) exists, then
there exists a (k, Xo)-frame of type (6n)9.

For the spectrum Q(k, A), Lu obtained the following in  [12, Lemma 2}.

Lemma 1.3 ([12]) Suppose q is a prime power satisfying q > (k§)k(+1)
q =1 (mod k6) when kb is odd and g =1+ k6 (mod 2k6) when k§ is even.
Then q € Q(k, \).

As stated in [7], very little else is known about membership in Q(k, A)
and it is desirable to determine Q(k, A) for given k and A. In this article,
we shall improve the bound for Q(k, A) in the case k = 2A +1 in Section 2.
Specifically, we shall prove the following.
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Theorem 1.4 Ifk = 2\+1, then for any prime power g = 142k (mod 4k),
2

we have g € Q(k, ) if g > D(k) = (-&b@) , where B = (k—2)k(2k—

1)(2k)F1 — (2k)* +1 and C = E=AE=1 (9p)k-1, '

In particular, we shall determine the spectrum Q(3,1) in Section 3.
That is, we shall prove the following.

Theorem 1.5 g € Q(3,1) for any prime power g =7 (mod 12), except for
qg=1,19,31,43.

In Section 4, we shall deal with a degenerate case when k = A+ 1 and
6 = 1. In this case, only conditions (i) and (iii) are meaningful. So, the
array is essentially a k-tuple with evenly distributed differences, relating to
a difference family, with an extra property of (i). The main results of this
section are shown in Theorems 4.2-4.4.

To obtain these results Weil’s theorem on character sums will be useful,
which can be found in Lidl and Niederreiter [10, Theorem 5.41).

Theorem 1.6 ([10]) Let 4 be a muitiplicative character of GF(q) of order
m > 1 and let f € GF(q)[x] be a monic polynomial of positive degree that
18 not an mih power of a polynomial. Let d be the number of distinct roots
of f in its splitting field over GF(q), then for every a € GF(q), we have

Y $af(e)

cEGF(q)

<(d-1)vq (1)

This theorem has been useful in dealing with existence of various com-
binatorial designs such as Steiner triple systems (see [8]), triplewhist tour-
naments (see [1], [13]), V(m,t) vectors (see [11], [6]), APAV (see [4]),
difference families (see [5]) etc. It has also some other applications in com-
binatorics (see [14]).

2 An Improved Bound

In this section, we shall improve the bound (k§)*(**+1) in Lemma 1.3 in the
case k = 2X + 1. It can be lowered to be D(k), where D(k) is the same as
in Theorem 1.4.

Let k=2t 41 and A =t¢. In this case we know that \g =¢, § =2 and
k6 = 2k. So we only consider the case of prime power ¢ = 1+ 2k (mod 4k).
For convenience, let C; = H,?", i=0,1,..-,2k — 1. We shall take

BO = {11 z, 22: M 1xk—l}
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and
Bl = 5{1: yvyza v )yk_l}a

where £ is a primitive element of GF(g) and £ € C;. Note that —1 € Ci
since 9,{,;1 is odd. We have the following.

(1) z7 € Caj and &y € Cyjy1 for any j € I if and only if z € Cz and
y € Cy;

(2) for any 7,5’ € Ix (4 95,7’) E(y’ »¥') and =7 — 27" are in the same
coset if and only if £(y7 — 37 )/ (zf — 27') € Co.

(3) the differences =7 — 27, 5,7 € Ix, § # j', are evenly distributed on
the cosets of C, if for any m, 1 < m < t, the 2k differences +(z7 — z7'),
4,7 € I, and j = §' + m (mod k), form a set of distinct representatwes of
the cosets. That is, {£(z™ — 1), £(z™! — z),---, £(z*F"! — k- 1-™)}u
{(zF—™ — 1), (zF™H! —z),.. ., 2(zF - z"‘“)} forms an SDRC.

From the above (1), (2), (3), we know that g € Q(k, A) if there are two
elements z and y in GF(q) satisfying the following conditions.

(I) z € Cz and y € Cy;

(I1) &y — 1)/(z — 1) € Co and hi(y)/hi(z) € Co, 1 <i < k-2

(1) hg—m—-1(z)/hm-1(z) € Cok—2m U Cr—2m, 1 Em < ¢,
where ki(z) = (z*t! - 1)/(z — 1), i = 0,1,---,k — 2, the subscripts of C
are calculated modulo 2k. These hold if there exist two elements z and y
in GF(q) satisfying the following conditions (a) and (b) respectively.

(8) fi(z) € Co, 0 < i < k—1, where fo(z) = £251(z—1), fi(z) = ha(=),
Jr—2-i(x) = E6tVh, 5 i(z), 1 S i < t—1, fuoa(z) = E2hk—o(z) and
fk-—l(x) = £2k_2xa

() gi(y) € Co, 0 < i < k—1, where fo(y) = y — 1, a:(y) = fi(y),
1<i<k-1.

We shall show that such two elements always exist in GF(g) whenever
q > D(k).

Let x be a non-principal multlphcatlve character of order 2k. That
is, x(z) = 6* if z € C, where 8§ = e%* is the 2k-th root of unity. Let
B; = x(fi(z)), i = 0,1,---,k — 1. These functions have the following
values. For any ¢, OgiSk—l,

2k, if fi(z) € Co,
1+Bi+B}+---+BF =40, if fi(z) ¢ Cou {0},
1, if fi(z) =0.
From these form a sum

k—1
> JIa+Bi+Bi+---+B¥*) (2)

£€GF(q) i=0
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This sum is equal to (2k)*n + d where n is the number of elements =
in GF(g), ¢ = 1+ 2k (mod 4k), satisfying the condition (a), and d is the
contribution when either fo(z), - - -, fx—2(z) or fe—1(z) is O.

Now if fo(x) = 0, then z = 1, fik — 1)(z) = £%*~% € Cyk—2 and the
contribution to S is 0. If fi(z) = O for some i, 1 < ¢ < k — 2, then
the contribution to S is at most i(2k)*~! noting that deg(fi(z)) = ¢. If
fe—1(x) = O, then = = 0, fi(z) = —£2*~! € Ck_; and the contribution
to S 1s 0 Hence the total contribution to S from these cases is at most

C = 2 i(2k)*1 5"—'2-&"—12(21‘:)’c~ Thus if we are able to show that

|S| > C then there exists an z € GF(q) satisfying the condition (a).
Expanding the inner product in (2) we obtain

k
§= 3 1+ X > XY BIBL@®

2€GF(q) =1 0<i1<--<ir<k—1 151, ,jrS2k—12€GF(q)

To estimate the inner sum, we use Weil’s theorem on character sums.

. ) r _
Note that B]} --- Blr = x (H (fi, (:z:))-"). Now the order of x is 2k, sup-
£=1

pose ﬁ (fi.(z))¢ = [p(x)]** for some p(z) € GF(q)[x], we can show that
=1

j1 = jo = --- = jr = 0 (mod 2k), a contradiction. In fact, by defini-
tion we have fo(z) = £2*~(z — 1), fi(z) = ci(z*! — 1)/(z — 1) for some
ci € GF(g) and 1 <i < k—2, fr1 = £2%72z. If some iy = k — 1, then
je = 0 (mod 2k) since f;,(z) is coprime to any f; (z), n # €. Assume that
Jer1 = Jet2 = -+ = jr = 0 (mod 2k), we look at je for 0 < ip < k — 2.
Let 8;, be a primitive (iz + 1)-th root of unity in some extension field of
GF(q). Then f;,(z) must have an irreducible polynomial d(z) in GF(q)|z]
as its factor such that d(z) has 6;, as its root. Since any f; (z), s < ¢,
cannot have 6;, as its root, f;,(z) must be coprime to d(z). This forces
je = 0 (mod 2k). By induction, we have j; = j» =.--- = 3, = 0 (mod 2k).
Therefore, by Theorem 1.6 for any r, 1 < r < k, we have

> Bl BF| <(r(k-2)-1)v3. (4)
z€GF(q)
Note that
> 1=gq (5)
z€GF(q)
From (2)-(5), we have
5l k
> -3 (F)@-vek-2-0va @
r=1 :
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Since

Xk;( f )(2k—1)’=(2k)’°—1 )
and "
rz_:kl ( f ) (2k — 1) = k(2k — 1)(2k)*"1, (8)
(6) becomes )

IS| > ¢ — By/g,
where B = (k — 2)k(2k — 1)(2k)*~! — (2k)* + 1.
2

Obviously, |S| > C if ¢ > D(k), where D(k) = (&b@) , which
indicates that there exists an element z in GF(q) satisfying the condition
(a) whenever q > D(k).

By similar discussion as above we know that there also exists an element
y in GF(q) satisfying the condition (b) whenever ¢ > D(k). So q € Q(k, \)
if ¢ > D(k). Consequently, the proof of Theorem 1.4 is obtained.

3 The Case: Q(3,1)

When k = 3, A = 1 we have |D(3)] = 105696, where |z| denotes the
largest integer not exceeding z. By Theorem 1.4, we have the following.

Lemma 3.1 q € Q(3,1) for any prime power g = 7 (mod 12), q > 105696.

It is easy to see that p™ = 7 (mod 12) if and only if p = 7 (mod 12) and
n is odd. To prove Theorem 1.5, by Lemma 3.1 we need only to consider
the following cases:

(¢) =7 (mod 12) is a prime, q € [7,105696];

(d) g € {73,19%,313,433, 75}.

Lemma 3.2 q € Q(3,1) for any prime ¢ = 7 (mod 12), q € [7, 105696],
ezcept for q =17,19,31,43.

Proof. For q € {7,19,31,43}, the nonexistence of two rows B; = (b, bi1,
bi2), 2 = 0, 1, satisfying the conditions (i)-(iii), has been verified by using a
computer, so ¢ ¢ Q(3,1).

To prove g € Q(3,1), it suffices to find two elements z and y in GF(q)
satisfying the conditions (I)-(III). That is,

(1) &'z € Cy, &'y € Co;

(1) &y —1)/(z ~ 1) € Co, (y+1)/(z +1) € Co;
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(1) ¢4(z + 1)% € C,,
where £ is a primitive element of GF(g) and £ € C;. With the aid of
a computer such two elements z and y have been found for any prime
g =7 (mod 12), ¢ € [67,105696] with a missing case ¢ = 79. Here, we only
list the 4-tuples (g,&, z,y) in Table 2.1 for 67 < g < 1000. (The remaining
data are recorded in the Appendix which is omitted here, the interested
reader may get a copy from the authors.)

g €z y |lg £ z y |lg & =z y

67 2 29 60 |79 3 no no 103 5 49 16
127 3 11 22 [139 2 42 89 [151 6 10 36
163 2 15 90 [199 3 9 49 |211 2 6 30
223 3 18 130|271 6 5 112|283 3 34 11
307 5 133 25 |331 3 46 299(367 6 32 296
379 2 20 148|439 15 29 258|463 '3 29 115
487 3 30 119|499 7 29 119|523 2 4 241
547 2 15 360|571 3 9 374|607 3 2 244
619 2 22 156(631 3 16 80 |643 11 65 146
691 3 20 403|727 5 13 173|739 3 21 87
751 3 2 102|787 2 4 556(811 3 5 80
823 3 9 21 |89 2 24 46 |883 2 4 196
907 2 40 77 |919 7 10 83 [967 5 35 144
991 6 4 420

Table 2.1 4-tuples (g, £,z,y) for 67 < ¢ < 1000

For the missing case ¢ = 79, a (79, 3,1) — CDA exists from Example 1.1
and we have 79 € Q(3,1). 1]

Lemma 3.3 q € Q(3,1) for any q € {73, 193,313,433, 75}.

Proof. We use irreducible polynomial f(a) to construct GF(q). Let £ be
a primitive element of GF(q) and £ € C,. For g € {73, 193, 313, 433, 75},
we take f(a), £, = and y as follows:
g="7, fla)=a*+2,6=3a+1,z=a?+4a+2and y = 3a +6.
g=19, f(a)=c®+2,6=a+10,z2=a+4 and y = 4a + 10.
g=313 fla)=a®+3,6=a+3,z=0+2 and y = 1602 + 26.
g=143% f(a)=c®+3,f=a+2,z=a+8and y =3a +13.
g="7,fla)=c®+a+3,t=a+2,r=c*+a?+a+5and
y=2a%+2a+2.
It is not difficult to check that these parameters satisfy the conditions (I)-
(). D

Now we are in a position to prove Theorem 1.5.
Proof of Theorem 1.5. Combining Lemmas 3.1-3.3 we get our resuld
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4 A Degenerate Case

When k = A+ 1, we have Ao = k—1 and § = 1. In this case, the condition
(ii) is ineffective and the degenerate (g,k,k — 1) — CDA is just a k-tuple
of GF(q) B = {bo,b1,---,bx_1} satisfying the conditions (i) and (iii). As
stated in Section 1 B leads to a (g, k,k — 1) difference family, meanwhile
the k entries of B form an SDRC. ,

Let ¢ = ek + 1 be a prime power, where e is odd when k is even. To
construct a (g, k, k— 1) difference family, Wilson [15] takes B = H§ = {€:
0 < i < k — 1}, where £ is a primitive element of GF(q). If gcd(e, k) =1
then H{; = ¢*°H k 0 <i< k-1, are all cosets of H k. where the subscripts
of H* are calculated modulo k. That is, the entries of B = H§ form an
SDRC and B is a degenerate (g, k,k —1) —CDA. So we have the following.

Lemma 4.1 Let ¢ = ek + 1 be a prime power, where e is odd when k is
even. If ged(e, k) =1 then g € Q(k,k —1).

As a corollary of Lemma 4.1, the following result is immediate.

Theorem 4.2 For any prime power ¢ = 2°(2t +1) +1, s > 1, we have
g€Q(2°,2° - 1).

From this we know that the spectrum Q(2%,2°—1), s > 1, is determined
completely.

However, when d = ged(e, k) # 1 the entries of B given in this way do
not form an SDRC. The reason is that the two elements 1 and (€2)% of B
are in the same coset HE. So, it is not trivial to consider the existence ofa
degenerate (q,k, k — 1) — CDA.

To construct a (g, k,k—1)—CDA in GF(g), where¢=1 (mod k) when
k is odd and g = 1 + k (mod 2k) when k is even, we shall take

B={1,z,2% -,z 1}.

Denote C; = HF = ¢1H*, 0 < i < k— 1, where £ is a primitive element
of GF(q). Let ¢t = [55—1J Note that —1 € C; if k is even, we have the
following.

(1) =7 € C;j for any j € I if and only if z € Cy;

(2) the differences =7 — z¥, 5,5 € Ix, j # j', are evenly distributed on

the cosets of Cp if for any m, 1 < m < t, the k differences
™ —1, gmt1l z, -, J’)k_l — :L.k—l—m,
xk—m -1, xk—m+l —Z, zk—l _ xm—l

form a set of distinct representatives of the cosets.
From this, we know that ¢ € Q(k, k — 1) if there is an element z in
GF(q) satisfying the following conditions.
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(8) z € Cy;

(4) hr-1(2)/hn-1(2) € Gy 1 Sm <,
where h;(z) = (z**! —1)/(z - 1), i =0,1,---,k — 2, the subscripts of C
are calculated modulo k. These hold if there is an element z in GF(q)
satisfying the condition:

(a) fi(z) € Co, 1 < & < 2t, where fi(z) = hi(z), f2t—1—i(z) =
EHthk_o_i(z), 1 i<t —1, fo1(x) = Ehi—2(z), far(z) = 5
With similar discussion as in Section 2, such element always exists in GF(q)

whenever 9
E+VEZX 4F
9> Di(k) = (——T*—)

’

where E = 2| 51| (k—2)(k - 1)k2L57 -1 — k257 11 and F = | 552 (k-
2)k2l%7*1-1. So we have the following. :

Theorem 4.3 Suppose q is a prime power satisfying q > Dy(k), where
D (k) is just the same as above, ¢ = 1 (mod k) when k is odd and q¢ =
1+ k (mod 2k) when k is even. Then g € Q(k,k —1).

When k = 3, it is easy to calculate that |D;(3)] = 21. By Lemma
4.1 and Theorem 4.3, to determine the spectrum Q(3,2), we need only to
consider the prime powers ¢ = 9t + 1 and ¢ < 21. So, we need only to
consider one case ¢ = 19. It is easy to see that B = {1, 2, 6} is a degenerate
(19,3,2) — CDA. Thus, 19 € Q(3,2) and we have the following.

Theorem 4.4 q € Q(3,2) for any prime power ¢=1 (mod 3).

5 Concluding Remarks

Since the spectrum Q(3, 1) is determined in this article, the next case for
Q@A +1,1) is Q(5,2) for k = 5. It is easily calculated that 1.562 x
1012 < D(5) < 1.563 x 1012, We have done a computer search for prime
g = 11 (mod 20), g < 105. We have succeeded to find two elements z and y
in GF(q) for most g > 104, which satisfy the conditions (I)-(III). However,
there do not exist such two elements in GF(q) for most cases when ¢ < 104,
To determine the spectrum Q(5, 2), one may have to find other ways and
also more computer work will be needed.
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