An exact and a randomized approach for the
satisfiability problem

H. Drias

USTHB, Institut d’informatique, BP 32 El-Alia, 16111 Alger Algeria
E-maijl: drias@wissal.dz

ABSTRACT

In this paper, three simple algorithms for the satisfiability problem are presented
with their probabilistic analyses. One algorithm called counting is designed to enumer-
ate all the solutions of an instance of satisfiability. The second one, namely E-SAT is
proposed for solving the corresponding decision problem. Both the enumeration and
decision algorithins have a linear space complexity and a polynomial average time per-
formance for a specified class of instances. The third algorithm is a randomized variant
of E-SAT. Its probabilistic analysis yields a polynomial average time performance.

1 Motivation and preliminaries

The satisfiability problem or SAT for short is of special interest because it has a
wide varicty of applications notably in thcorem proving, automated rcasoning, logic
programming and database consistency. During the last decade and very recently,
we have known interesting results on SAT [8,12,13,14,15,16,18]. Perhaps the most
known algorithm for solving satisfiability is the Davis and Putnam procedure (DPP)
{3]. Several variants of DPP have been studied and have provided interesting results.

This paper contains three algorithms based on the same method. All these algo-
rithms are extremely simple, involving no data structure other than arrays. The first
one enumerates all the solutions of an instance of SAT. It is then slightly modified to
yield a second algorithm that solves the corresponding decision problem. In the last
part of the paper, we describe a simple randomized algorithm for solving satisfiability
instances with polynomial expected time.

JCMCC 38 (2001), pp. 209-223

The cnumecration algorithm called cotnting consists in scarching disjoint subsets of
solutions and counting solutions of each group. We can observe many advantages for
such algorithm. The method used is conceptually simple; it does not handle heavy data
structure. It is easy to implement; it does not have to control phenomena such as the
overlapping of clauses on solutions.

The algorithm E-SAT for the decision problem is obtained by stopping the algo-
rithm counting after encountering the first subset of solutions when the instance is
satisfiable. According to the probabilistic constant density model M(k,n,p), both the
enumeration and decision algorithms present O(kr™) average time complexity for the
class of SAT(k,n) instances verifying r(1 — p*)™ — 1 < 0 where &, n, r and p are re-
spectively the number of clauses, the number of variables, the largest length of clauses
and the probability for a litcral to be present in a clauso, m being a constant. On the
other hand, Purdom and Brown [19] have demonstrated that under the constant den-
sity model, the average time complexity for solving SAT is polynomial when p > ¢ or
p< a(’%)‘;‘ where £ is any small constant and o any constant. No polynomial average
time algorithms were known for satisfiability within the region a(laﬂ)* < p <e. Iwama
[15] has reduced this interval to a(122)% < p < (¢!22)}, where ¢ is a constant such that
nt is the number of clauses. Another interesting result of the probabilistic analysis of
E-SAT, restricts the unfavorable region for polynomiality to a(122)3 < p < (1-r—%)#
in case r < (1 —tlan)-m,

‘The Monte Carlo type algorithm called rand-SA7’ for randomized satisfiability, fol-
lows from the randomization of E-SAT. Rand-SAT takes instances of SAT as input and
yields the right answer for a subset of instances whereas for the remaining ones, it may
be defective and produce a result with a probability of failure not exceeding . The
probabilistic analysis of thc algorithm shows an intcresting polynomial average time
complexity.

1.1 The satisfiability problem and the probabilistic model

Let {z1, 22, ..., Zn} be a set of Boolean variables, then the set of literals is {ic;, 3,
«eey Tny Tty T2y oy Tn }Where T; denotes the negation of ;. A clause is » disjunction of
literals. A sct of k clauscs over n variables represcnts an instance of satisfiability, the
class of such instances is called SAT(k,n). The length of a clause is defined to be the
number of literals involved in the clause, r; denotes the length of the i* clause. When
all clauses have the same length equal to r, the class is denoted r-SAT(k,n). A small
example of an instance of satisfiability can be (ZF; + Ta + Ts)(z1 + Z2)(T2 + To)(Z1 +
T2 +E3)(F1 + T + T3 + 24). A solution to SAT is an assignment of Boolean values to
variables such that every clause is satisfied.

The probabilistic model considered in this paper is the known constant density
model M(k,n,p) duc to Goldberg [12] and uscd in many papers. More gencrally a
clausc is constructed by including a positive literal with probability p (p < %), a negative
literal associated with the same variable with the same probability. Let us consider two
different clauses ¢; and c;. A variable in either positive or negative form appears in

210

both clauses with probability equal to p* and appears in none of the two clauses with
probability equal to (1 — p)2. It occurs in just one clause, in either ¢; and c;, with
probability equal to 2p(1 — p). Hence the probability that a variable does not appear
simultaneously in both clauses is equal to 2p(1 — p) + (1 - p)2 =1 —p%.

2 Counting solutions of satisfiability

Let A be a matrix containing an instance of satisfiability. If we consider the example
of scction 1.1 then

Ty Ty Ty —
T T —- -
Ty Ty - -
T Ig Z3 -
51 52 -3-73 T4

Each row of A rcpresents a clause. The symbol — denotes an absence of literal. Let
us modify A as follows

1 T1T2 ZT1T9Ts -

Ty FTs - -
B= | T2 3, - -

Ty 24Ty T T3 -

T 1T T1TF3 1223324

Bi,j] is the conjunction of A[1,j], A[2], ..., A[i-1,j] and A[i,j]. A row of B can be
viewed as an ORing of Boolean terms, hence as a disjunctive form. The fourth row of
B for instance holds the Boolean expression Z; + %322 + 2,T2T3 where + denotes the
OR Boolean operator. The equivalence between a row of B and its corresponding row
in A can be shown using the absorption law of Boolean algebra (z + %y = z +y).

Property 2.1. The items of any row of D represent disjoint sets of solutions for
the corresponding clause

Proof. This asscrtion is truc since in any pair of terms of any row there cxists
a variable that appears positive in one term and negative in the other one. In the
solutions of one term, this variable is assigned Boolean value 1 and in the solutions of
the other one, the same variable is assigned Boolean value 0. Both sets share then no
common solutions. O

Theorem 2.2. The conjunction of cxpressions of rows of B preserves Property
2.1., i.e. it yields a disjunction of terms respecting property 2.1.

211

Proof. First let us consider the case of a conjunction of two rows. The generalization
to a number of rows greater than two is obvious and can be done by induction. The
Boolean product of two rows of B consists in ANDing each term of one row with each
term of the other one and then ORing the results of this operation. The maximum
number of terms of the final expression is equal to the product of the numbers of terms
of cach row. If we consider two tcrms among the non null terms of the result, we notice
that they contain a common part which is a term of either one of the two rows and
two different parts , which are terms belonging to the other one. Property 2.1 is thus
inherited from the latter row. O

From this theorem, we observe that a group of solutions for the whole instance can
be built up by merging items of matrix B, one from each row. Therefore, all groups of
solutions can be searched by crossing matrix B in a depth-first order for instance. The
pumber of solutions is equal to the sum of the numbers of solutions of the disjoint sets.
Algorithm counting is designed to yield the number of solutions N.

Algorithm COUNTING
input: an instance of satisfiability

output: N, the number of solutions of the instance

e

begin
obtain matrix B from the initial instance;
N:=0;
call count({},1);
output N;
end;
Procedure count (var S: set of literals; i: integer);
begin
for j:=1tor;do
begin
S :=SUBIi,j] (* append Bfi,j] to S *)
if S is non null then (* S is null if it involves two

opposite literals *)

212

if i = k then N = N +2"15! else call count (S,i +1);
(* |S] denotes the number of literals in S *)
S :=8 - B[ij] (* suppress B[, j] from S *)
end

end;

The first parameter S of procedure count contains items of matrix B, onc from cach
row 1 up to i — 1. Initially S is empty, during the calculation process, it becomes null
when B i, j] involves a literal that has the opposite form of a literal that is already in
S. The sccond paramecter, i, indicates that the process is considering an item of the i**
row; the depth of the search is equal to i. When i = k, a group of solutions is detected.
The number of solutions is then updated and the search for another set of solutions
continues. :

Theorem 2.3. The space complexity of Algorithm counting is 0(n).

Proof. The data structure that may be used in procedure count must hold at any
time the current set of literals S. The latter reaches its largest size » when it involves
all the literals.O

2.1 Probabilistic analysis of Algorithm COUNTING

Let S be a set of literals determined by procedure count and P(S) the probability
that S is non null. Let us denote S; a subset of S containing i items of B, one from
each row 1 up to i and item;;, a term of row ¢. The probability that S;,1 is non zero is

P(Sip1))=P(S;)xFy1 0<i<k-1

where Py, is the probability that item,;,; does not involve a literal that already
exists in S; in opposite form; P4, = 1 — p?, p being the probability for a literal to be

present in a clause (see section 1.1)

i1
P(S;i41) ="j1112 P=(1-p)} 0<i<k-1

Let t(1..k) be the complexity of procedure count({},1) with an instance of clauses
from range [1..k] and S;; the set S; including item;; of the i** row, then

213

j.iﬂ (P(Sy) (i +1).k)+c) 1<i<k-1
tik)={ =

J=ri

J;l (P(Si5) +¢) i=k

where ¢ is a constant.

#(L.k) = ’:z" (P(S1;) t(2..k) +¢)
J=ry Je=ry
=3 P(Sy) 2K+ 3 ¢
i=1 j=1
=,Z P(51;) (Z;" (P(S35) H3.K) +0)) +rsc

J=n j=ra j=ry
= ,§1 P(Sy) ;}1 P(83;) (3..k)+ j;l P(Sy;)rac+r1c

J=n j=ra a1 j=re
=c 3 P(Si) 3 P(Sy) - % PlSu-ng) T PlSiu)+
=’ = J= j-_-_

= J=rg F=Tk—1
c 2‘ P(Sy;) 21 P(Sy) ... 2‘ P(Sk-1)7)+
i= J= j=

J=ry
cry Y P(Sy;)+
J=1
oy
Let r be the largest length of the & clauses then
t(1.k) <r(1-pA)E D xr(1 -)2 x .. x (1 - p?) x re+

r(1 =)2 x . xr(l - p?) x re+

214

r(l — p?) x re+

TC

= Fe-n
= 5 e H ea-pen = £ @ia-p=)

imj

J=k _ k Y G-1)
Let t(l..k) Sj; t(j) = J; (crj(l _p2)i=1)

Notc that as j increases, #(j) increascs within a small interval then decreascs.

A = Bl g = (r(1 - Y - 1)

1() reaches the greatest value when (r(1—p?)f —1) = 0. Let jqo be the least integer
=y

k . (i-1)
verifying 7(1 — p?) < 1 then the sum 3 (erf(1 —p’)fg) is lces than k times the
j=1

largest term, that s m > jo = r(1 —p?)" -1 <0
t(1.k) < ker™] (1—-p?)6-D < ckrm
il

Theorem 2.4. The average complerity of Algorithm counting is O(kr™) for the
class SAT(k,n) verifying r(1 — p?)™ — 1 < 0, where r is the largest length of clauses
and m a constant.

3 Checking satisfiability

The procedure count can be stopped before completion in order to answer the
satisfiability decision problem. It halts after finding the first non null subset of solutions
when the instance is satisfiable and terminates when the instance is unsatisfiable. It is
modified as follows

procedure satisfiable(var S: set of literals; i: integer);
begin
i=1
while (j < r;) and (not satisf) do
begin
S§= 8 U B[, j);
215

if S is non null then
if i = k then satisf := true else call satisfiable(S,: + 1);
S := 8 - B[i,J;
J=Ji+L
end;
return(satisf);

end;
We can state the algorithm for satisfiability as

Algorithm E-SAT
input: an instance of satisfiability
oulput: ’satisfiable’ if the instance is satisfiable, 'unsatisfiable’ otherwise
var satisf : Boolean;
begin
satisf ;= false;
call satisfiable({},1);
if satisf then output('satisfiable’) else output('unsatisfiable’)

end;

3.1 Probabilistic analysis of Algorithm E-SAT

It is not difficult to see that the average complexity of Algorithm E-SAT, namely
tSAT(K) is the ratio between the average complexity of Algorithm counting, t(1..k) and
the average number of non null sets of solutions called NS.

N t!l..k! 'N—Sv'>0
tSAT ('“)'{ tlk) NS=0

216

3.1.1 Estimation of NS

The probability that a sct S of litcrals detcrmmcd by procedurc count is non null is
P(Si). The total number of these sets is equal to 1'[;. Among these sets, there are

sets that are non null, i.e. they do not involve a hteral in both positive and negative
form. The average number of these sets is given by

W5 = 3 P = (T o -7 <=t -

Lemma 4.1. The ezpected number of non null sets of solutions NS determined by
Algorithm counting is equal to (‘ﬁ:)1 - p?)*-t.

Now lct us deduce the average complexity of Algorithm E-SAT.

img

Su-n
For N3 > 0, let TAT(j) = 02X
AGSAT()) _ BSATGHY) _ g (r(1-p2)¥ -1)

tSAT() TSAT()
The sawe reasoning as for I(5) is wade to find

form > jo = r(l—p")"‘-l < 0 where j is the least integer verifying r(1-p?)fo-1 <

Z(--o
0 then tSAT(k) < kcr"‘“—'a-%%l——- < ker™

Theorem 4.2. For the class SAT(k,n) verifying r(1 - p?)™ — 1 < 0, where r is the
largest length of clauses and m a constant, the wpected complezity of Algorithm E-SAT
is O(kr™).

3.1.2 Comparison with previous results
The condition of average polynomiality for algorithm E-SAT is
rl-p2)" <1 or
Inr+min(l-p?) <0or

1-p<r¥ or

217

> (=5

The results in [15] reported that the subregion for p that remains vulnerable to
a polynomial average time algorithm is a(l':‘—“)’} <p< (t%)‘} where a and ¢ are
constants and n* = k. In case (1 — r~%)} < (t122)} we have

1-r—% <tlat or

r<(l- tlgf)"“

the unfavorable region will be reduced to o(!22)} < p < (1-r~w)%.

4 Instance preprocessing

Preprocessing of clauses speeds up enormously the procedure running time. The
preprocessing we propose tends to increase the number of null subsets of solutions ob-
tained by procedure count and hence reduce the number of non null subsets of solutions.
A null subset is found mostly before reaching the depth k. The search is then aborted
and a gain of time is recorded. The technique is based on the following observation.
Let us consider two clauses ¢; and ¢; of length equal to three and having one common
literal named z

G=IT Tig Tq

G =2 Tjz T3

with z =z = 25

Lect us supposc also that the variables associated with literals &9, T:3, %52 and z;3 arc
all different from each other and from the variable associated with z. When applying

procedure count, the number of non null terms is equal to five. Let us suppose now a
different placement of the literals in the clauses, for instance the following one

G = T2 T3 T

= Tj2 Tjiz T

Then the number of non null terms obtained by procedure count is equal to nine.
(A similar phenomenon can be observed when the literals x and T appear respectively
in two clauses). What we can deduce is that when the literal = is placed at the head of

the clauses, the number of non null terms is smaller than when z is placed in the second
or third position in the clauscs. Intuitively, in order to achicve a reduced number of non

218

null terms, one possible placement policy consists in arranging from left to right the
literals in the decreasing order of their frequency. Let x and y be two literals, formally
we define a partial order R as

z Ry if and only if the occurring of the variable associated with z in the instance
is greater than the occurring of the variable associated with . In case the occurrings
are identical for both variables then :

z Ry if and only if the gap between the occurrings of the forms of z is lower than
the gap between the occurrings of the forms of .

The placcment procedure can be written as
procedure placement;
begin
compute the frequency for each variable and each literal;
determine the order R for the literals;
for each clause ¢ do
sort the literals of ¢ according to the order R;

end;

5 A Monte Carlo type algorithm

The randomized algorithm, namely rand-SAT derives from the algorithm E-SAT. It
randomly chooses v vertical paths from the matrix B and tests whether they correspond
to solutions. Since in rand-SAT a limited number of paths are tested for possible partial
solutious, the auswer may be mistaken. In compromise the reduction of consulted paths
makes the algorithm run faster. In E-SAT all paths aro chocked until finding out a
non null term or exploring all the alternatives. This yields an exact solution with an
exponential time complexity for some cases. Let us now turn to the details of rand-SAT.
If one of the vertical paths chosen at random from B corresponds to a non null term
thus to a collection of solutions, the algorithm outputs *satisfiable’ and stops. On the
contrary if none of the drawn paths denote a subset of solutions, the algorithm outputs
‘unsatisfiable’ and the probability of making an error is ¢.

219

Algorithm rand-SAT
input: a SAT(k,n) instance and ¢ a probability of making an error
output: the right answer 'satisfiable’ or a likely mistaken answer
‘unsatisfiable’ with probability of error equal to ¢
1- Preprocess the clauses and put them in matrix namely, A
9- convert matrix A into matrix of type B
3 8t v = Ty
4fori=1tovdo
4.1 choose at random from B a vertical path S = ¢),¢2,...,Cjy: Ck
1<e¢ <1 1 < j < k, then sol = B[1,¢]B[2,¢3]... B[k, ck]
4.2 if sol is non null then (* if it does not involve opposite literals*)
4.2.1 answer ’satisfiable’
4.2.2 stop
5- answer 'unsatisfiable’ with probability of failure equal to €

6- stop

5.1 Probability of error and polynomial average time

The probability of error that may be produced by algorithm rand-SAT is specified
by the following theorem.

Theorem 6.1 Let v be the number of iterations of the loop in rand-SAT. If v >
l—nu—_u‘:ﬁ,—_—,ﬁ then the probability that algorithm rand-SAT yields an incorrect result
is less than ¢.

Proof. Let S = {e1,¢2,...,cc} be a vertical path drawn from B, 1 < ¢; < 75,
1 < j < k. The probability that a path S is non null is (1—p?)(¢~1), the probability that
it is null is equal to 1— (1 —p?)(*~1) and the probability that v generated paths are null
is (1-(1—p?)*~D)*. If all the v drawn paths are null whereas the instance is satisfiable,
rand-SAT fails to answer correctly with a probability equal to (1 — (1 — p?)*~1)v.

Let prove now that v > Wl—(l—l-l-‘:"mﬁ = (1-1-p)*-D)p <

220

neg

v 2 ppeiyeeny = lne 2 vin(l - (1 - pP)¢-D) =
e2(1-(1-p)k-N)r0
Let show now that the average complexity of rand-SAT is polynomial.

The;)rem 6.2 The number v of iterations of the loop of Rand-SAT is O(1) when
p<($)7.

_ - Ine
Proof v = In(1=(T—p?)&=1) — ln(1-(A-C*71p24Cr-1(p2)2—...))
2 :

= Ing —_—
,m(c't;1p=-c'«;1(p=)=+...+(-1)'-‘0“"(»’)'+-...-)
q

C*"(p’)"
W=U‘—_‘{%Eg>ﬁ,>lwhenp<(%)i
a+1

then v < —m-Lhc,,_lp, = 7—“‘—7}” iy < -lﬂ%rvh,‘
1

Lot show now that ﬁ# < ¢ where ¢ is a constant

Ine > cln kp?
Ine > In(kp?)®
€ > kep*®

p<k < (Bia

Theorem 6.3 rand-SAT takes polynomial time on average.

Proof. We just showed that algorithm Rand-SAT is O(1) when p < (). On the

other hand, E-SAT takes polynomial average time when p > (1~ r=)i > ()3 for
k > 1. Therefore under this condition, Rand-SAT terminates in polynomial average
time since only a numbcr of vertical paths gencrated by E-SAT arc visited.O

6 Conclusions

The conclusions we may draw from this study are:

221

1) The algorithms counting and E-SAT designed respectively to enumerate the
solutions of instances of satisfiability and to solve the corresponding dccision problem
require polynomial time on average for SAT'(k,n) instances verifying r(1-p?)™-1<0
, Where r is the largest length of clauses, m a constant and p the probability that a
literal appears in a clause.

2) The unfavorable region for polynomial average time for testing satisfiability is
reduced to a(lﬂ';ﬂ)g <p<(l-r*)}incaser < (1- tlaz)~m where « and ¢ are
constants.

3) A preprocessing of initial instances is proposcd in order to speed both the enu-
meration and decision procedures. Experiments carried out in [4] give evidence of the
necessity and importance of such preliminary treatment. As a prospect, it would be
intcresting to cstimate the average gain in time offered by this preprocessing.

4) A Monte Carlo type algorithm, namely rand-SAT, for solving the satisfiability
problem is designed. Its average performance is polynomial and outperforms the results
given in the literature.

7 REFERENCES

[1] M.T. Chao and J. Franco, Probabilistic analysis of a generalization of the Unit-
clause literal selection heuristics for the k satisfiability problrm, Inf Sci, 51(1990)
23-42.

[2] S.A. Coo, An overview of computational complexity. Communication of the ACM,
26, 6(1983).

[3] M. Davis and H. Putnam, A computing procedure for quantification theory, J
Assoc Comput Mach. 7(1960) 202-215.

[4] H. Drias, Number of Solutions for SAT instances: A Probability Distribution
Study, J info Science and Engineering, 8, 4 (1992) 621-631.

[5] H. Drias, A new algorithm for counting and checking satisfiability problem and
a restricted unfavorable region for polynomial average time, in proc of the 30th
IEEE Symposium on System Theory (1998) 246-250.

[6} H. Drias, A Monte Carlo algorithm for the satisfiabilility problem, in Proc of IEA~
AIE 98, lectures notes in Artificial Intelligence, Springer Verlag Benicassim, Spain
(June 1998). :

{7} O. Dubois, P. Andre, Y. Boufkhad and J. Carlier, SAT versus UNSAT, DIMACS
workshop on satisfiability Testing, New Brunswick, NJ, (Oct 1993).

(8] J. Franco, On the probabilistic performance of algorithms for the satisfiability
problem, Info Proc Let, 23 (1986) 103-106.

222

[9] J. Franco and Y.C. Ho, Probabilistic performance of heuristic for the satisfiability
problem, Discrete Appl Math, 22 (1988/1989) 35-51.

(10] G. Gallo and M.G. Scutclla, Polynomially solvable satisfiability problems, Info
Proc let, 29 (1988) 221-227.

(11] M.R. Garey and D.S. Johnson, Computers and Intractability (Freeman & C 1979).

[12] A. Goldberg, Average case complexity of the satisfiability problem, in proc Fourth
workshop on Automated deduction (1979) 1-6.

[13] A. Goldberg , P.W. Purdom and C.A. Brown, Average time analyses of simplified
Davis-Putnam procedures, Info Proc let, 15 (1982) 72-75.

(14] J.N. Hooker, Resolution vs cutting plane solution of inference problems: some
computational experience, Operations Research Letters, 7(1), (1988).

[15] K. Iwama, CNF satisfiability test by counting and polynomial average time, SIAM
J Comp, 18, 2 (1989) 385-391.

(16] D. Mitchell, B. Selman and H.J. Levesque, Hard and easy distributions of SAT
problems, in proc of the Lenth conference on Artificial Intelligence (AAAI-92), San
Jose, CA, (July 1992) 440-446.

{17] P. Purdom, Search rearrangement backtracking and polynomial average time, Ar-
tificial Intelligence, 21 (1983) 117-133.

(18] P. Purdom and C.A. Brown, Polynomial average time satisfiability problem, Info
Sci, 41 (1987) 23-42.

(19] P. Purdom and C.A. Brown, The pure literal rule and polynomial average time,
SIAM J Comp, 14 (1985) 943-953.

[20] R. Solovay and V.A. Strassen, A fast Monte Carlo test for primality, SIAM J.
Comp, 6 (1977) 84-8.

[21] L.C. Wu and C.Y. Tang, Solving the satisfiability problem by using randomized
approach, Info Proc Let, 41 (1992)187-190.

223

