5-Cycle Systems of $\lambda(K_v - K_u)$

Darryn Bryant
Centre for Discrete Mathematics and Computing
Department of Mathematics
The University of Queensland
Qld 4072
Australia

Abstract

In this paper, necessary and sufficient conditions for the existence of a 5-cycle system of the λ -fold complete graph of order v with a hole of size u, $\lambda(K_v - K_u)$, are proved.

1 Introduction

An m-cycle $(v_0, v_1, \ldots, v_{m-1})$ is a graph with vertex set $\{v_0, v_1, \ldots, v_{m-1}\}$ and edge set $\{\{v_0, v_1\}, \{v_1, v_2\}, \ldots, \{v_{m-1}, v_0\}\}$. An m-cycle system of a multigraph G (undirected and without loops) is an ordered pair (V, C) where V is the vertex set of G and G is a collection of m-cycles, the edges of which partition the edges of G. The complete multigraph of order n and index n, denoted n is the multigraph with n vertices and n edges between each pair of vertices. The multigraph n is defined on the vertex set n with n vertices. The multigraph n is defined on the vertex set n with n vertices in n by n edges if and only if it is not the case that both n and n are in n. In this paper necessary and sufficient conditions for the existence of a 5-cycle system of n and we given (see Theorem 5.1). In the case n in n and we

have the following result which follows easily from [1].

Lemma 1.1 There exists a 5-cycle system of λK_v if and only if $v \geq 5$ and

- (1) $v \equiv 1, 5 \pmod{10}$ when $\lambda \equiv 1, 3, 7, 9 \pmod{10}$;
- (2) $v \equiv 0, 1 \pmod{5}$ when $\lambda \equiv 2, 4, 6, 8 \pmod{10}$; and
- (3) v is odd when $\lambda \equiv 5 \pmod{10}$.

Much has been done on the problem of finding *m*-cycle systems of $K_v - K_u$ (the case $\lambda = 1$), particularly under the guise of *embeddings* of *m*-cycle systems. An *m*-cycle system (V, C) is said to be *embedded* in the *m*-cycle system (W, P) if $V \subset W$ and $C \subset P$. Doyen and Wilson solved the embedding problem for 3-cycle systems (Steiner triple systems) in 1973.

Theorem 1.1 ([7])
$$S_3(u) = \{v \mid v \equiv 1 \text{ or } 3 \pmod{6}, v \geq 2u + 1\}.$$

The embedding problem for 5-cycle systems was solved by Bryant and Rodger.

Theorem 1.2 ([4])
$$S_5(u) = \{v \mid v \equiv 1 \text{ or } 5 \pmod{10}, v \geq 3u/2 + 1\}.$$

More recently, Bryant and Rodger [5] gave a general approach for embedding an m-cycle system of order u in the case m is odd and u is 1 or m (mod 2m). The embedding problem for m-cycle systems has now been completely settled for all $m \le 14$ [6].

When an m-cycle system of order u is embedded in an m-cycle system of order v, an m-cycle system of the complete graph of order v with a hole of size u, $K_v - K_u$, is obtained. However, the solution of the embedding problem for m-cycle systems does not completely solve the existence problem for m-cycle systems of $K_v - K_u$; it does not solve the cases where there is no m-cycle system of order u. This more general problem was solved in the case m = 3 by Mendelsohn and Rosa [10] and in the case m = 5 by Bryant, Hoffman and Rodger [3].

Theorem 1.3 ([10]) There exists a 3-cycle system of $K_v - K_u$ if and only if $v \ge 2u + 1$ and

(1)
$$u, v \equiv 1 \text{ or } 3 \pmod{6}$$
, or

(2)
$$u \equiv v \equiv 5 \pmod{6}$$
.

Theorem 1.4 ([3]) There exists a 5-cycle system of $K_v - K_u$ if and only if $v \ge 3u/2 + 1$ and

(1)
$$u, v \equiv 1 \text{ or } 5 \pmod{10}$$
, or

(2)
$$u \equiv v \equiv 3 \pmod{10}$$
, or

(3)
$$u, v \equiv 7 \text{ or } 9 \pmod{10}$$
.

This problem has also been settled for the cases m = 4, 6, 7, 8 and 10 [6]. The existence problem for m-cycle systems of $\lambda(K_v - K_u)$ has been settled only for the case m = 3 [8].

Throughout we will use standard graph theoretic terminology which if not defined here can be found in [2]. All graphs are undirected and without loops but may contain multiple edges. Let E_x denote the empty graph on x vertices (that is, the graph with x vertices and no edges). If G and H are two graphs then let $G \cup H$ be the graph with vertex set $V(G \cup H) = V(G) \cup V(H)$ and edge set $E(G \cup H) = E(G) \cup E(H)$. If $V(G) \cap V(H) = \phi$, then let $G \vee_x H$ be the graph with $V(G \vee_x H) = V(G) \cup V(H)$ and $E(G \vee_x H) = E(G) \cup E(H) \cup S$ where S consists of x edges joining g to h for each $g \in V(G)$ and $h \in V(H)$. In the case x = 1 we drop the subscript and write just $G \vee H$. Note that $\lambda(K_v - K_u) \cong E_u \vee_\lambda \lambda K_w$ where w = v - u. If H is a subgraph of G, let G - H be the graph containing those edges of G which are not in H.

We will make much use of differences in constructing 5-cycle systems and we now introduce the necessary notation. Let $\mathbb{Z}_m = \{0, 1, ..., m-1\}$.

Define $|i-j|_x = \min\{|i-j|, x-|i-j|\}$. If D is a multiset with elements chosen from $\{1,2,\ldots,\lfloor x/2\rfloor\}$, then define the graph $\langle D\rangle_x$ to be the graph with vertex set \mathbb{Z}_x and having vertex i joined to vertex j exactly λ times if and only if $|i-j|_x$ occurs λ times in D. If D_0 and D_1 are multisets with elements chosen from $\{1,2,\ldots,\lfloor x/2\rfloor\}$ and S is a multiset with elements chosen from \mathbb{Z}_x , then define the graph $\langle D_0,S,D_1\rangle_x$ to be the graph with the vertex set $\mathbb{Z}_x \times \mathbb{Z}_2$ and having vertex (i,y) joined to vertex (j,y) exactly λ times if and only if $|i-j|_x$ occurs λ times in D_y $(y \in \mathbb{Z}_2)$ and vertex (i,0) joined to vertex (j,1) exactly λ times if and only if (i-j) (mod x) occurs λ times in S.

There are some obvious necessary conditions for the existence of a of a 5-cycle system of $\lambda(K_v - K_u)$.

Lemma 1.2 Let $v > u \ge 1$. If there exists a 5-cycle system of $\lambda(K_v - K_u)$ then

- (1) $v \ge 5$;
- (2) if λ is odd then $u \equiv v \equiv 1 \pmod{2}$;
- (3) $\lambda(\binom{v}{2} \binom{u}{2}) \equiv 0 \ (mod \ 5);$
- (4) $v \geq \frac{3}{2}u + 1$; and
- (5) $(u, v) \notin \{(2, 5), (3, 6)\}.$

Proof: Condition (1) is immediate. Each of the u vertices in the hole of $K_v - K_u$ has degree $\lambda(v - u)$, and each of the remaining v - u vertices has degree $\lambda(v - 1)$. Since each m-cycle includes an even number of edges incident with each vertex, (2) follows. Since 5 divides the number of edges in $\lambda(K_v - K_u)$, (3) follows. Since any 5-cycle can have at most 4 edges which are adjacent to a hole vertex, (4) follows. Finally, since the degree of any vertex must be at most twice the number of 5-cycles, (5) follows. \square

The following lemma is a particular case of a result of Stern and Lenz.

Lemma 1.3 [12] Let $D \subseteq \{1, 2, ..., \lfloor x/2 \rfloor\}$ and $S \subseteq \mathbb{Z}_x$. If either $|S| \ge 1$ or $x/2 \in D$ then $\langle D, S, D \rangle_x$ has a 1-factorization.

A 2-factor is said to be even if each component is a cycle of even length. The following result was proved in [4] but only for the case of simple graphs.

Corollary 1.1 [4] If T is an even 2-factor (containing no C_2 component) then there exists a 5-cycle system of $E_4 \vee T$.

For this paper we need the following generalisation.

Lemma 1.4 There is a 5-cycle system of $E_4 \vee H$ where H is any even 2-factor (possibly containing 2-cycles) except $H = C_2$.

Proof: If H contains no C_2 components then the result follows from Corollary 1.1. If H contains exactly one C_2 component then we write H as $H = (C_2 + C_{2x}) + T$ where $x \ge 2$ and T contains no C_2 components. If H contains more than one C_2 component then we write H as $H = \sum^r C_2 + T$ where $r \ge 2$ and T contains no C_2 components. The result then follows from Corollary 1.1 if there exists a 5-cycle systems of

- (i) $E_4 \vee (\sum^r C_2)$ for each $r \geq 2$; and
- (ii) $E_4 \vee (C_2 + C_{2x})$ for each $x \geq 2$.

To prove (i), it is sufficient to show that there exists a 5-cycle system of $E_4 \vee (C_2 + C_2)$ and of $E_4 \vee (C_2 + C_2 + C_2)$. For $E_4 \vee (C_2 + C_2)$, let $V(E_4) = \{\infty_1, \infty_2, \infty_3, \infty_4\}$ and let $C_2 + C_2 = (1, 2) + (3, 4)$. Then $\{(\infty_1, 1, 2, \infty_2, 3), (\infty_1, 2, 1, \infty_2, 4), (\infty_3, 3, 4, \infty_4, 1), (\infty_3, 4, 3, \infty_4, 2)\}$ is the required 5-cycle system. For $E_4 \vee (C_2 + C_2 + C_2)$, let $V(E_4) = \{\infty_1, \infty_2, \infty_3, \infty_4\}$ and let $C_2 + C_2 + C_2 = (1, 2) + (3, 4) + (5, 6)$. Then $\{(\infty_1, 1, 2, \infty_2, \infty_3, \infty_4)\}$ and let $C_2 + C_2 + C_2 = (1, 2) + (3, 4) + (5, 6)$. Then $\{(\infty_1, 1, 2, \infty_2, \infty_3, \infty_4)\}$ and let $C_2 + C_2 + C_3 = (1, 2) + (3, 4) + (5, 6)$. Then $\{(\infty_1, 1, 2, \infty_2, \infty_3, \infty_4)\}$

3), $(\infty_1, 2, 1, \infty_3, 5)$, $(\infty_1, 6, 5, \infty_4, 4)$, $(\infty_2, 5, 6, \infty_4, 1)$, $(\infty_2, 4, 3, \infty_3, 6)$, $(\infty_3, 4, 3, \infty_4, 2)$ } is the required 5-cycle system.

We prove (ii), by induction on x. We have just seen that there is a 5-cycle system of $E_4 \vee (C_2 + C_2)$ so assume that there exists a 5-cycle system of $E_4 \vee (C_2 + C_{2x})$, the 4 vertices in E_4 being $\dot{\infty}_1, \dot{\infty}_2, \dot{\infty}_3$ and $\dot{\infty}_4$, the cycle C_{2x} being $(v_0, v_1, \ldots, v_{2x-1})$. Let the three 5-cycles containing v_{2x-1} be $(v_0, v_{2x-1}, \dot{\infty}_1, a_1, a_2), (v_{2x-2}, v_{2x-1}, \dot{\infty}_2, a_3, a_4)$ and $(\dot{\infty}_3, v_{2x-1}, \dot{\infty}_4, a_5, a_6)$, where $\{a_1, \ldots, a_6\} \subseteq V(E_4 \cup C_{2x})$. We add two new vertices v_{2x} and v_{2x+1} and replace these three 5-cycles with $(v_0, v_{2x+1}, \dot{\infty}_1, a_1, a_2), (v_{2x-2}, v_{2x-1}, \dot{\infty}_2, a_3, a_4), (\dot{\infty}_3, v_{2x}, \dot{\infty}_4, a_5, a_6), (\dot{\infty}_1, v_{2x}, v_{2x+1}, \dot{\infty}_4, v_{2x-1})$ and $(\dot{\infty}_2, v_{2x}, v_{2x-1}, \dot{\infty}_3, v_{2x+1})$ to obtain a 5-cycle system of $E_4 \vee (C_2 + C_{2x+2})$, the cycle C_{2x+2} being $(v_0, v_1, \ldots, v_{2x+1})$.

$\lambda = 2$

Lemma 2.1 If d_1, d_2, d_3 are any three differences in $2K_w$ then there exists a 5-cycle system of $K_1 \vee_2 \langle d_1, d_2, d_3 \rangle_w$.

Proof: Since $d_1, d_2, d_3 \leq w/2$ are differences in $2K_w$, we can assume $d_2 < d_3$ and let $C_i = (\infty, 0, d_1, d_1 + d_3, d_1 + d_3 - d_2) + (0, i, i, i, i)$ for $i \in \mathbb{Z}_w$. so that the collection $\{C_i | i \in \mathbb{Z}_w\}$ is the required 5-cycle system.

Lemma 2.2 If d is any difference in λK_w then there exists a 5-cycle system of $E_2 \vee_2 \langle d \rangle_w$.

Proof: Let $C_i = (\infty_1, 0, d, \infty_2, d+1) + (0, i, i, 0, i)$ for $i \in \mathbb{Z}_w$. Then the collection $\{C_i | i \in \mathbb{Z}_w\}$ is the required 5-cycle system.

Lemma 2.3 There is a 5-cycle system of $E_3 \vee_2 2C_5$.

Proof: Let $V(E_3) = \{1, 2, 3\}$ and let $C_5 = (4, 5, 6, 7, 8)$. Then the required 5-cycle system is $\{(1, 7, 8, 2, 4), (1, 8, 4, 2, 5), (1, 5, 6, 2, 7), (1, 4, 5, 3, 6), (1, 6, 6, 2, 7), (1, 4, 5, 3, 6), (1, 6, 6, 2, 7), (1, 4, 5, 3, 6), (1, 6, 6, 2, 7), (1, 4, 5, 3, 6), (1, 6, 6, 2, 7), (1, 4, 5, 3, 6), (1, 6, 6, 2, 7), (1, 4, 5, 3, 6), (1, 6, 6, 2, 7), (1, 4, 5, 3, 6), (1, 6, 6, 2, 7), (1, 4, 5, 3, 6), (1, 6, 6, 2, 7), (1, 6, 6, 7), (1, 6, 7),$

7, 3, 8), (2, 5, 4, 3, 6), (2, 8, 4, 3, 7), (3, 4, 5, 6, 7).

Lemma 2.4 Let u, v be positive integers with $u \geq 2$, $v \geq 5$, $(u, v) \equiv (0, 1), (1, 0), (2, 4), (4, 2)$ or (3, 3) (mod 5) and $\frac{3}{2}u + 1 \leq v \leq 4u + 1$. Then there exists a 5-cycle system of $2(K_v - K_u)$.

0

Proof: Let w = v - u and let y = (2(w-1)-u)/5. Notice that for the given congruence classes of u and v, y is an integer. Also notice that since $v \le 4u + 1$, $y \le u$ and since $\frac{3}{2}u + 1 \le v$, $y \ge 0$. Now $2K_w = \langle d_1, d_2, \ldots, d_{w-1} \rangle_w$ so (since w - 1 = (5y + u)/2) we can partition these differences into y 3-sets and (u - y)/2 1-sets. Similarly, we partition the graph E_u into y copies of K_1 and (u - y)/2 copies of E_2 . The required 5-cycle system can now be constructed by using Lemma 2.1 (y times) and Lemma 2.2 ((u - y)/2 times).

Lemma 2.5 For r=0,1,2,4, let K(r)=5,13,6,-3 respectively and let u,v be positive integers with $u \equiv v \equiv r \pmod{5}$, $u \geq 3$ and $\frac{3}{2}u+1 \leq v \leq 4u-K(r)$. Then there exists a 5-cycle system of $2(K_v-K_u)$.

Proof: Let w=v-u, let (s,t)=(3,3),(2,4),(1,2),(4,2) when r=0,1,2,4 respectively, and let y=(2(w-1)-u-s)/5. Now $2K_w=(d_1,d_2,\ldots,d_{w-1})_w$ so (since w-1=(5y+u+s)/2) we can partition these differences into y 3-sets, (u-y+s)/2-t 1-sets and the t-set $T_r=\{w/5,w/5,2w/5\},\{w/5,w/5,2w/5,2w/5\},\{w/5,w/5\},\{w/5,w/5\}$ when r=0,1,2,4 respectively. Notice that in all cases, $w-1\geq 3$ and $w-1\geq t$. We need to verify that y and (u-y+s)/2-t are non-negative integers.

Firstly, since $u \equiv v \equiv r \pmod 5$ and $s \equiv 3 - r \pmod 5$, it is easy to check that y is an integer. To show that $y \ge 0$, we let u = 5x + r and w = v - u = 5z where x and z are non-negative integers. Since $v \ge \frac{3}{2}u + 1$, we have $2w/5 \ge x + (r+2)/5$ and hence for r = 0, 1 and $2, 2w/5 \ge x = 1$ and for $r = 4, 2w/5 \ge x + 2$. Putting x = (u - r)/5 and solving for v

we have $v \geq \frac{3}{2}u + (5-r)/2$ for r = 0, 1 and 2 and $v \geq \frac{3}{2}u + (10-r)/2$ for r = 4. Now, for r = 0, 1 and 2, (5-r)/2 = s/2 + 1 and for r = 4, (10-r)/2 = s/2 + 1. Hence for r = 0, 1, 2 and $4, v \geq \frac{3}{2}u + s/2 + 1$ which is equivalent to $y \geq 0$. Secondly, we consider (u-y+s)/2-t. From what we have said (with regard to partitioning the differences) and since y, w-1 and t are integers, it follows that (u-y+s)/2-t is an integer. It remains to show that $(u-y+s)/2-t \geq 0$. Substituting y = (2(v-u-1)-u-s)/5 we see that $(u-y+s)/2-t \geq 0$ if and only if $4u-v+3s-5t+1 \geq 0$. But we know that $v \leq 4u-K(r)$ and one can check that K(r)=5t-3s-1 so it follows that $4u-v+3s-5t+1 \geq 0$ and hence $(u-y+s)/2-t \geq 0$.

Similarly we partition the graph E_u into y copies of K_1 , (u-y+s)/2-t copies of E_2 and one copy of E_{2t-s} (note that in all cases, $2t-s \le u$). By applying Lemma 2.1 (y times) and Lemma 2.2 ((u-y+s)/2-t times), it remains to find a 5-cycle system of $E_{2t-s} \vee_2 \langle T_r \rangle_w$. So when r=0,1,2,4 we need a 5-cycle systems of $E_3 \vee_2 \langle \{w/5,w/5,2w/5\}\rangle_w$, $E_6 \vee_2 \langle \{w/5,w/5,2w/5,2w/5\}\rangle_w$, $E_3 \vee_2 \langle \{w/5,w/5\}\rangle_w$, $\langle \{w/5,w/5\}\rangle_w$ respectively. Since $\langle \{w/5,w/5\}\rangle_w$ and $\langle \{2w/5,2w/5\}\rangle_w$ are each a collection of vertex disjoint copies of $2C_5$ (recall that $w\equiv 0\pmod 5$), the required 5-cycle system can be obtained by applying Lemma 2.3 (1,2,1,0 times for r=0,1,2,4 respectively).

In order to simplify the proof of Lemma 2.7, we first prove the existence of 5-cycle systems of some small graphs.

Lemma 2.6 There is a 5-cycle system of $2(K_v - K_u)$ for $(u, v) \in \{(2, 7), (2, 12), (2, 14), (2, 17), (2, 19), (3, 18), (5, 20), (6, 16), (6, 21)\}.$

Proof: First consider the case (u, v) = (2, 7). The graph $2(K_7 - K_2)$ can be written as the edge disjoint union of $K_2 \vee_2 C_5$ and $3C_5$ and clearly there is a 5-cycle system of each of these graphs. For the remaining values of (u, v) we find an integer s such that there is a 5-cycle system of $2(K_v - K_s)$

and of $2(K_s - K_u)$ and hence also a 5-cycle system of $2(K_v - K_u)$. When u = 2 we let s = 7, when u = 3 we let s = 8 and when u = 5 or 6, we let s = 10.

Lemma 2.7 There exists a 5-cycle system of $2(K_v - K_u)$ if $v \ge 5$, $v \ge \frac{3}{2}u + 1$ and

- (1) $u, v \equiv 0 \text{ or } 1 \pmod{5}$, or
- (2) $u \equiv v \equiv 3 \pmod{5}$, or
- (3) $u, v \equiv 2 \text{ or } 4 \pmod{5}$.

Proof: For the case u = 1 see Lemma 1.1. The proof for $u \ge 2$ is by induction on v. For each $u \geq 2$, there exists a v > u such that there is a 5-cycle system of $2(K_v - K_u)$ by Lemma 2.4 so assume that for all v'satisfying the conditions of the lemma and with v' < v, there is a 5-cycle system of $2(K_{v'}-K_u)$. If $v \leq 20$ or $v < 9u/4 + 9\frac{1}{2}$, then there is a 5-cycle system of $2(K_v - K_u)$ by Lemma 2.6, Lemma 2.4 or Lemma 2.5. Hence we can assume $v \ge 21$ and $v \ge 9u/4 + 9\frac{1}{2}$. Let s be the largest integer $s \equiv u$ or $v \pmod{5}$ such that $\frac{3}{2}s+1 \leq v$. We will show that there is a 5-cycle system of $2(K_v - K_s)$ and a 5-cycle system of $2(K_s - K_u)$ thereby showing that there is a 5-cycle system of $2(K_v - K_u)$. By the maximality of s, it follows that $s \ge 2(v-1)/3 - \frac{14}{3}$, that is $3s \ge 2v - 16$. Since $3s \ge 2v - 16$ and $v \ge 21$, it follows that $v \le 4s - 14$ and so by Lemma 2.4 or Lemma 2.5, there is a 5-cycle system of $2(K_v - K_s)$. Also, since $v \ge 9u/4 + 9\frac{1}{2}$ and $3s \ge 2v - 16$, it follows that $s \ge \frac{3}{2}u + 1$ (and $s \ge 5$) and so by the induction hypothesis, there is a 5-cycle system of $2(K_s - K_u)$.

3 $\lambda = 10$

Lemma 3.1 Let u, v be positive integers with $u \ge 2$, $(u, v) \ne (2, 4), (2, 5), (3, 6)$ and $\frac{3}{2}u + 1 \le v \le 4u + 1$. Then there exists a 5-cycle system of $10(K_v - K_u)$.

Proof: Let w = v - u and let y = 2v - 3u - 2. Notice that since $v \le 4u + 1$, $y \le 5u$, and since $v \ge \frac{3}{2}u + 1$, $y \ge 0$. Now $10K_w = \langle d_1, d_2, \ldots, d_{5(w-1)} \rangle_w$ so (since 5(w-1) = 5v - 5u - 5), we can partition these differences into (5u-y)/2 1-sets and y 3-sets, where in each 3-set it is not the case that all 3 differences are equal. Notice that for all permitted values of u and v, except (u,v)=(4,7) where y=0, $w=v-u\ge 4$ and so there is no difficulty in ensuring that no three differences in a 3-set are equal. Similarly, we can place the vertices of E_u into y 1-sets $(K_1$'s for Lemma 2.1) and (5u-y)/2 2-sets $(K_2$'s for Lemma 2.2) so that each vertex is placed in 10 different sets. The required 5-cycle system can now be constructed using Lemma 2.1 (y times) and Lemma 2.2 ((5u-y)/2 times).

Lemma 3.2 There exists a 5-cycle system of $10(K_v - K_u)$ if $v \ge 5$, $(u, v) \notin \{(2, 5), (3, 6)\}$ and $v \ge \frac{3}{2}u + 1$.

Proof: The proof uses induction on v and is similar to that of Lemma 2.7. For the case u=1 see Lemma 1.1. For each $u\geq 2$, there exists a v>u such that there is a 5-cycle system of $10(K_v-K_u)$ by Lemma 3.1 so assume that for all v' satisfying the conditions of the lemma and with v'< v, there is a 5-cycle system of $10(K_{v'}-K_u)$. Let s be the largest integer such that $\frac{3}{2}s+1\leq v$. By the maximality of s, it follows that $s\geq 2(v-1)/3-\frac{2}{3}$, that is $3s\geq 2v-3$. Hence it follows that $v\leq 4s+1$ (note that $v\geq 5$) and so by Lemma 3.1 there is a 5-cycle system of $10(K_v-K_s)$. Also, since we can assume $v\geq 4u+2$ and since $3s\geq 2v-3$, it follows that $s\geq \frac{3}{2}u+1$

(and clearly $s \geq 5$ and $(u, s) \notin \{(2, 5), (3, 6)\}$) and so by the induction hypothesis, there is a 5-cycle system of $10(K_s - K_u)$.

4
$$\lambda = 5$$

Lemma 4.1 Let w be even. If $y \leq 5(w-2)/3$, then there exist y edge-disjoint 3-regular spanning subgraphs G_1, G_2, \ldots, G_y of $5K_w$ such that for $i = 1, 2, \ldots, y$ there exists a 5-cycle system of $K_1 \vee G_i$ and such that $5K_w - (G_1 \cup G_2 \cup \ldots \cup G_y)$ has a 1-factorisation.

Proof: Let the vertex set of K_1 be $\{\infty\}$, let x = w/2, let $5K_w$ have vertex set $\mathbb{Z}_x \times \mathbb{Z}_2$ and let $h = \lfloor (x-1)/2 \rfloor$. Also, let $t = \min\{y, 5h\}$, let $D = \max\{y, 5h\}$ $\ldots, x-1, x-1, x-1, x-1, x-1$. Select t elements of D, select t elements of S and pair the selected elements of D to the selected elements of S arbitrarily. For i = 1, 2, ..., t the graph G_i is defined to be $\langle \{d\}, \{s\}, \{d\} \rangle$ where d and s make up the ith selected pair and the set $\{(\infty, (0,0), (d,0), (d+s,1), (s,1)) + (j,0) | j \in \mathbb{Z}_x\}$ is the required 5-cycle system of $K_1 \vee G_i$. Partition 3(y-t) of the remaining elements of S into y-t sets of size 3. For $t+1 \leq i \leq y$, the graph G_i is defined to be $\langle \emptyset, \{s_1, s_2, s_3\}, \emptyset \rangle$ where s_1, s_2, s_3 make up the *i*th set of size 3 and the set $\{(\infty, (0,0), (s_1,1), (s_1-s_2,0), (s_1-s_2+s_3,1))+(j,0)|j\in\mathbb{Z}_x\}$ is the required 5-cycle system of $K_1 \vee G_i$. Finally, $5K_w - (G_1 \cup G_2 \cup \ldots \cup G_y) = \langle C, T, C \rangle_x$ where either x/2 occurs 5 times in C or $|T| \geq 5$. Hence $5K_w - (G_1 \cup G_2 \cup G_3)$ $\ldots \cup G_y$) has a 1-factorisation by Lemma 1.3.

Lemma 4.2 Let u, v be odd integers with $u \ge 5$ and $\frac{3}{2}u + 1 \le v \le 4u - 5$. Then there exists a 5-cycle system of $5(K_v - K_u)$.

Proof: Let w = v - u and let y = 2v - 3u - 2. Notice that since $v \le 4u - 5$, $y \le 5(w - 2)/3$ and since $\frac{3}{2}u + 1 \le v$, $y \ge 0$. Now, by Lemma

4.1 we can partition the edge set of $5K_w$ into y 3-regular spanning graphs G_1, G_2, \ldots, G_y and a (5u-y)/2-regular spanning graph H such that for $i=1,2,\ldots,y$ there is a 5-cycle system of $K_1\vee G_i$ and such that H has a 1-factorisation. Pair up the (5u-y)/2 1-factors in a 1-factorisation of H to form (5u-y)/4 even 2-factors. Now, we partition the graph E_u into y copies of K_1 and (5u-y)/4 copies of E_4 so that each vertex of E_u is in 5 distinct graphs. The required 5-cycle system is obtained from the y 5-cycle systems of $K_1\vee G_i$ and by pairing the (5u-y)/4 copies of E_4 with the (5u-y)/4 even 2-factors and applying Lemma 1.4 ((5u-y)/4 times). \square

Lemma 4.3 There exists a 5-cycle system of $5(K_v - K_u)$ if $u, v \ge 5$, u is odd, v is odd, and $v \ge \frac{3}{2}u + 1$.

Proof: The proof uses induction on v and is similar to that of Lemma 2.7. For the case u=1 see Lemma 1.1 and for the case u=3 see Lemma 4.5. For each $u\geq 5$, there exists a v>u such that there is a 5-cycle system of $5(K_v-K_u)$ by Lemma 4.2 so assume that for all v' satisfying the conditions of the lemma and with v'< v, there is a 5-cycle system of $5(K_{v'}-K_u)$. Let s be the largest odd integer such that $\frac{3}{2}s+1\leq v$. By the maximality of s, it follows that $s\geq 2(v-1)/3-\frac{5}{3}$, that is $3s\geq 2v-7$. Hence it follows that $v\leq 4s-4$ (note that $v\geq 17$) and so by Lemma 3.1 there is a 5-cycle system of $5(K_v-K_s)$. Since $3s\geq 2v-7$, $u\geq 5$ and since we can assume $v\geq 4u-3$, it follows that $s\geq \frac{3}{2}u+1$. Hence by the induction hypothesis, there is a 5-cycle system of $5(K_s-K_u)$.

Lemma 4.4 There exists a 5-cycle system of $5(K_v - K_3)$ for v = 7, 9 and 11.

Proof: The following collections of 5-cycles give the required systems. In each case the vertex set is $\{0, 1, ..., v-1\}$ and the vertices in the hole are $\{0, 1, 2\}$.

```
5(K_7 - K_3)
(0,3,1,4,5), (0,4,2,3,6), (1,5,3,4,6), (0,3,1,4,5), (0,4,2,3,6),
(1,5,3,4,6), (0,3,1,4,5), (0,4,2,3,6), (1,5,3,4,6), (0,3,1,5,6),
(0,4,1,6,5), (2,3,4,5,6), (0,3,2,5,6), (0,4,2,6,5), (1,3,5,2,6),
(1, 4, 6, 2, 5), (2, 4, 6, 3, 5), (2, 5, 4, 3, 6).
  5(K_9 - K_3)
(0,3,1,4,5), (0,4,2,3,6), (0,7,1,5,8), (1,6,2,7,8), (2,5,3,4,8),
(3, 7, 4, 6, 8), (0, 3, 1, 4, 5), (0, 4, 2, 3, 6), (0, 7, 1, 5, 8), (1, 6, 2, 7, 8),
(2,5,3,4,8), (3,7,4,6,8), (0,3,1,4,5), (0,4,2,3,6), (0,7,1,5,8),
(1,6,2,7,8), (2,5,3,4,8), (3,7,4,6,8), (0,3,1,4,5), (0,4,2,3,6),
(0,7,1,5,8), (1,6,2,7,8), (2,5,3,4,8), (3,7,4,6,8), (0,3,1,4,8),
(0,4,5,6,7), (0,5,1,7,6), (1,6,5,7,8), (2,3,5,6,7), (2,4,6,7,5),
(2, 6, 7, 5, 8), (3, 4, 7, 5, 6), (3, 7, 5, 6, 8).
  5(K_{11}-K_3)
(0,3,1,4,5), (0,4,2,3,6), (0,7,1,5,8), (0,9,1,6,10), (1,8,2,5,10),
(2,6,4,3,7), (2,9,3,8,10), (3,5,6,7,10), (4,7,5,9,8), (0,3,1,4,5),
(0,4,2,3,6), (0,7,1,5,8), (0,9,1,6,10), (1,8,2,5,10), (2,6,4,3,7),
(2, 9, 3, 8, 10), (3, 5, 6, 9, 10), (4, 7, 5, 9, 10), (4, 8, 6, 7, 9), (4, 9, 8, 7, 10),
(0,3,1,4,5), (0,4,2,3,6), (0,7,1,5,8), (0,9,1,6,10), (1,8,2,5,10),
(2, 6, 4, 3, 7), (2, 9, 3, 8, 10), (3, 5, 6, 7, 10), (4, 7, 8, 6, 9), (4, 8, 6, 9, 10),
(0,3,1,4,5), (0,4,2,3,6), (0,7,1,5,8), (0,9,1,6,10), (1,8,2,5,10),
(2,6,4,3,7), (2,9,3,8,10), (3,5,6,7,10), (4,7,5,9,10), (4,8,7,5,9),
(0,3,1,4,5), (0,4,2,3,6), (0,7,1,5,8), (0,9,1,6,10), (1,8,2,5,10),
(2,6,4,3,9), (2,7,6,9,10), (3,5,7,9,8), (3,7,9,8,10), (4,7,8,6,9),
(4, 8, 9, 7, 10), (5, 6, 8, 7, 9).
```

Lemma 4.5 There exists a 5-cycle system of $5(K_v - K_3)$ if v > 7 is odd.

Proof: By Lemma 4.4, the result holds for $v \leq 11$ and so we need only consider $v \geq 13$. But by Lemma 4.3, there is a 5-cycle system of $5(K_v - K_7)$ for all odd $v \geq 13$. Hence, since there is a 5-cycle system of $5(K_7 - K_3)$, we have a 5-cycle system of $5(K_v - K_3)$.

5 Main Theorem

Theorem 5.1 Let u, v and λ be positive integers. There exists a 5-cycle system of $\lambda(K_v - K_u)$ if and only if $(u, v) \notin \{(2, 5), (3, 6)\}, v \geq \frac{3}{2}u + 1$ and

(1) if
$$\lambda \equiv 1, 3, 7, 9 \pmod{10}$$
 then

(1a)
$$u, v \equiv 1 \text{ or } 5 \pmod{10}$$
; or

(1b)
$$u, v \equiv 7 \text{ or } 9 \pmod{10}$$
; or

(1c)
$$u, v \equiv 3 \pmod{10}$$
; and

(2) if
$$\lambda \equiv 2, 4, 6, 8 \pmod{10}$$
 then

(2a)
$$u, v \equiv 0 \text{ or } 1 \pmod{5}$$
; or

(2b)
$$u, v \equiv 2 \text{ or } 4 \pmod{5}$$
; or

(2c)
$$u, v \equiv 3 \pmod{5}$$
; and

(3) if $\lambda \equiv 5 \pmod{10}$ then u and v are odd.

Proof: The necessity of the conditions follows from Lemma 1.2. Clearly if there exists a 5-cycle system of $\mu(K_v - K_u)$, then there exists a 5-cycle system of $\lambda(K_v - K_u)$ for all multiples λ of μ . Hence, since sufficiency is proved for $\lambda = 1, 2, 5$ and 10 (see Lemmas 2.7,4.3,4.5,3.2 and [3]) the result follows immediately.

References

- P. Adams, E. J. Billington and D. E. Bryant, The spectrum for lambdafold Steiner pentagon systems, Journal of Statistical Planning and Inference, 56 (1996) 3-15.
- [2] J. A. Bondy and U. S. R. Murty, Graph theory with applications, North Holland, 1976.
- [3] D. E. Bryant, D. G. Hoffman and C. A. Rodger, 5-cycle systems with holes, Designs Codes and Cryptography, 8 (1996) 103-108.
- [4] D. E. Bryant and C. A. Rodger, The Doyen-Wilson Theorem extended to 5-cycles, Journal of Combinatorial Theory A, 68 (1994) 218-225.
- [5] D. E. Bryant and C. A. Rodger, On the Doyen-Wilson Theorem for m-cycle systems, Journal of Combinatorial Designs, 2 (1994) 253-271.
- [6] D. E. Bryant, C. A. Rodger and C. A. Rodger and E. R. Spicer, Embeddings of m-cycle systems and incomplete m-cycle systems: $m \le 14$, Discrete Mathematics, 171 (1997) 55-75.
- [7] J. Doyen and R. M. Wilson, Embeddings of Steiner triple systems, Discrete Mathematics, 5 (1973) 229-239.
- [8] D. G. Hoffman, unpublished manuscript.
- [9] D. G. Hoffman and C. A. Rodger, The chromatic index of complete multipartite graphs, Journal of Graph Theory, 16 (1992) 159-163.
- [10] E. Mendelsohn and A. Rosa, Embedding maximum packings of triples, Congressus Numerantium, 40 (1983) 235-247.
- [11] D. Sotteau, Decompositions of $K_{m,n}(K_{m,n}^*)$ into cycles (circuits) of length 2k, Journal of Combinatorial Theory B, 30 (1981) 75-81.
- [12] G. Stern and A. Lenz, Steiner triple systems with given subspaces; another proof of the Doyen-Wilson theorem, Boll. Un. Mat. Ital. A (5), 17 (1980) 109-114.