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ABSTRACT. In this paper we count the number of non-homeomorphic
continua in a certain collection of continua. The continua in
these collections are trees with certain restrictions on them. We
refer to a continuum in one of these collections as a caterpillar
continuum.

1 Introduction

In this paper we define what we call caterpillar continua. A caterpillar
continuum is a tree with certain restrictions on it. For a given class of
caterpillar continua, we count the number of non-homeomorphic caterpillar
continua in that class.

2 Notation and Definitions

We use the notation and definitions from continuum theory (see [5]). A
graph is a continuum that can be written as the union of finitely many
arcs, any two of which are either disjoint or intersect in one or both of
their endpoints. A tree is a graph containing no simple closed curves. If
T is a non-degenerate, connected tree then for z € T', ord(z, T) is just the
number of components of T — {z}. The point z is a non-cut point of T if
ord(z,T) = 1. If ord(z,T) > 1 then z is a cut point of T.

We define a caterpillar continuum as follows:

C is a caterpillar continuum provided
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a) C is a non-degenerate connected tree.

b) There is an arc A(C) in C such that
V(C) ={z |z € C,ord(z,C) > 3} C A(C)
and the two endpoints of A(C) are elements of V(C).

Clearly, A(C) is unique for each caterpillar contimuum, since C is non-
cyclic. If #V(C) = n, then we can label the endpoints of A(C) v, and
vn. Also, we can label the other points in V(C) such that their labeling
corresponds to the natural ordering on A(C), that is

VI <V <+ - < Vp.

It is clear that A(C) induces two orderings on V(C) depending on which
endpoint is labeled v;. By C(m, j) we denote the following set:

C(m,j) ={C | C is a catepillar continuum, #V(C) =3,
there are m non-cut points in C}

Our objective is to count the number of non-homeomorphic elements
in each set C(m,j). We will denote this number by n(C(m, j)). Clearly
each element in C(2,0) is an arc, so #(C(2,0)) = 1. Also, for m > 3,
C(m,0) = ¢. It is also clear that each element of C(m, 1) is an m-odd
for m > 3, so n(C(m,1)) = 1. It is the case that for j > 1, C(m,j) is
non-empty only when m > j + 2.

In our counting argument we use the fact that the number of ways to
distribute n objects into k positions is given by

("r7Y) et @

We also employ Burnside’s Theorem (see [1]) which we state below:

Burnside’s Theorem: Suppose a finite group G acts on a finite set S.
Let By, ..., By be the different orbits. For each a € G, let F(a) be the set
of fixed points of .. Then

= 1 X IF(a)l

a€CG

3 Main Result

Theorem 1. Let C(m, j) be the collection of caterpillar continua as defined
above. Then the number of non-homeomorphic elements n(C(m,j)) in
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C(m,j) for j > 1 and m > j + 2 is given below:

(3 m?;iz j even, m odd
m—4
3 m":;fg) +( &Tg;?_)] j even, m even
1)) = m—j=2  m-8-2
MO = 4 (m2) + T (mmshorss)| 3 0dd, m odd
m—j=3  m-s-2i
\'% mn:;fz) +3i6 (mesis-u)| 7 odd, m even.

Proof: In order to count the number of non-homeomorphic caterpillar
continua in each set C(m, 5), we need a simple way to represent the various
classes of elements in this set. Let G € C(m, ), let V(G) = {w, ooy Ui}
where v; and v; are the endpoints of A and v; < vp < +++ < vj. Let
ki = ord(v;) —2 for i = 1,2,...,5. Note that Y.7_, ki = m — 2. We can
represent G and all elements of C(m, j) which are homeomorphic to it by
an ordered j tuple (ki,...,k;). Clearly, (kj, kj_1,...,k;) also represents
this same set of graphs in C(m,j). We need to deternine the number of
distinct sets of graphs determined by all such j-tuples.

For example when j = 3 and m = 7, we obtain the following 3-tuples:
Z, = (3,1,1), X2 = (1,3,1), X3 = (2,2,1), X4 = (2,1,2), X5 = (1,1,3)
and X = (1,2,2). Let G; be the set of graphs in C(7,3) (all of which are
homeomorphic) which is represented by X; for each i. Clearly, G; = G5
and G3 = Gg. It is also clear that G;, G2, G3 and G4 are distinct subsets
of C(7,3) and that |J;_, G; = C(7,3) and nC(7,3) = 4.

Clearly, two j-tuples (a1,as,...,a;) and (by,bs,... ,b;) represent the
same subset of C(m, j) ifand only ifa; = b; fori = 1,2,...,jora; = bj—it1
fori=1,2,...,5. That is, they represent the same subset of C(m,j) when
they are either identical or mirror images of each other.

Let S be the set of all possible j — 1-tuples, the sum of whose digits (all
non-zero) is equal to m — 2. We want to count the number of different
orbits of the group G = {e, 7} where e is the identity permutation and 7@
is the mirror image permutation on S. :

To simplify our calculations, we first consider S to be made up of k-tuples
(d1,dy,...,dx), where Zle d; =n and d; could be zero. v

By () above we note that |S| = (”"’:‘l). By Burnside’s theorem, the
number N of different orbits of G is

1
N=rm 3" IF(a)).

a€EG
where F(a) = {z € S: ax = z}. That is we have

N = S(F(@)| + | Fm).
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Since ez = z for all z € S, then
FEI=151=("*E71).

Now if k is even and n is odd, then obviously it is impossible for any of
the k-tuples to be mirror images of each other. Therefore, F(T) = ¢,and
|F(7)| = 0. Hence, we have

keven,nodd = N = 2(n+: 1). (1)

Now if k is even and n is even, then any elements of S which will be fixed
by 7 must be symmetric about it’s center. Thus, since k is even, the first
% digits must be the same as the last £ digits (in reverse order). Thus,

the ¥ digits must add up to 2. The number of combinations of £ digits
summing to 3 is given by

("),

Since no other element of S remains fixed by 7%, we have

ipem)= (282D,

Hence, we have

k even, neven = N = % [(n+:— 1) + (n/2-;l/c£2 - 1)] . (2

Now if k is odd and n is odd, then any element of S which will be fixed
by 7, must have an odd digit d. in the center. That leaves '°“1 digits on
each side of the center digit d.. To be fixed by 7, these %31 d)gnts must

be the same on each side. They must also sum to "—'2£=. Thus, the number
of elements in S with an odd digit d. in the center which are fixed by m is

given by:
((n d.)/2+ (k—1)/2 - 1)
(n—d.)/2
Since d. can be any odd number less than or equal to n, we see that

(n—1)/2 .
Fem= 3 ([n— i+1))/2+ (k—1)/2- 1)‘

& (n - (2i+1))/2
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Hence, we have

kodd, n odd = N =+ [(’”k“l)
2 n

+

2 (n— (2i +1))/2

(n—-1)/2 .
[(n—(@+1))/2+(k-1)/2-1
% ( )]é)

Now if k is odd and n is even, then any element of .S which will be fixed
by 7 must have an even digit d.. in the center. That leaves £5% digits on
each side of the center digit d.. To be fixed by 7, these £ "‘1 dlglts must be
the same on each side. They must also sum to l‘—dﬂ Thus, the number of
elements in S with an even digit d. in the center which are fixed by m is

given by
((n —d;)/2+(k-1)/2 - 1)
(n - dc)/z )
Since d. can be any even number less than or equal to n, we see that
n/2

1 (n-28)/24+(k-1)/2-1
Femi=3 (e L)
Hence, we have

k odd, n even ==~N=l [(n+k—1)
2 n

n/2 ,
(n—2i)/2+ (k—1)/2 -1
2 (" )]' @

i=0

Equations (1), (2), (3) and (4) were derived using k-tuples. Also we

allowed the digits d; to be zero and Ef___l d; = n. If we do not permit digits
to be zero instead of formula

"5 @
we would use formula
((n - :)_+kk - 1) _ (: - I1c) (en)

If the sum of the digits is m—2 instead of n and we have j positions instead
of k positions, we would adjust formula (#) in the following manner:

()= (h) e
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Making the corresponding adjustments in equations (1), (2), (3) and (4)
we get

(3 m':;_ii o j even, m odd
3 ,::;32) +( x_:;z_)] j even, m even
1)) = m—5-2i
n(C(m,J)) =1 % m'ﬁgsz) + Zz—o (m-i—n—zi) J Odd m odd

m—3 m—=0-2i .
mego2) + E,_o (,,._i_,-,.) Jj odd, m even.

(LT

O

For m where 3 < m < 11, we arrange the values of n(C(m,j)) in a

triangular array similar to Pascal’s triangle (see display 1). The m — 2 row
contains n(C(m, 1)) through n(C(m, m — 2)) in order from left to right.

3 1
4 1 1
5 1 1 1
6 1 2 2 1
7 1 2 4 2 1
8 1 3 6 6 3 1
9 1 3 9 10 9 3 1
10 1 4 12 19 19 12 4 1
1 1 4 16 28 38 28 16 4 1

It is mterestmg to note the various number gattems in this triangle. To
obtain n( n(Uj; % C(m, 7)) we compute 3™ n(C(m,j)).

Previously the term caterpillar has been deﬁned in abstract graph theory.
A caterpillar is an abstract graph which is a tree with at least three vertices
such that the tree 7" formed by deleting all the endpoints is a path. The
number of caterpillars with n + 4 vertices is equal to N(n) = 2" + 2(%]
(see [4]). However, this counting scheme does not work for our purposes.
For instance, V' = {vov1,v1v2,%1v3} and V' = {wpvy,v1v], v{vs, v1v3} are
distinct caterpillars. However, the geometric realization of each of these
caterpillars is a simple 3-odd.

For other related results see [3].
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