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Abstract. Let (P, B,I) be a symmetric (v, k, A) block design. The
incidence graph G of this design is distance-regular, hence belongs
to an association scheme. In this paper, we use the algebraic struc-
ture of this association scheme to analyse certain symmetric parti-
tions of the incidence structure.

A set with two intersection numbers is a subset X C P with the
property that |B N K| takes on only two values as B ranges over
the blocks of the design. In the special case where the design is a
projective plane, these objects have received considerable attention.
Two intersection theorems are proven regarding sets of this type
which have a certain type of dual. Applications to the study of
substructures in finite projective spaces of dimensions two and three
are discussed.

1 Introduction

Consider a symmetric block design (P,B,I). Here P denotes a set of v

points, B denotes a set of v blocks, and Z C P x B is an incidence relation

with the following properties: any point (resp., block) is incident with &k

blocks (resp., k points); any two points (resp., blocks) are incident with

exactly A common blocks (resp., A common points). Examples include the

point-hyperplane incidence structure of any finite projective geometry and

designs arising from Hadamard matrices.
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A set of type (s,t) in our design is a subset K of P with the property
that every block of the design is incident to either s or ¢ points of K. In
the special case where (P, B,Z) is a projective plane, such sets have been
studied extensively. See [9] and the references cited therein.

Example: In an arbitrary symmetric design, consider a pair of distinct
points, p and ¢. The line through p and ¢ is the collection of all points
having the property

(rZBand ¢IB) = rIB

for every block B € B. Let £, denote the line through p and g. Then
[€pgl < (v = A)/(k — A). (See [8, p15]).) A line meeting this bound with
equality is called mazimal. It is known that £, is maximal if and only if
every block is incident with some point of £p4. Thus a maximal line is a set
of type (1, £=2) in this design. o

The following is well-known. If K is a set of type (s,t), then P — K is a
set of type (k—s, k —t). Moreover, there are two kinds of blocks, depending
on incidence with K, and each of these is a set of type (s',t’) in the dual
symmetric design (B, P, ZT) for some integers s’ and ', depending on which
set is considered.

In this paper, we examine a special case of this scenario using two ele-
mentary results from the theory of association schemes. The incidence graph
of any symmetric design is distance-regular. Thus its adjacency algebra is
a Bose-Mesner algebra. The main observation of this paper is roughly as
follows: the fact that a certain Krein parameter of this association scheme
is equal to zero has non-trivial combinatorial consequences for the inter-
section properties of certain subconfigurations in the design. It is hoped
that this technique will someday be applied more widely, for instance in
the study of block designs or error-correcting codes.

The paper is laid out as follows. Two intersection theorems for config-
urations in association schemes are proved in Section 2. In Section 3, we
review basic information regarding the incidence graph of a symmetric de-
sign. Next, we explain in Section 4 how the configurations we study arise
from a special class of sets with two intersection numbers. In Section 5, we
give examples and demonstrate how the intersection theorems apply in the
case of finite projective planes and projective geometries.

2 Vanishing Krein parameters
Let X be a finite set of size m > 0 and let 4 = {Ao,..., A4} be a set of

d+ 1 symmetric 01-matrices with rows and columns indexed by X. We say
(X, A) is a symmetric association scheme provided
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(i) 4=1

(i) > A; = J, the all-ones matrix of order m;

(iit) for any choice of ¢ and j (0 < i,j < d), the matrix product A;A; lies
in the linear span of A.

The vector space spanned by Ay, ..., A4 is called the Bose-Mesner algebra
of the association scheme (X,.4). This is a (d + 1)-dimensional commuta-
tive algebra of symmetric m x m matrices which is also closed under Schur
(entrywise) multiplication and contains both I and the all-ones matrix J.
This algebra has a unique basis {Ey,..., Eq} of primitive idempotents
(E:E; = 6; E;). By convention, we take Eq = %J. If o denotes the Schur
product of two matrices, then the Krein parameters of the scheme are de-
fined as the structure constants given by

d

1

EioE; = I_JTIE 45 Ex. (1)
k=0

We use the notation and results of Chapter 2 in [3]. The following lemma
is an easy generalization of Equation (9) on p61 of [3] (cf. Equation (2.28)

in [6]).

Lemma 1. Let (X,.A) be a d-class symmetric association scheme and u €
R™. Then, for0<1i,j <d,

d
1
|E: A E;I* = X > g uTEru
k=0

where A, denotes the diagonal matriz with (z,z)-entry equal to u, and
|| M|| = y/trace(M*M) denotes the £3-norm of a matriz M.
Proof. We have

||E,'Aqu||2 = trace {EjAuEiAqu}

= Z Z uytiz (Ei)y: Z(Ej)zy(Ej)w

yeEX zeX z€X

= Z Z uyuz(Ei)yZ(Ej)yz

yE€EX zeX

d
= J 2 T E (B

k=0 y

d
1
= 'I?I'Zq?juTEkﬂ. a
k=0
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A well-known property of Krein parameters is the following: qu =0if
and only if g3; = 0 (see [3, Lemma 2.3.1(iv)]). The following theorem is
originally due to Cameron, Goethals, and Seidel [5, Theorem 5.1]. (See also
Proposition I1.8.3(i) in [1}.) We supply an elementary proof based on the
above lemma. Here, V; denotes the jt* eigenspace, i.e., the column space
of the idempotent E;.

Theorem 1. Ifu €V, and v € V; and qu = 0, then uov is orthogonal to
Vi where u o v denotes the entrywise product of vectors u and v.

Proof. We have v = Ejv and uov = Ayv. So it suffices to show that
EiAuE; = 0. Now u € Vg, so

Eru=46gu .

Since qu = 0, Lemma 1 gives the result. o
For a subset C C X with characteristic vector z, define the dual degree

setof C as
s(C)={j: Ejz #0}.

This term is due to Godsil. For a fixed d-class association scheme (X, .A)
and F,G C {0,...,d}, define

F*G:{k:qu>0forsome i€ F,j G}
(cf. Zieschang [11]). Here are our two intersection theorems.
Theorem 2. For any two subsets, C and D, of X, we have
s(CND)C s(C)*s(D).

Proof. Denote the characteristic vectors of C' and D by x and y, respec-
tively. Express each as a sum of its projections onto the various eigenspaces:

r= Y.z,  y= Y. ¥

jes(C) jes(D)

where z; = E;z and y; = Ejy. The characteristic vector of CN D is

zoy= 2 E zio0Y;.

i€s(C)jes(D)

Theorem 1 guarantees that all terms appearing in the double sum on the
right-hand side lie in
@ Vi. O

k€s(C)»s(D)
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Theorem 3 (Roos [10, Corollary 3.3]). Let C and D be subsets of
X. If s(C) and s(D) contain no common element other than zero, then
|CnD|=IC|-|D|/IX]-

Proof. Recall that Ey = |X|~1J where J is the all-ones matrix. Thus, for
any set S C X with characteristic vector z, Eoz = (|S|/|X|)1 where 1
denotes the vector of all ones.

Suppose C has characteristic vector  and D has characteristic vector
y. Then CN D has characteristic vector zoy. As in the proof of the previous
theorem, we express each of z and y as a sum of its projections into the

various eigenspaces:
jes(C) j€s(D)

Now, with §(C) = s(C) — {0} and 3(D) = s(D) - {0},

zoy=(zoom)+ D, zooy+ D Tiovwet D, D Ty

jes(D) Jjei(C) i€5(C) jes(D)
Now ¢; = 0 unless i = j, so (z; oy;)LVp unless i = j = 0 (Theorem 1).

Hence, Eo(zoy) = zooyo and the result follows from the observation above.
a

3 The incidence graph of a symmetric design

Let (P, B,Z) be a symmetric design with incidence graph G. That is, G has
vertex set X = PUB and edge set ZUZ7 . This is a bipartite distance-regular
graph of diameter three with intersection array

{k,k—1,1;1, Ak} .

Let A denote the adjacency matrix of G. The eigenvalues of A are 6y = k,

0, = \/n, 8 = —/n and 03 = —k where we define n = k — A\. We order the
eigenspaces Vo, Vi, V2, V3 of A according to decreasing eigenvalue: Av = ;v
forv e V;.

Since G is distance-regular, the algebra generated by A is a Bose-Mesner
algebra. It has two standard bases:

{Ao=1,A1 = A ,A2,A3} and {Eo, E\ E» E3},

where, as usual, A; is the i*! distance matrix of G. The distance-two graph is
a union of two cliques of size v and the distance-three graph is the incidence
graph of the complementary symmetric design. The matrix Ej; represents
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orthogonal projection onto V. Clearly E; = £J. We note that E3 =
N 1 -1
27 ® (-1 1
the following Krein parameters vanish: g;; = Ounless i + 5 = 3.

is also a rank one matrix. It is thus easy to verify that

4 Sets with two intersection numbers

Let G denote the incidence graph of design (P, B, ). An equitable partition
of G is a partition 7 of the vertex set X having the property that, for any
two cells C and C’ of 7 there exists a constant r¢,c such that every vertex
in C is adjacent to exactly r¢ ¢/ vertices in C’. A simple but useful lemma
is the following;:

Lemma 2 ([7, Lemma 5.2.2]). If m is an equitable partition of G and
B is the matriz with rows and columns indexed by the cells of m having
(C,C")-entry equal to r¢,c1, then every eigenvalue of B is an eigenvalue of
the graph G. o

The matrix B appearing in the lemma is called the quotient matriz of
the partition. For more information on equitable partitions, see Chapter 5
in [7].

We are interested in equitable partitions of the incidence graph G having
exactly four cells, two of which partition P. (In fact, this latter condition
is superfluous.) Such a partition will be denoted = = { Py, P2, By, B,}. See
Figure 1. The parameters for this partition will be denoted r;; and k;;: each
point in P; is incident to r;; blocks from B; and each block in Bj is incident
to kj; points in P;. As a straightforward extension of the identities listed
in [9], we have the following equations, with p; = |P;| and b; = | B;|:

r+ri2 =k, (2)
roy + 122 =k, (3)
ra1k11 + ro2ka1 = Apy, (4)
r11(k11 = 1) + ria(k21 — 1) = A(p1 = 1). (5)
Any solution {r;; : 1 < i,j <2} to this system also satisfies
ri2k2z + ri1ki2 = Apa, (6)
ra1{k12 — 1) + raa(k22 — 1) = A(p2 — 1) (7)

given that po = v—py, k12 = k— k1) and kaz = k—k»,. Here are expressions

for all remaining parameters in terms of &, n, ky;, k21, and p;:

kak—Ap—n

—_— 8
kay—kyy ' ®

T11 =
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T e~k ®
_ ka1ik—Apy

7'21 - kzl — kll 3 (10)
Apy — knk

= — 11

el vy 3 (11)

by = p1r11/kuy, (12)

bz = p1r12/k21. (13)

Upon simplification, we find 712 —r22 = n/(kg; —k;;) with the fundamental
consequence that ka; — ky; is a divisor of the order n of the design.

Fig. 1. A typical partition arising from a set of type (k11, k21).

Next, observe that b, and b, satisfy

bi+ba=v (14)
k11by + ka1ba = kpy (15)
k11(k11 = 1)by + ka1 (k21 — 1)ba = Apy(p1 — 1). (16)

If we multiply equation (14) by ky;k2:, multiply equation (15) by 1 —k;; —
k21 and add these two results to equation (16), we find

Ap} — [+ k(ku1 + k21 = Dlpy + knikayv = 0. (17)

Thus, given k11 and k), there are at most two choices for |P;| and these
must be integers. The above numerology shows how to determine all re-
maining parameters from these.
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The quotient matrix B of this equitable partition 7 is

0 0 ™11 T12

- 0 0 T21 722
B=1ku k2 0 0
ka1 k2 0 O

It is easy to check that any solution to the above equations gives eigenvalues
+k, £+/n, precisely the eigenvalues of G.

Lemma 3. The partition 0 = {P, U By, P, U By} of X is an equitable
partition of G if and only if k12 = r12 and either: (i) kyy # 0; or, (ii)
k11 =0 and kgl = \/1_2

Proof. Clearly, if o is equitable, then k;2 = ri2. If this holds and ky; = 0,
then the quotient matrix of this partition is

(o #Lk)
ka1 k—kan /)"’

The trace of this matrix is k — k21, hence its eigenvalues are k and —ko;.
Since —k2; must be an eigenvalue of G by Lemma 2, we have k23 = /n.
Conversely, if k13 # 0, then k13 = ry) forces by = p; by simple double
counting. Now it is easy to see that k3, = r2; and o is equitable. On the
other hand, if ky; = 0 and ko) = s with s = \/n, then p; = s(k—s)/(k —s?)
from (17) and

k-5 kp
bhmv—byp=— = P _ .
1=V—02 k— 52 s 41
Again, this is enough to guarantee that o is equitable. a

In this paper, we want to focus on partitions which satisfy the conditions
of Lemma 3. (Of course, with re-labelling, this also includes the case where
k23 = r11.) In this case, the quotient matrix of this coarser partition is

B = (7'11 1‘12)
ra1 T2/’

Note that the same matrix is found by replacing r;; by k;; and our original
01
1 0
of B’ are k and r;; — r9;. Since the eigenvalues of G are +k and +/n,
we must have that n is a square and r;; — r21 = %/n. So we henceforth
assume that n = s? for some positive integer s. (By the Bruck-Ryser-Chowla
Theorem, this is always the case when v is even.) This gives A = k—s? and
v=(k? = s%)/(k — s?).

4 x 4 quotient matrix can be expressed as B' ® . The eigenvalues
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Corollary 1. If the conditions of Lemma 3 are satisfied, then n is a perfect
square. a

The configurations of interest to us fall into two classes, according as
r11 4 r22 = k+ 5 or r; + rag = k — 5. Before looking at some examples, we
make a few observations about the parameters of these configurations.

In the event that ry; + 722 = k + s, we abbreviate r;; to r and we can

write,
' r k—r
B—(r—s k+s—r)'

Since 741 > 0, we know r > s + 1. Our equitable partition has cells C :=
PyUB,; and X — C. Counting the edges between C and X — C in two ways
gives

IC|(k~r) = (2v—|C|)(r —3)
which yields an expression for |C|:

2k + s)(r—s
|P1U31|=—(+)--

Similarly, for the case ry; + ra2 = k — 5, we have

' r k—r
B = (r-{-s k—s—r)

so r < k — s. Furthermore, in this case, we find

Ic| = 2(k — s;(r+s)

where, again, C := P, U B;.

5 Intersecting V;-sets and V;-sets

The one-dimensional eigenspace V3 of G is spanned by the vector zp —
zp where zp denotes the characteristic vector of P and zp denotes the
characteristic vector of B. Let us say that a subset C C X is square if C
contains equally many points and blocks.

Observation: A subset C C X is square if and only if its characteristic
vector is orthogonal to V.

A subset C C V with characteristic vector z¢ is a Vy-setif z¢c € Vo® W1
and a Vy-set if z¢c € Vo @ V2. Observe that each Vj-set and each V-set is
square. With the notation of the previous section, also observe that the two
cells of the partition o are both Vj-sets if r1; + r23 = k + s and are both
Va-sets if r13 + r22 = k — 5. Conversely, if C is a V;-set or a Vz-set, then
{C,X — C} is an equitable partition as in Lemma 3. This follows from a
result of Delsarte [6] (or see [3, Theorem 11.1.1(iv)]).
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Corollary 2. If C and C' are both V;-sets (or both Va-sets), then CNC’
s square.

Proof. Suppose C and C’ are both Vj-sets. We have ¢, = 0. So by Theo-
rem 2 the characteristic vector of C N C’ is orthgonal to V3. Thus CNC' is
square. Since ¢3, = 0, the same argument applies when both C and C' are
Vo-sets. a

Corollary 3. If C is a V;-set and C’ is a Vs-set, then
v

Proof. Apply Theorem 3. a

Examples:

1. Consider a projective geometry of dimension d and order n = 2. (In the
case d = 2, this may or may not be Desarguesian.) A Baer subgeometry
consists of a subset C of (s9+! —1)/(s—1) points and (s¥+! —1)/(s—1)
blocks such that the induced incidence structure is a projective geome-
try of the same dimension and order s. It is easy to check that the set
C is a Vj-set with quotient matrix

s+1 s2—s
1 s? :

2. Consider a projective geometry PG(d, ) with d odd. In the affine space

F;(d"'l), let T be a (d + 1)-dimensional subspace. Consider the set C
consisting of all one-dimensional spaces contained in T and all (2d+1)-
dimensional spaces containing T'. This is a V;-set in the incidence graph
of PG(d, ¢) with k1; = p;. Further examples of V}-sets can be obtained
by choosing a collection T, . . ., T; of mutually skew (d+ 1)-dimensional
spaces and taking the union of the corresponding sets C. In PG(3, q),
hyperbolic quadrics arise as a special case: here C consists of (g + 1)2
points and (g + 1)? planes.

3. In PG(3,q), an ovoid is a set O of ¢% + 1 points such that any plane is
either tangent to O or meets it in ¢+ 1 points. It is easy to see that there
is a unique tangent plane at any point of . So the set C consisting
of all points in O and all planes tangent to @ forms a Va-set in the
incidence graph of PG(3, q).

4. In a projective plane of order n = s?, a unital is a set U of s3>+ 1 points
having the property that every line meets Y/ in either one or s+1 points.
The lines of the former type are called tangents to Y and it transpires
that there are precisely s® + 1 such tangents, forming a unital in the
dual plane. If C is the set consisting of all points in &/ and all tangents
to U, then C is a Vo-set in the incidence graph of the plane.

2
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5. In a projective plane of order n = s2, a marimal s-arc is a set A of
s(s® — s + 1) points having the property that every line either meets
A in s points or is passant to A. It turns out that there are precisely
s(s% — s+ 1) passants to .4, forming a maximal s-arc in the dual plane.
If C is the set consisting of all points in .4 and all passants to .4, then
C is a V5-set in the incidence graph of the plane.

6. In the symmetric (16, 6, 2)-design defined on Z32, the points and blocks
of a symmetric (4, 3, 2) subdesign give us a V;-set with quotient matrix

(3 3)

In this same design, we can find a set of type (0,2) which gives rise to
a Vp-set of size eight. This design also admits a Vj-set with quotient
matrix 2(7 + J).

7. In PG(2,4), it is possible to find two disjoint hyperovals and six secants
of each which form two disjoint hyperovals in the dual plane. These 24
elements give us a V;-set in the incidence graph of PG(2,4).

We now give five applications of Corollaries 2 and 3 to some of the
objects described in the above examples.

Corollary 4 (Bruen [4]). In a projective geometry of square order, any
two Baer subgeometries have equally many points and hyperplanes in com-
mon. o

It is interesting to remark that this result has been obtained with very
little information about the structure of PG(d, s2). In particular, when d =
2, the proof applies equally to the Desarguesian and non-Desarguesian cases.
In this case, the result is originally due to Bose, Freeman, and Glynn [2].
Note, however, that both [4] and [2] obtain structural information about
the intersection beyond what is stated here.

Corollary 5. In a plane of square order q = §%, any set C consisting of a
unital and its tangents contains ezactly 2s + 2 objects in common with any
Baer subplane. ]

Corollary 6. In a plane of square order q = s2, any set C consisting of a
mazimal s-arc and its passants contains ezactly 2s objects in common with
any Baer subplane. . m}

Corollary 7. In a plane of square order ¢ = s2, if each of C and C'
consists of either a unital plus its tangents or a mazximal s-arc plus its
passants, then C N C' contains equally many points and lines. (m]

Corollary 8. Let O and O' be two ovoids in PG(3,q) having t points in
common. Then O and O’ have exactly t tangent planes in common as well.
a
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