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Abstract: For any abelian group A, we call a graph G=(V,E) as A-magic if there exists a

labeling :E(G) —»> A—{O} such that the induced vertex set labeling I': V(G) » A
' {I(w,v) : (w,v) in E(G)}

is a constant map. We denote the set of all A such that G is A-magic by AM(G) and call

it as group-magic index set of G.. .
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1. Introduction. For any abelian group A, written additively we denote A= = A-{0}.
Any mapping 1: E(G) &> A= is called a labeling. Given a labeling on edge set of G we
can induced a vertex set labeling I': V(G) — A as follows:

I'¥)=E {I(u,v) : (u,v) in E(G)}

A graph G is known as A-magic if there is a labeling I: E(G) - A#* such that for each
vertex v, the sum of the labels of the edges incident with v are all equal to the same
constant; i.e., '(v) = c for some fixed'c in A. We will called <G,1> a A-magic graph with
sum c. In general, a graph G may admits more than one labeling to become a A-magic
graph. We denote the class of all graphs (either simple or multiple graphs) by Gph. For
each abelian group A we denote the class of all A-magic graphs by A MGp. We denote
the class of all abelian groups by Ab.

When A = Z, the Z—magic graphs were considered in Stanley {22,23]; he pointed
out that the theory of magic labelings can be put into the more general context of linear
homogeneous d:ophamme equations.

When the group is Zy, we shali refer to the Zy —nagic graph as k-magic. Graphs
which are k-magic had been studied in [2,6,9,10,12,15]. For convenience, we will
consider Z-magic as l-magic. A Z-magic graph <G.I> is caled supermagic if
KE(G))=(1,2,... JE(G)]}. The foll'owing wheel is Zg-magic and Z-magic. (Figure 1)

pf e

Magic but not supermagic

Figure 1.
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Doob [2] also considered A-magic graphs where. A is an abelian group. He
determined which wheels are Z-magic. : . .

) Given the graph G , the problem of deciding whether G admits a magic Iabeling is
equivalent to the problem of deciding whether a set of linear homogeneous Diophantine
equztion has a solution [23]. At present, given an abelian group, no general efficient
algorithm is known for finding magic labelings for general graphs.

The original concept of A-magic graph is due to J. Sedlacek [19, 20], who defined

_ it to be a graph with real-valued edge labeling such that (i) distinct edges have distinct

_nonnegative labels, and (i) the sum: of the labels of the edges incident to a particular
vertex is the same for all vertices.

) “ It is well-known that a graph G is Z-magic if and only if each edge of G is contained in a
1-factor ( a perfect matching) or a {1,2}-factor. Some special classes of Z-magic graphs had
been considered in the literature.(see [5),{10],[12],{24).{25).[26]). A study of magic
strengths of graphs are carried out in [10, 12].

Stewart called a Z-magic graph <G.I> as supermagic if (E(G))={1,2,....[E(G)}}.
He showed that complete graphs Ks is not supermagic and when n = 0 mod 4, K, is not
supermagic. A (p,q)-graph G= (V, E) with p vertices and q edges is called edge-magic if
there is 2 bijection £ : E->{1,2,...,q} such that the induced mapping £t :V->Zp, given by

¥y =Z{Ru;v): (u;v) in'E}-(mod p) isa constant mapping: The concept of edge-magic
graphs was introduced by Lee, Seah and Tan in 1992 [13]. Clearly a supermagic graph

not super-magic ~ edge-magic

Figure 2
is edge-magic but not conversely ( Figure 2).
Supermagic graphs had been considered in (5, 24,25]. For other works on edge-
magic graphs the readers are reffered to [13, 14,21]

2. k-magic Graphs. When the group is Zx, we shall refer to the Zx —magic graph as k-
magic . There exits graph G which is not k-magic for any k.

Definition 1. A graph G is called nonmagic if it is not A-magic for any group Ain Ab.

Lemmal. P,isnonmagic.
Proof. For, if one labels the two edges by x and y then
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we have
x+y=x=y
andx and ymustbe 0.

Werecallthatastant(k) is a tree with k+1 ve:ﬁmwﬁh kpalrsofleafveruoes
AtreeTnscalledaspxdenfthereexxstsaver(exrsuchthatdeg(v)<2 forallvmV(’I)

~{r}.
Coréllal_'z . All spiders except stars are non-magic.
' Infact,wecanseethatanygrathlsanmducedsubgraphofanon-magxchaph "
G* . We can extend G to G* by glue the end vertex of P, to anyvertexuofGthermxlnng
graph (G,u) o P; = G# is nonmagic . Thus we have’ .
Theorem 3. Any graph G is an induced subgraph of a non-magic graph G .
We have the following characterimﬁo_ﬁ of 2-magic graphs.

A Iheorem 4. A graph is 2-magic if and only if all the degrees of its nodes have the same
“parity; i.e., either all ‘odd or all even.

Proof. Itis obvious since we may label all edges by 1.
_Corollary 5. All Eulerian graphs are 2-magic.
Theorem 6. A tree is 2-magic if and only if all its vertices have odd degree.

Proof. This is a special case of Theorem 4. Since the branches have degree 1, so
all its nodes must have odd degrees.

For any k 2 2, to classify k-magic graphs, we have the following useful sufficient
condition:

Theorem 7. For any integer k 2 2, if G is a graph with degree set {d), d, ... , dy} such
that d;=d;(modk) for allj, j, then G is k-magic.

Proof. We merely label each edge by 1.

Corollary 8. A tree is k-magic if and only each vertex has degree congruent to 1 modulo
k.

Corollary 9. K-magic trees exist for all k > 2.

In general, it is difficult for trees to be k-magic. Since any graph with P; standing
out is nonmagic, for any tree T, To P; is a nonmagic tree
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Corollagi 10. Foranyk ;122, there exist trees that are k-magic and not 1 ~magic.

3. All pseudo-omino graphs are k-magic for k>2. In 1953 S.W. Golomb introduced
the concept of polyominoes. They are shapes made by conpecting certain numbers of
equal-sized squares, each joined together with at least one other square along an edge and
each square can travel either horizontally or vertically in one move successively to
another square [4]. If the connected set squares has the property that each square besides
travel horizontally or vetically , it can move diagonally to reach any other square in finite
number of moves then it is called a pseudo-omino. A pseudo- omino with n squares is
called pseudo-n-omino. We consider a class of connected planar graphs which are’
subgraphs of a grid-graph PuxP, for some m21, n21 and named them as pseudo-omino
graphs if they are planar representation of some pseudo-ominoes.
Examples of psudo-n-omino graphs:

(1)  Grid-graphs PyxP,

()  Young tableau graphs, Y(ny, iz, ... 2)

Figure 3. Y(6,3,3,1)

(3)  Some pseudo-n-omino graphs.(Figure 4.)

Figure 4.
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Theorem 11 For any n> 1 and k > 2. All pseudo—-n-omino graphs are k-magic.

Proof. For k >2.anid a given pseudo—n-omino graph G , we define the labeling scheme as

follows:

First we label all the horizontal edges which are boundary of G by 1, and for each

interior horizontal edges we label them by 2.

Then we label all the vertical edges which are boundary of G by k-1, and for each mtenor

vertical edges we label them by k-2

We see that the vertex set of G can be decompose into sets of three types:

(A) Those of degree 2 —---—- a vertex has a vertical boundary edge and a horizontal
boundary edge, its vertex label is 1+{k-1)= 0 (mod k).

(B) Those of degree 3 —— a vertex is either has two vertical boundary edges and a
horizontal interior edge or has two horizontal boundary edges and a vertical interior
edge. For the previous case the vertex has the label (k-1) + (k-1) + 2 = 0 (mod k).
and for the later case it has 1 + 1 + k-2 = 0 (mod k).

(C) Those of degree 4 ——— a vertex is an interior point of G. It has two vertical interior
edges and two horizontal interior edges. The vertex has the label 2 + 2 + k-2+k-2 )=
0 (mod k).

Thus G is k-magic.

We illustrate the above result by the following example.’

Example 1. A pseudo-omino graph with_Z;-magic labeling. (Figure 5.)
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Figure S.

Note: For k=2, the condition in Theorem 4 is also a sufficient condition for a graph G to
be 2-magic. However, when k>2 we see from Theorem 11 that there exists k-magic
graphs which are not satisfy the above condition

4. General Embedding Theorem.
Given any abelian group A, we want to show that any graph G in Gph can be

embedded in a A-magic graph G* as an induced subgraph.

Theorem 12. For any abelian group A, and any G m Gph with a labeling
f: E(G) & A*, we can embedded G into a A-magic graph (G*,f*) such that f*|g=f.
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Proof. Suppose V(G)={x1,...,Xa}. Let GxK; where V(K2)={ u,v} is the complete
graph. For the two subgraphs G x {u} and G x{v} we let them inherit the same labels of
G. Let c be any element in A. If for any x; in V(G), f'(x;)=d aﬂO We define

P, )= c-d

Let G*= G x K, We see that (G*,f*) is a A-magic graph. (see Flgure 6 (a))

Now assume some of f'(x;)= 0> If the numbers of such i are even, we will connect
all this vertices by a cycle. Then we label the edges by c, -c,c,~c,... successively For the
edges ( (x;,u),(x;,v)) we label it by c. We see that the graph G*= G x K, U the cycle is
A-magic. (see Figure 6 (b)).

~If the numbers of such i are odd, we will pick a vertex X with £'(xz)= d %0 with
all the other vertices xi with £'(x;)= 0 and form an even cycle. Then we label the edges of
this cycle by c, -c,c,-c,... successively. For the edges ( (xi,u),(x;,v)) where £'(x)= 0 we
label it by c. We see that the graph G*= (G x K3, U the cycle is A-magic.

Example2.
a)

sum =1

Zy- magic

Figure 6. (@) G and its G*. The graph G* is Zy-magic. (b) H and its H*.
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Corollary 13. For any graph G with |V(G)| >1, the graph G x K; is A-magic for all group
A. ‘ ,
We recall that a category of graphs Q is said to be universal in Gph if for any graph
G in Gph there exists an object C(G) in Q such that the association G —C(G) is a faithful
functor.

What we have shown in the above result is that the category » MGp of all A-magic
graphs is a universal category for any abelian group A.

5. Special Construction.
Theorem 14. The graph P,+ K, is Klein 4 group-magic and 2k-magic for any k> 1

but not Z-magic and 2k+1-magic for ail k>1.
Proof. The Klein 4 group-magic labeling is shown by Figure 7.

® | (00 (0.1) (1.0) (1.1)
001 0,00 (O,1) (1,0) (1,1)
O.n | ©1) (0,0 (1,1) (1,0)
(1,0 | (1,0) (L,1) (0,0) (O,1)
LD (L) (L) (0,1) (0,0)

Figure 7
Note that the graph is not 2-magic. The Z,-magic labeling (k>1) is shown by

Figure 8
Figure 8.
To see that P,+ K, is not 2k+1-magic for all k>1, assume it has a labeling which
is 2k+1-magic for some k (see Figure 9)
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Since x+z =x+w+y and y+u=z+w+u , then we have z= w+y and y=2+w. From
which we derive z=wt+y=w+ztw=2w +z . Hence we have 2w=0. But there exits no such
element in Z 5y+; with order 2. This is a contradiction.

If (Gy,L4) and (G3,L;) € \MGp with sum 0. We can construct a new A-magic
graph as follows: fixed a u in V(G,) and v in V(G;), we union G1 and G2 by identifying u
and v, the resulting graph which is denoted by (Gy,u) # (G;,v) is called the one-point union -
of (Gy,u) and (Gy,v). It is obvious that '

Theorem 15. If (Gy,L) and (Ga,L2) € A MGp with sum 0 and for any u in V (G,) and v in
V(G;) the one-point union (Gy,u) # (Gy,v) is A-magic.

The above construction provides infinitely many A-magic graphs.
Example 3. Consider the graph P,+ K, we can construct the following Klein-4 group-magic
graphs.

(G.u) #(Guw)

Figure 10
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6. Some conjectures and unsolved problems. ) )
‘We propose here some conjectures and_ unsolved problems for further research.

Conjecture. For any abelian group A, almost all graphs are non-A-magic.
If we denote the set of all A—magxc graphs of order n by AMGph(n) the above

conjecture means that
| AMGph(n) |
lim =0
n—ec | Gph(n)|

Problem 1. For any A = Z,, gwe the characterization of A-magic graphs.
Theorem 12 shows that it is impossible to have a characterization of A-magic graphs

_mst as the Kuratowski type for planar graphs.

Given a graph G, we denote the set of all k> 0 such that G is k-magic by IM(G). We
call this set as integer-magic spectrum of G. Likewise, we denote AM(G)={ Ae Ab: G
_is A-magic} the group-magic spectrum of G.

Problem 2. Determine AM(G), in particular IM(G) for non-regualr graph G.
AM sets and IM sets of some special graphs had been considered in [15,16].
"Problem 3. Decide what subsets'of N can be IM(G) for' somé graph G.
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