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Abstract

In this paper, necessary and sufficient conditions for the existence
of a 5-cycle system of the A-fold complete graph of order v with a
hole of size u, A(Kv — Ku), are proved.

1 Introduction

An m-cycle (vo,v1,...,Vm—1) is a graph with vertex set {vo, v1,...,m-1}
and edge set {{vo,n1}, {v1,v2},...,{Vm-1,%}}. An m-cycle system of
a multigraph G (undirected and without loops) is an ordered pair (V,C)
where V is the vertex set of G and C is a collection of m-cycles, the edges
of which partition the edges of G. The complete multigraph of order n
and index ), denoted AKj,, is the multigraph with n vertices and A edges
between each pair of vertices. The multigraph A(K, — Ky) is defined on
the vertex set V with |V| = v as follows. Let U C V, called the hole, with
|[U] = u and join each pair a,b of vertices in V by A edges if and only if
it is not the case that both a and b are in U. In this paper necessary and
sufficient conditions for the existence of a 5-cycle system of A(K, — K) are

given (see Theorem 5.1). In the case u = 1, A(K, — K.) = AK, and we
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“have the following result which follows easily from [1].

Lemma 1.1 There ezists a 5-cycle system of AK, if and only if v > 5 and
(1) v=1,5 (mod 10) when A =1,3,7,9 (mod 10);
(2) v=0,1 (mod 5) when A =2,4,6,8 (mod 10); and
(8) v is odd when A =5 (mod 10).

Much has been done on the problem of finding m-cycle systems of K, —
K, (the case A = 1), particularly under the guise of embeddings of m-
cycle systems. An m-cycle system (V,C) is said to be embedded in the
m~cycle system (W, P) if V C W and C C P. Doyen and Wilson solved the
embedding problem for 3-cycle systems (Steiner triple systems) in 1973.

Theorem 1.1 ([7]) S3(u) ={v|v =1 or 3 (mod 6), v> 2u+ 1}.

The embedding problem for 5-cycle systems was solved by Bryant and
Rodger.

Theorem 1.2 ([4]) S5(u) = {v|v =1 or 5(mod 10),v > 3u/2 +1}.

More recently, Bryant and Rodger [5] gave a general approach for embed-
ding an m-cycle system of order u in the case m is odd and u is 1 or m (mod
2m). The embedding problem for m-cycle systems has now been completely
settled for all m < 14 [6).

When an m-cycle system of order u is embedded in an m-cycle system
of order v, an m~cycle system of the complete graph of order v with a hole
of size u, K, — Ky, is obtained. However, the solution of the embedding
problem for m-cycle systems does not completely solve the existence prob-
lem for m-~cycle systems of K, — K; it does not solve the cases where there
is no m-cycle system of order u. This more general problem was solved in
the case m = 3 by Mendelsohn and Rosa [10] and in the case m = 5 by
Bryant, Hoffman and Rodger (3].
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Theorem 1.3 ([10]) There exists a 3-cycle system of K, — K, if and only
ifv>2u+1 and

(1) u,v=1 or3 (mod 6), or
(2) v=v=5 (mod 6).

Theorem 1.4 ([3]) There ezists a 5-cycle system of K, — K, if and only
ifv>3u/2+1 and

(1) u,v=1 or5 (mod 10), or
(2) u=v=3 (mod 10), or
(8) u,v=7 or9 (mod 10).

This problem has also been settled for the cases m = 4,6,7,8 and 10 [6].
The existence problem for m-cycle systems of A(K, — K,,) has been settled
only for the case m = 3 [8].

Throughout we will use standard graph theoretic terminology which if
not defined here can be found in [2]. All graphs are undirected and without
loops but may contain multiple edges. Let E; denote the empty graph on z
vertices (that is, the graph with  vertices and no edges). If G and H are two
graphs then let GUH be the graph with vertex set V(GUH) = V(G)UV (H)
and edge set E(GUH) = E(G)UE(H). f V(G)NV(H) = ¢, then let
G V; H be the graph with V(G Vv, H) = V(G)UV(H) and E(GV . H) =
E(G)UE(H)US where S consists of z edges joining g to k for each g € V(G)
and h € V(H)}. In the case z = 1 we drop the subscript and write just
GV H. Note that A(K, — K,) = E, VA AK,, wherew=v—u. f Hisa
subgraph of G, let G — H be the graph containing those edges of G which
are not in H.

We will make much use of differences in constructing 5-cycle systems

and we now introduce the necessary notation. Let Z,, = {0,1,...,m —1}.
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Define |i — j|r = min{|i — j],z — |i — j|}. If D is a multiset with elements
chosen from {1,2,...,|z/2]}, then define the graph (D). to be the graph
with vertex set Z, and having vertex i joined to vertex j exactly A times
if and only if |¢ — j|; occurs A times in D. If Dy and D; are multisets with
elements chosen from {1,2,...,|2/2|} and S is a multiset with elements
chosen from Z., then define the graph (Do, S, D;); to be the graph with
the vertex set Z; X Z; and having vertex (i, y) joined to vertex (j, y) exactly
A times if and only if |i — j|; occurs A times in D, (y € Z3) and vertex (%, 0)
joined to vertex (j, 1) exactly A times if and only if (i — j) (mod z) occurs
A times in S.

There are some obvious necessary conditions for the existence of a of a

5-cycle system of A(Ky — Ky).
Lemma 1.2 Let v > u > 1. If there ezists a 5-cycle system of A(K, — Ky)
then

(1) v>5;

(2) if A is odd then u = v =1 (mod 2);

(3) M(3) = () = 0 (mod 5);

(4) v>3u+1;and

(5) (u,v) ¢ {(2,5),(3,6)}.

Proof: Condition (1) is immediate. Each of the u vertices in the hole of
K, — K, has degree A(v — u), and each of the remaining v — u vertices
has degree A(v — 1). Since each m-cycle includes an even number of edges
incident with each vertex, (2) follows. Since 5 divides the number of edges
in A(K, — Ku), (3) follows. Since any 5-cycle can have at most 4 edges
which are adjacent to a hole vertex, (4) follows. Finally, since the degree

of any vertex must be at most twice the number of 5-cycles, (5) follows. D
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The following lemma is a particular case of a result of Stern and Lenz.

Lemma 1.3 [12] Let D C {1,2,...,|2/2]} and S C Z;. If either |S| > 1
or z/2 € D then (D, S, D), has a 1-factorization.

A 2-factor is said to be even if each component is a cycle of even length.

The following result was proved in [4] but only for the case of simple graphs.

Corollary 1.1 [4] If T is an even 2-factor (containing no C; component)
then there exists a 5-cycle system of E4VT.

For this paper we need the following generalisation.

Lemma 1.4 There is a 5-cycle system of E4 V H where H is any even

2-factor (possibly containing 2-cycles) except H = C,.

Proof: If H contains no C2 components then the result follows from Corol-
lary 1.1. If H contains exactly one Cz component then we write H as
H = (Cy + Caz) + T where z > 2 and T contains no C; components. If H
contains more than one C; component then we write Has H =) Co+T
where r > 2 and T contains no C; components. The result then follows

from Corollary 1.1 if there exists a 5-cycle systems of
(i) E4V (X" Ca) for each r > 2; and
(ii) E4V (C2 + Cy;) for each & > 2.

To prove (i), it is sufficient to show that there exists a 5-cycle sys-
tem of E4 V (Cz2 + C2) and of E4 V (C2 + Cz + C3). For E4 V (Cz + C2),
let V(E4) = {c01,002,003, 004} and let Cz + Cz = (1,2) + (3,4). Then
{(o01, 1,2, 002, 3), (001, 2, 1, 002, 4), (003, 3, 4, 004, 1), (003, 4, 3,004, 2) } is
the required 5-cycle system. For E5V (Ca+C32+C3), let V(E4) = {001, 003,
003,004} and let Ca+C2+Ca = (1,2) +(3,4) +(5,6). Then {(c01,1,2, 00z,
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3), (001, 2, 1, 003, 5), (001, 6, 5, 004, 4), (003, 5, 6, 004, 1), (003, 4, 3, 003, 6),
(003,4,3,004,2)} is the required 5-cycle system.

We prove (ii), by induction on z. We have just seen that there is a 5-
cycle system of E4 V (C3 + C3) so assume that there exists a 5-cycle system
of E4 v (Cz + C3z), the 4 vertices in E4 being co;, 003,003 and ocos, the
cycle Cy; being (vo,v1,...,v2:-1). Let the three 5-cycles containing va;_;
be (vo, v2z-1, 001, 61,632), (v2z-2, V2:—1, 002, 83, a4) and (003, v2z-1, 004, as,
ag), where {a1,...,a6} C V(E4U C3;). We add two new vertices vg; and
v2-41 and replace these three 5-cycles with (vo, vaz 41,001, 61,82), (v2z—2,
V2z_1, 002, G3, 64), (003, V27, 004, a5, G6), (001, V22, Vaz41,004, V2z—1) and
(002, v22, v27-1, 003, ¥2z41) to obtain a 5-cycle system of E4V (Cy+ Cazya),

the cycle Caz 42 being (vo, v1,...,v2241). a

2 A=2
Lemma 2.1 Ifdy,d,d3 are any three differences in 2K, then there ezists
a 5-cycle system of Ky V3 (dy,d2,d3)y.

Proof: Since d;,da,d3 < w/2 are differences in 2K, we can assume dy <
d3 and let C; = (00, 0,d;,d; + d3,dy +d3 — d2) + (0,4,4,4,i) for i € Z,. so
that the collection {C;|i € Z,,} is the required 5-cycle system. 0

Lemma 2.2 Ifd is any difference in AK,, then there exists a 5-cycle system
of B3V, (d)w .

~ Proof: Let C; = (001,0,d,002,d+ 1) + (0,4,4,0,i) for i € Z,. Then the
collection {C;|i € Z} is the required 5-cycle system. ]

Lemma 2.3 There is a 5-cycle system of E3 V3 2C5.

Proof: Let V(E3) = {1,2,3} and let Cs = (4,5,6,7,8). Then the required
5-cycle system is {(1,7,8,2,4),(1,8,4,2,5),(1,5,6,2,7),(1,4,5,3,6),(1,6,
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7,3,8),(2,5,4,3,6),(2,8,4,3,7),(3,4,5,6,7)}. 0

Lemma 2.4 Let u,v be positive integers with u > 2, v > 5, (u,v) =
(0,1),(1,0),(2,4),(4,2) or (3,3) (mod 5) and 2u+ 1< v< 4u+1. Then
there exists a 5-cycle system of 2(K, — Ky).

Proof: Let w = v—u and let y = (2(w—1)—u)/5. Notice that for the given
congruence classes of u and v, y is an integer. Also notice that since v <
4u+1,y < v and since 3u+1< v,y > 0. Now 2K, = {d1,dz,...,dw-1)w
so (since w—1 = (5y+u)/2) we can partition these differences into y 3-sets
and (u — y)/2 1-sets. Similarly, we partition the graph E, into y copies
of Ky and (u — y)/2 copies of E;. The required 5-cycle system can now
be constructed by using Lemma 2.1 (y times) and Lemma 2.2 ((u — y)/2

times). 0

Lemma 2.5 For r = 0,1,2,4, let K(r) = 5,13,6,—3 respectively and let
u,v be positive integers withu = v =r (mod §), u >3 and 3u+1<v <

4u — K(r). Then there ezists a 5-cycle system of 2(K, — K,,).

Proof: Let w = v — u, let (s,2) = (3,3),(2,4),(1,2),(4,2) when r =
0,1,2,4 respectively, and let y = (2(w — 1) — u — 8)/5. Now 2K,, =
(d1,d2,...,dy_1)w so (since w — 1 = (5y + u + 8)/2) we can partition
these differences into y 3-sets, (u — y + 8)/2 — ¢ 1-sets and the t-set T, =
{w/5,w/5,2w/5}, {w/5,w/5,2w/5, 2w/5}, {w/5,w/5}, {w/5, w/5} when r
=0, 1, 2,4 respectively. Notice that in all cases, w—1>3and w—12>1t.
We need to verify that y and (4 — y + 5)/2 — ¢ are non-negative integers.
Firstly, since v = v = r (mod 5) and s = 3 — r (mod 5), it is easy to
check that y is an integer. To show that y > 0, we let ¥ = 52z 4 r and
w = v —u = 5z where z and z are non-negative integers. Since v > %u+ 1,
we have 2w/5 > = + (r + 2)/5 and hence for r = 0,1 and 2, 2w/5 >z =1
and for r = 4, 2w/5 > z + 2. Putting z = (u — r)/5 and solving for v
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we have v > 3u+ (5—r)/2for r = 0,1 and 2 and v > 3u + (10 —r)/2
for r = 4. Now, for »r = 0,1 and 2, (5 —7)/2 = s/2 + 1 and for r = 4,
(10 — r)/2 = s/2 + 1. Hence for r = 0,1,2 and 4, v > 3u + s/2 + 1 which
is equivalent to y > 0. Secondly, we consider (u —y +5)/2 —t. From what
we have said (with regard to partitioning the differences) and since y,w—1
and t are integers, it follows that (v — y+ s)/2 —1 is an integer. It remains
to show that (u—y+s)/2—1 > 0. Substituting y = (2(v—uv—1)—u—3s)/5
we see that (u—y+s)/2—1¢ > 0if and only if 4u—v+3s—5t+1 > 0. But
we know that v < 4u — K (r) and one can check that K(r) = 5t —3s—1 so
it follows that 4u — v+ 3s — 5t + 1 > 0 and hence (u —y+8)/2—-t > 0.
Similarly we partition the graph Ey into y copies of Ky, (u—y+s)/2-1
copies of E; and one copy of Ea:_, (note that in all cases, 2t — s < u).
By applying Lemma 2.1 (y times) and Lemma 2.2 ((u —y + 8)/2 — ¢
times), it remains to find a 5-cycle system of Eg:_; V2 (T:)w. So when
r=0,1,2,4 we need a 5-cycle systems of E3 V2 ({w/5,w/5,2w/5})u, E¢ V2
({w/5, w/5,2w/5,2w/5})w, B3 V2 ({w/5,w/5})w, ({w/5, w/5})y respecti-
vely. Since ({w/5,w/5})w and ({2w/5,2w/5}), are each a collection of
vertex disjoint copies of 2Cs (recall that w = 0 (mod 5)), the required
5-cycle system can be obtained by applying Lemma 2.3 (1,2,1,0 times for
r=0,1,2,4 respectively). 0
In order to simplify the proof of Lemma 2.7, we first prove the existence

of 5-cycle systems of some small graphs.

Lemma 2.6 There is a 5-cycle system of 2(K, — K.) for (u,v) € {(2,7),
(2,12), (2, 14), (2,17), (2, 19), (3, 18), (5, 20), (6, 16), (6, 21)}.

Proof: First consider the case (u,v) = (2,7). The graph 2(K7 — K3) can
be written as the edge disjoint union of K2 V3 Cs and 3C5 and clearly there
is a 5-cycle system of each of these graphs. For the remaining values of

(4, v) we find an integer s such that there is a 5-cycle system of 2(Ky - K,)
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and of 2(K, — K,) and hence also a 5-cycle system of 2(K, — K,). When
u=2welet s=7, when u = 3 we let s = 8 and when u = 5 or 6, we let

s = 10. 0

Lemma 2.7 There ezists a 5-cycle system of 2(K, — K,) ifv > 5, v >
%u + 1 and

(1) u,v=0o0r1 (mod 5), or
(2) u=v =3 (mod 5), or
(8) v, v=2 or4 (mod 5).

Proof: For the case u = 1 see Lemma 1.1. The proof for u > 2 is by
induction on v. For each u > 2, there exists a v > u such that there is
a 5-cycle system of 2(K, — K,) by Lemma 2.4 so assume that for all v’
satisfying the conditions of the lemma and with v/ < v, there is a 5-cycle
system of 2(Ky — Ky). If v < 20 or v < 9u/4 + 91, then there is a 5-cycle
system of 2(K, — K,) by Lemma 2.6, Lemma 2.4 or Lemma2.5. Hence we
can assume v > 21 and v > 9u/4 + 93. Let s be the largest integer s = u
or v (mod 5) such that 5 + 1 < v. We will show that there is a 5-cycle
system of 2(K, — K,) and a 5-cycle system of 2(K, — K,,) thereby showing
that there is a 5-cycle system of 2(K, — K,). By the maximality of s, it
follows that s > 2(v — 1)/3 — 4, that is 3s > 2v — 16. Since 35 > 2v — 16
and v > 21, it follows that v < 4s — 14 and so by Lemma 2.4 or Lemma
2.5, there is a 5-cycle system of 2(K, — K,). Also, since v > 9u/4+93 and
3s > 2v— 16, it follows that s > 3u+1 (and s > 5) and so by the induction
hypothesis, there is a 5-cycle system of 2(K, — K). 0
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3 A=10

Lemma 3.1 Let u,v be positive integers with u > 2, (u,v) # (2,4),(2,5),
(3,6) and 3u+1 < v < 4u+ 1. Then there ezists a 5-cycle system of
10(K, — K.).

Proof: Let w = v —u and let y = 2v — 3u — 2. Notice that since v < 4u+
1,y < 5u, and since v > %u +1,y > 0. Now 10K, = (d1,d3,...,d5(w-1))w
so (since 5(w — 1) = 5v — 5u — 5), we can partition these differences into
(5u—y)/2 1-sets and y 3-sets, where in each 3-set it is not the case that all 3
differences are equal. Notice that for all permitted values of u and v, except
(u,v) = (4,7) where y = 0, w = v — u > 4 and so there is no difficulty in
ensuring that no three differences in a 3-set are equal. Similarly, we can
place the vertices of E, into y 1-sets (K;’s for Lemma 2.1) and (5u — y)/2
2-sets (K3's for Lemma 2.2) so that each vertex is placed in 10 different
sets. The required 5-cycle system can now be constructed using Lemma 2.1

(y times) and Lemma 2.2 ((5u — y)/2 times). 0

Lemma 3.2 There ezists a 5-cycle system of 10(K, - K) ifv > 5, (u,v) ¢
{(2,5),(3,6)} and v > 3u+1.

Proof: The proof uses induction on v and is similar to that of Lemma 2.7.
For the case u = 1 see Lemma 1.1. For each u > 2, there exists a v > u
such that there is a 5-cycle system of 10(Ky, — K,;) by Lemma 3.1 so assume
that for all v’ satisfying the conditions of the lemma and with v/ < v, there
is a 5-cycle system of 10(K,» — K,). Let s be the largest integer such that
35+1 < v. By the maximality of s, it follows that s > 2(v — 1)/3 — 2,
that is 3s > 2v — 3. Hence it follows that v < 4s+ 1 (note that v > 5) and
so by Lemma 3.1 there is a 5-cycle system of 10(K, — K,). Also, since we

can assume v > 4u + 2 and since 35 > 2v — 3, it follows that s > 3u + 1
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(and clearly s > 5 and (u,s) ¢ {(2,5),(3,6)}) and so by the induction
hypothesis, there is a 5-cycle system of 10(K, — K,). 0

4 A=5

Lemma 4.1 Let w be even. If y < 5(w — 2)/3, then there ezist y edge-
disjoint 3-regular spanning subgraphs G1,Gs,...,Gy of 5K, such that for
i=1,2,...,y there exists a 5-cycle system of K1V G; and such that 5K, —
(G1UG2U...UG,) has a I-factorisation.

Proof: Let the vertex set of Ky be {00}, let z = w/2, let 5K,, have vertex
set Zy X Z3 and let b = |(z — 1)/2|. Also, let ¢ =min{y, 5k}, let D =
{1,1,1,1,1,2,2,2,2,2,...,5,5,5,5,5} and let § = {0,0,0,0,0,1,1,1,1,1,
ooyt — Lz -1,z — 1,z — 1,z — 1}. Select ¢ elements of D, select ¢
elements of S and pair the selected elements of D to the selected ele-
ments of S arbitrarily. For i = 1,2,...,t the graph G; is defined to be
({d},{s},{d}) where d and s make up the ith selected pair and the set
{(c0, (0,0), (d,0), (d + 5,1),(s,1)) + (4,0)|j € Z.} is the required 5-cycle
system of K; V G;. Partition 3(y — t) of the remaining elements of S into
y —t sets of size 3. Fort+ 1 < i < y, the graph G; is defined to be
(9, {51, 52, 83}, @) where sy, 55, 53 make up the ith set of size 3 and the set
{(o0,(0,0), (81,1), (51— 82, 0), (51— 82+83, 1))+ (4, 0)|j € Z} is the required
5-cycle system of K V G;. Finally, 5Ky — (G1UGaU...UGy) = (C,T,C),
where either z/2 occurs 5 times in C or |T| > 5. Hence 5K, — (G1 UG U
..-UGy) has a 1-factorisation by Lemma 1.3. 0

Lemma 4.2 Let u,v be odd integers with u > 5 and gu +1<v<4u-5.
Then there ezists a 5-cycle system of 5(K, — K,,).

Proof: Let w = v — u and let y = 2v — 3u — 2. Notice that since v <

4u — 5, y < 5(w —2)/3 and since 3u+1 < v, y > 0. Now, by Lemma
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4.1 we can partition the edge set of 5K,, into y 3-regular spanning graphs
G1,Gy,...,G, and a (5u — y)/2-regular spanning graph H such that for
i=1,2,...,y there is a 5-cycle system of K3 V G; and such that H has a
1-factorisation. Pair up the (5u — y)/2 1-factors in a 1-factorisation of H
to form (5u — y)/4 even 2-factors. Now, we partition the graph E, into y
copies of K; and (5u — y)/4 copies of E4 so that each vertex of E, is in §
distinct graphs. The required 5-cycle system is obtained from the y 5-cycle
systems of K; V G; and by pairing the (5u — y)/4 copies of E4 with the
(5u — y)/4 even 2-factors and applying Lemma 1.4 ((5u — y)/4 times). 0O

Lemma 4.3 There ezists a 5-cycle system of 5(K, — Ky) if u,v > 5, u is
odd, v is odd, and v > 3u + 1.

Proof: The proof uses induction on v and is similar to that of Lemma 2.7.
For the case u = 1 see Lemma 1.1 and for the case ¥ = 3 see Lemma 4.5.
For each u > 5, there exists a v > u such that there is a 5-cycle system of
5(Ky—Ky) by Lemma 4.2 so assume that for all v’ satisfying the conditions
of the lemma and with v’ < v, there is a 5-cycle system of 5(K,» — Ky,).
Let s be the largest odd integer such that %8 + 1 < v. By the maximality
of s, it follows that s > 2(v —1)/3 — §, that is 3s > 2v — 7. Hence it follows
that v < 4s — 4 (note that v > 17) and so by Lemma 3.1 there is a 5-cycle
system of 5(K, — K,). Since 3s > 2v — 7, u > 5 and since we can assume
v > 4u — 3, it follows that ¢ > %u + 1. Hence by the induction hypothesis,
there is a 5-cycle system of 5(K, — K). 0

Lemma 4.4 There exists a 5-cycle system of 5(K, — K3) for v=17,9 and
11.

Proof: The following collections of 5-cycles give the required systems. In
each case the vertex set is {0,1,...,v — 1} and the vertices in the hole are

{0,1,2}.
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5(K7 — K3)

(0,3,1,4,5), (0,4,2,3,6), (1,5, 3, 4,6), (0,3,1,4,5), (0,4, 2, 3,6),
(1,5,3,4,6), (0,3,1,4,5), (0,4,2,3,6), (1,5,3,4,6), (0,3, 1, 5,6),
(0,4,1,86,5), (2,3,4,5,6), (0,3,2,5,6), (0,4,2,86,5), (1,3,5,2,6),
(1,4,6,2,5), (2,4,6,3,5), (2,5,4, 3,6).

5(Ke — K3)

(0,3,1,4,5), (0,4, 2,3,86), (0,7,1,5,8), (1,6, 2,7, 8), (2,5, 3,4, 8),
(3,7,4,6,8), (0,3, 1,4, 5), (0,4,2,3,6), (0,7,1,5,8), (,6,2,7,8),
2,5,3,4,8),(3,7,4,6,8), (0,3, 1,4,5), (0,4,2,3,6), (0,7,1,5,8),
(1,6,2,7,8), (2,5,3,4,8), (3,7,4,6,8), (0, 3,1, 4,5), (0,4, 2,3,6),
(0,7,1,5,8), (1,6,2,7,8), (2,5,3,4,8), (3,7,4,6,8), (0,3, 1,4, 8),
(0,4,5,6,7), (0,5,1,7,6), (1,86,5,7,8), (2,3,5,6,7), (2,4,6,7,5),
(2,6,7,5,8), (3,4,7,5,6), (3,7,5,6,8).

5(K11 - Ks)

(0,3,1,4,5), (0,4,2,3,6), (0,7,1,5,8), (0,9,1,86,10), (1,8,2,5,10),
(2,6,4,3,7), (2;9,3,8,10), (3,5,6,7,10), (4,7,5,9,8), (0,3,1,4,5),
(0,4,2,3,6), (0,7,1,5,8), (0,9,1,6,10), (1,8,2,5,10), (2,6,4,3,7),
(2,9,3,8,10), (3,5,6,9,10), (4,7,5,9,10), (4,8,6,7,9), (4,9,8,7,10),
(0,3,1,4,5), (0,4,2,3,6), (0,7,1,5,8), (0,9,1,86,10), (1,8,2,5,10),
(2,6,4,3,7), (2,9,3,8,10), (3,5,6,7,10), (4,7,8,6,9), (4,8,6,9,10),
(0,3,1,4,5), (0,4,2,3,6), (0,7,1,5,8), (0,9,1,86,10), (1,8,2,5,10),
(2,6,4,3,7), (2,9,3,8,10), (3,5,6,7,10), (4,7,5,9,10), (4,8,7,5,9),
(0,3,1,4,5), (0,4,2,3,6), (0,7,1,5,8), (0,9,1,6,10),(1,8,2,5,10),
(2,6,4,3,9), (2,7,6,9,10), (3,5,7,9,8), (3,7,9,8,10), (4,7,8,6,9),

(4,8,9,7,10), (5,6,8,7,9).
0

Lemma 4.5 There ezists a 5-cycle system of 5(K, — K3) if v > 7 is odd.
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Proof: By Lemma 4.4, the result holds for v < 11 and so we need only
consider v > 13. But by Lemma 4.3, there is a 5-cycle system of 5(K, — K7)
for all odd v > 13. Hence, since there is a 5-cycle system of 5(K7 — K3),
we have a 5-cycle system of 5(K, — K3). 0

5 Main Theorem

Theorem 5.1 Let u,v and X be positive integers. There erists a 5-cycle
system of A(K, — Ky) if and only if (u,v) ¢ {(2,5),(3,6)},v > 2u+1 and

(1) ifA=1,3,7,9 (mod 10) then
(1a) u,v =1 or5 (mod 10); or
(1b) u,v =7 or 9 (mod 10); or
(1c) u,v =3 (mod 10); and

(2) if A\ =2,4,6,8 (mod 10) then
(2a) u,v=0 or 1 (mod 5); or
(2b) u,v =2 or 4 (mod 5); or
(2c) u,v =3 (mod 5); and

(3) f A\=5 (mod 10) then u and v are odd.

Proof: The necessity of the conditions follows from Lemma 1.2. Clearly
if there exists a 5-cycle system of p'(K,J — K,), then there exists a 5-cycle
system of A(K, — K,) for all multiples A of u. Hence, since sufficiency is
proved for A = 1,2, 5 and 10 (see Lemmas 2.7,4.3,4.5,3.2 and [3]) the result

follows immediately. 0
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