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Abstract. Let G be a simple connected graph on 2n vertices
with a perfect matching. For a positive integerk, 1 <k <n- 1,
G is k-extendable if for every matching M of size k in G, there
is a perfect matching in G containing all the edges of M. For
an integer k, 0 < k < n - 2, G is strongly k-extendable if
G - {u, v} is k-extendable for every pair of vertices u and v of
G. The problem that arises is that of characterizing
k-extendable graphs and strongly k-extendable graphs. The
first of these problems has been considered by several authors
whilst the latter has only been recently studied by the author.
In a recent paper, we established a number of properties of
strongly k-extendable graphs including some sufficient
conditions for strongly k-extendable graphs. In this paper, we
focus on a necessary condition, in terms of minimum degree,
for strongly k-extendable graphs. Further, we determine the
set of realizable values for minimum degree of strongly
k-extendable graphs. A complete characterization of strongly
k-extendable graphs on 2n vertices fork =n-2and n - 3 is
also established.

1. Introduction

All graphs considered in this paper are finite, connected, loopless and
have no multiple edges. For the most part our notation and terminology follows
that of Bondy and Murty [4]. Thus G is a graph with vertex set V(G), edge set
E(G), v(G) vertices, £(G) edges, minimum degree 3(G) and independence
number o(G). For V' c V(G), G[V’] denotes the subgraph induced by V'
Similarly G[E'] denotes the subgraph induced by the edge set E’' of G. Ng(u)
denotes the neighbour set of u in G and N g(u) the non-neighbours of u. Note
that N g(u) = V(G) \ (Ng(u) U {u}). The join G v H of disjoint graphs G and H
is the graph obtained from G v H by joining each vertex of G to each vertex of
H.

A matching M in G is a subset of E(G) in which no two edges have a
vertex in common. M is a maximum matching if [M| 2 |M’| for any other

matching M’ in G. A vertex v is saturated by M if some edge of M is incident to
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v; otherwise, v is said to be unsaturated. A matching M is perfect if it saturates
every vertex of the graph. For simplicity we let V(M) denote the vertex set of the
subgraph G[M] induced by M.

Let G be a simple connected graph on 2n vertices with a perfect
matching. For a given positive integer k, 1 <k <n - 1, G is k-extendable if for
every matching M of size k in G, there exists a perfect matching in G containing
all the edges of M. For convenience, a graph with a perfect matching is said to
be 0O-extendable. For an integer k, 0 < k < n - 2, we say that G is strongly
k-extendable or simply k*-extendable if for every pair of vertices u and v of G,
G - {u, v} is k-extendable. A graph G is bicritical if G - {u, v} has a perfect
matching for every pair of vertices u and v. Clearly, 0*-extendable graphs are
bicritical and a concept of k*-extendable graphs is a generalization of bicritical
graphs.

Observe that the complete graph K,, of order 2n is k*-extendable for all
k, 0 < k < n - 2 whilst the complete bipartite graph K, with bipartition (X, Y) is
k-extendable, 0 < k < n - 2, but not k*-extendable since a deletion of any two
distinct vertices of X results in a graph K, . , , which clearly has no perfect
matching,

A number of authors have studied k-extendable graphs. Excellent
surveys are the papers of Plummer [9, 10]. Lovasz {5], Lovasz and Plummer [6,
7] and Plummer [8] have studied k*-extendable graphs for k = 0 (bicritical
graphs) whilst k*-extendable graphs for k > 1 have been recently studied by the
author [3]. This paper is a continuation of work initiated in [3] which established
a number of properties of k*-extendable graphs, including some sufficient
conditions. Here we establish a necessary condition, in terms of minimum
degree, for k*-extendable graphs. Further, a characterization of k*-extendable
graphs on 2n vertices is given fork=n-2andn- 3.

Section 2 contains some preliminary results that we make use of in
establishing our results. In Section 3, we establish a necessary condition, in
terms of minimum degree, for k*-extendable graphs. Further, we determine the
set of realizable values for minimum degree of k*-extendable graphs. A
complete characterization of k*-extendable graphs on 2n vertices for k = n - 2
and n - 3 is given in Section 4.

2. Preliminaries

In this section we state a number of results which we make use of in our
work. We begin with a fundamental result of k-extendable graphs proved by
Plummer [8]:
Theorem 2.1: Let G be a k-extendable graph on 2n vertices, ] Sk<n-1. Then

) G is (k - 1)-extendable;
(ii) G is (k + 1)-connected. a
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Our next three results are properties of k*-extendable graphs proved by
Ananchuen [3].

Lemma 2.2 : If G is a k*-extendable graph on 2n vertices; 0 <k <n - 2, then G
is (k + 1)-extendable. a

Lemma 2.3: Let G be a graph on 2n verticesand 0 <k <n-2. If d(G)2n+k+
1, then G is k*-extendable. Q

Theorem 2.4: Let G be a graph on 2n vertices with §(G) =n+k; 0 <k <n-2.
Ifn-k-1isevenand a(G) <n-k- 1, then G is k*-extendable. a

We conclude this section by stating a characterization of (n - 2)-
extendable graphs on 2n vertices proved by Ananchuen and Caccetta [1].

Theorem 2.5: Let G be a graph on 2n 2 10 vertices with a perfect matching.
Then G is (n - 2)-extendable if and only if G:

(i) is Kq, » or Ky, or

(ii) is a bipartite graph with minimum degree n - 1, or

(iii) has minimum degree 2n - 3 and a(G) <2, or

(iv) has minimum degree 2n - 2, Q

3. Minimum Degree of k*-Extendable Graphs

In this section we establish a necessary condition, in terms of the
minimum degree, for k*-extendable graphs. We start with a following lemma:

Lemma 3.1: Let G be a k*-extendable graph on 2n vertices; 1 <k <n-2. Then
G is (k + 3)-connected.

Proof: Since G - {u, v} is k-extendable for every pair of vertices u and v of G,
G - {u, v} is (k + I)~connected by Theorem 2.1. Thus G is (k + 3)-connected.
Q

Remark 3.1: Note that for any positive integer r, a graph K, v 2K,, is
0*-extendable which is 2-connected. Thus the bound on k in Lemma 3.1 is
sharp. However, if G is 0*-extendable, then §(G) = 3 by the definition of
0*-extendable graphs. This fact together with Lemma 3.1 assures that if G is a
k*-extendable graph on 2n vertices, 0 <k <n -2, then 8(G) >k + 3.

Our next result concerns the size of a maximum matching in an induced
subgraph of a neighbour set of a vertex in a k*-extendable graph.
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Lemma 3.2: Let G be a k*-extendable graph on 2n vertices; 0 <k <n-2,and u
a vertex of degree k + t; 3 <t <k + 2, of G. Then G[Ng(u)] has a matching of
size at most t - 3.

Proof: Suppose to the contrary that there exists a vertex u of G of degree k + t;
3 <t < k + 2 such that G[Ng(u)] has a maximum matching of size at least t - 2.

Let M be a maximum matching in G[Ng(u)] of size s 2t-2. Now s <k,
since G is k*-extendable and dg(u) < 2k + 2. Further, |Ng(u)\ V(M)| = 3.
Suppose | N G(u)l =1. Then dg(u) = INo(u)| =2n-2. Since dg(u) <2k +2
and the assumption on k, k = n - 2, Let v € Ng(u). Because G is
k*-extendable, G - {u, u'} = G[Ng(u)] contains a perfect matching. Thusn- 1=
IM| =s <k =n -2, a contradiction. Hence, | Ng(u)| =2. Let x and y be
vertices of N g(u) and G* = G - {x, y}. Clearly G* is k-extendable. Further,
Ng(u) = Ng.(u) and G[Ng(u)] = G*[ Nge(u) ].

Let F be a perfect matching in G* containing M. Then there exists a
vertex v of Ng(u) \ V(M) such that uv € F. Put

F,={abeF | a e Ngu)\ (VM) U {v}),b e Ngu)}.
Since ING(u)\V(M)I 23, |F,| =k+t-25-122. Letwz € F) wherew €
N\ (VM) U {v})and z € N g(u). Consider F, = M U (F, \ {wz}). Since
s2t-2,
|Fy| =s+(k+t-2s-1)-1=k+t-s-2<k.

But then F, does not extend to a perfect matching in G - {v, w} as u becomes an
isolated vertex in G - ({v, w} U V(F;)). This contradicts k*-extendability of G
and completes the proof of our lemma. Q

We now prove the main result in this section.

Theorem 3.3: If G is a k*-extendable graph on 2n vertices; 0 S k < n - 2, then
k+3<8G)<n-20r&G)=2k+3.

Proof: The assertion is true for k = 0 by Remark 3.1. Suppose to the contrary
that G is a k*-extendable graph on 2n vertices, 1 <k <n -2, withn-1<3(G) <
2k + 2. Let u be a vertex of G with dg(u) = 8(G) = r and M a maximum matching
in G[NG(w)). By Lemma 3.2, IM| <r-k-3<k-1and [Ngw)\V(M)| 2r-2
r-k-3)=2k-r+624.

By applying similar argument as in the proof of Lemma 3.2, | N 6w
>2. Letx,y e Ngu)and G, =G- {x,y}. Since |Ng(u)\ V(M)| >4, there is
a vertex v € Ng(u) \ V(M). Because G is k*-extendable and M U {uv} is a
matching in G of size at most k, there is a perfect matching F in G, containing
Mu {uv}. Let

Fy=f{abeF | a e Ng)\ (VM) U {v}),b e Ngu)\ {x, y}}

152



and

F,={abeF | a,be Ngm\{x,y}}.
Clearly, IFy | =r-2IM| -1
and

IF, =%[(2n-r-3)-(r-2|M|-1)]

=n-r+|M| -1
Suppose G[ N g(u)] contains M’ as a matching of size n - r + IM| <n-k-3<k
Since
| N )\ V(M) =@n-r-1)-2(n-r+ [M])

=r-2|M|-1

2r-2(r-k-3)-1

=2k-r+5

23,
there exist vertices X, y € N g(u) \ V(M’). But then M’ does not extend to a
perfect matching in G, = G - {x, y'}, since Gj[Ng(u) \ V(M)] =
G[Ng(u) \ V(M)] is an independent set of order r - 2| M| and

| N @\VO) U %, yD] =@n-r-1)-200-r+ [M])+2)
=r-2|M|-3.
Hence, the size of a maximum matching in G[N g(u)] isn-r+ |M] - 1.
Now let w, z be vertices of Ng(u) \ (V(M) U {v}) and G; =G - {w, z}.

Clearly, M"” = M U {uv} is a matching of size at most k in G;. Suppose that
M’ extends to a perfect matching F' in G; . Since Ng(u)\ (V(M) U {v, w, z}) is
an independent set of order r - 2 IM| -3and N c(u) has a maximum matching of
sizen-r+ |M| - 1, M has to map the r - 2| M| - 3 vertices of Ng(u) \ (V(M)
vi{v,w,z})onto(2n-r-1)-2(n-r+ |M| - l)=r-2|M| + 1 vertices of
ﬁe; (u) \ V(M'"') where M’ is a maximum matching in G[ N g(u)], which is
impossible. This contradicts the k*-extendability of G and completes the proof
of our theorem. Q

Corollary 3.4: Let G be a k*-extendable graph on 2n vertices; 0 <k <n - 2.
Then G is complete orn 2k + 3.

Proof: Suppose n <k + 2. By Theorem 3.3, 8(G) 2 2k + 3. This implies that
v(G) = 2k + 4. Consequently, G is complete. (]

Corollary 3.5: Let G be a k*-extendable graph on 2n vertices with 8(G) <
2k + 2. Then 2n >4k + 8.
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Proof: By Theorem 3.3, it follows that 2k + 2 < n — 2. Thus 2n > 4k + 8 as
required. Q

Next we consider the realizability problem associated with Theorem
3.3. We start with the following lemma.

Lemma 3.6: For any non-negative integers n, k, r with 2k + 3 <r < 2n - 1, there
exists a k*-extendable graph on 2n vertices with minimum degree r.

Proof; Let G| = Kl, Gz = K.- and G; = KZn-r- B Then G = G| A\ Gz v G3 isa
graph on 2n vertices with minimum degree r. Figure 3.1 depicts the graph G.
Note that in our diagrams a “double line” denotes the join.

- O:0=-@

Figure 3.1

Let u and v be any pair of vertices of G and M a matching of size k in G - {u, v}
Put
A= {u, v} UV(M).

IfV(G)) c A, then G - A =Ky, . 5. has a perfect matching. Next we suppose
that V(G) nA=0. Lets= |A A V(Gy)|. ThenG - A = KivK,. v
Kan+s.r.2-3. Clearly, 0 <s<2k+2<rand2k+2-s<2n-r-1. Thusr-s>
land2n+s-r-2k-320. Consequently, G - A contains a perfect matching,
Hence, G is k*-extendable as required. Q

Lemma 3.7: For any positive integers n, k, r with k + 3 <r < 2k + 2 and 2n >
4k + 8, there exists a k*-extendable graph on 2n vertices with minimum degree r.

Proof: Let 2n = 4k + 2s + 8 for some integer s > 0. For integer t with 3 <t <
k+2,1etG; =K, G, = K,.3,G3= Ky.3and Gy =Ksc. (4247 Then G =
G v (G2 v G3) v Gy is a graph of order 2n with minimum degree k + t. Figure
3.2 illustrates our notation.
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3

Figure 3.2

Observe that G; v G; contains a maximum matching of sizet-3 <k - 1. We will
show that G is k*-extendable. Let u, v € V(G) and M a matching of size k in
G - {u, v}. To complete the proof of our lemma we need to show that G’ =
G - (V(M) U {u, v}) contains a perfect matching., Let

A=VMu {u v}
a, = |V(G)NA]
a = |V(G) Al
3 = |V(Gs)nA|

and a, |V(G4)mA|.
Notice thata, + a; + a; +a, = |Al =2k+2and0 < a; < 1. We distinguish two
cases according to a,.

Casel:a, =1.
Then G’ = (Ky3.a, vV Kiuza,) V Kiiasu6tagyea,- L€t My be a maximum
matching in G'[(V(G;) U V(G3))\ A]. Then
M,| = min {t-3-a, k+3-a,}.
Consider B = (V(G;) v V(G3)) \ (A v V(M))). Clearly,
Bl = ®+1)-(a,+a;+2|M,))

_ k-t+az—33+6,f0r|M||=t-3-az
t—-k—a,+a; -6, for[M;| =k +3-a,.
Sincet<k +2,
|V(G)\Al - IB]
=k+2s+6-t+a,+a;- |B|

_[2s+2a, 20, for [M)|=t-3-a,
2k -2t+2s+2a, +1228, for |Mj|=k+3-a,
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and then there is a matching M, which maps each vertex of B to a vertex of
V(Gg)\ A. Clearly,

K2 2a31 for |M||=t—3—32
G'[V(GH)\(Au V(M = srem
VG (o)) {K2k-2|+2$+2al+l2’ for |M1|=k+3‘33

contains a perfect matching M;. Hence, M; U M, U M; forms a perfect
matching in G'.

Case2:a, =0.

If V(Gs)\ A = @, then |M| 2 (k +3)-2=k+ 1, a contradiction. Thus
V(G3)\ A = . Let xy € E(G) where x € V(G;) and y € V(G;) \ A. Clearly,
G’ - {X, ¥} = (Ki3-a, VKiazoa, )V Kiaasesoteaysa, - A similar argument as that
used in Case 1 establishes that G’ - {x, y} contains F as a perfect matching in

G’ -'{x, y}. Hence, F U {xy} forms a perfect matching in G’. This completes the
proof of our lemma. a

Let G be a k*-extendable graph on 2n vertices, 0 < k < n - 2, with
minimum degree r. By Theorem 3.3 and Corollary 3.5, notice that

. {[k+3,2n—]], for n>2k +4 )

[2k +3,2n-1], for n <2k +3.

Corollary 3.5 and Lemmas 3.6 and 3.7 yield the following theorem:

Theorem 3.8: For any integers n, k and r with 0 < k < n - 2, there exists a k*-
extendable graph on 2n vertices with minimum degree r if r satisfies (3.1). Q

4. A Characterization of (n - 2)*-Extendable and (n - 3)*-Extendable
Graphs

We now turn our attention to a characterization of k*-extendable graphs
on 2n vertices for k =n -2 and n - 3. We begin with (n - 2)*-extendable graphs.

Theorem 4.1: G is an (n - 2)*-extendable graph on 2n 2 4 vertices if and only if
Gis Kzn.

Proof: It follows directly from Corollary 3.4 and the fact that Kj, is
k*-extendable for0 <k <n-2. a

Our next result concerns the independence number of k*-extendable

graphs which is useful for establishing a characterization of (n - 3)*-extendable
graphs.
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Lemma 4.2: Let G be a k*-extendable graph on 2n vertices; 0 <k <n-2. Then
a(G)<n-k-1.

Proof: The case k = n - 2 is obvious since the only (n - 2)*-extendable graph is
K2n. So we only need to consider the case 0 <k <n - 3. Suppose to the contrary
that «(G) 2 n - k. Let S be an independent set of vertices of G of order n - k.
Further let u € S and v € Ng(u). Since G is k*-extendable, there is a perfect
matching F containing the edge uv. LetF, = {xy € F | x e S}. Then [F\F)|=k.
Let zz’, ww' be edges of Fy withz', w' € S. ThenG' =G - (V(F\F)) U {z, w})
contains S as an independent set of order n - k. Since v(G") =2n - 2k - 2, G’ has
no perfect matching. This implies that F \ F, cannot extend to a perfect matching
in G - {z, w}, a contradiction to the extendability of G. Hence, a(G)<n-k- 1,
completing the proof of our lemma. a

Lemma 4.2 is best possible since there exists a k*-extendable graph G
with (G)=n -k - 1. Such a graphis Ky+2 vV (K p.k-1 v Kpok-1):

We now characterize (n - 3)*-extendable graphs on 2n vertices.

Theorem 4.3: Let G be a graph on 2n 2> 6 vertices. Then G is (n - 3)*-
extendable if and only if G:

(@) is Ky, Or

(i) has minimum degree 2n - 2, or

(iii) has minimum degree 2n - 3 and (G) < 2.

Proof: The necessity follows directly from Theorem 3.3 and Lemma 4.2. Now
we prove the sufficiency. Clearly, Ky, is (n - 3)*-extendable. If §(G) =2n - 2,
then, by Lemma 2.3, G is (n - 3)*-extendable. The last case follows directly
from Theorem 2.4. This completes the proof of our theorem. Q

Remark 4.1: There exist (n - 3)*-extendable graphs for each type specified in
Theorem 4.3. Clearly, 2K, v K;, ., satisfies type (ii) and 2K, v Kj;. 4 is of type
(iii).

A consequence of Theorems 2.5 and 4.3 is the following theorem:

Theorem 4.4: Let G be a graph on 2n 2 10 vertices. Then G is (n - 3)*-
extendable if and only if G is (n - 2)-extendable non-bipartite . Q

Let g (2n, k) and g *(2n, k*) denote the classes of k-extendable non-

bipartite graphs and k*-extendable graphs on 2n vertices, respectively. Theorem
4.4 assures that for 2n 2 10

G @2n,n-2)= G*(@n, (n - 3)*).
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The bound on the number of vertices of a graph in Theorem 4.4 is best possible
since there exist (n - 2)-extendable non-bipartite graphs on 2n = 6 and 2n = 8
vertices which are not (n - 3)*-extendable. Such graphs are displayed in Figure
4.1

Figure 4.1

For 2n = 6, Lemma 2.2 implies that g’ *2n, (n - 3)%) ¢ g’ (2n, n - 2),
The graphs in Figure 4.1 ensure that g *(2n, (n - 3)*) is the proper subclass of

g (2n, n - 2). By take advantage of a characterization of (n - 2)-extendable

graphs on 2n 2 6 vertices, proved by Ananchuen and Caccetta [1, 2], we can now
state the following corollary.

Corollary 4.5: For 2n 2 6, | g (2n, n - 2)\ g *@2n, (n - 3)*| = 11. Such graphs
are displayed in Figure 4.2.

) & €

Figure 4.2 Q
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