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Abstract: It is shown that the necessary conditions are sufficient for
the existence of all c-BRD(v, 3, A) for negative c-values. This
completes the study of c-BRDs with block size three as previously the
authors and J. Seberry have shown that the necessary conditions are
sufficient for ¢ 2 -1.
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1. Introduction

The incidence matrix of a BIBD(v, b, r, k, A) becomes a Bhaskar Rao
design, a BRD(v, k, 1), when the one’s are assigned a plus or minus sign in
such a way that the rows are orthogonal under the standard inner product. We
consider designs with an assignment of plus/minus signs which yield a constant
inner product c, but c is not necessarily zero. Such matrices were introduced by
Dey and Midha [6], who referred to them as GBM’s or Generalized Balanced
Matrices, but, to be more consistent with present terminology, we choose to call
them c-BRD’s. Seberry [13] was the first to prove the necessary conditions were
sufficient for the existence of 0-BRD(v, 3, A). In Hurd and Sarvate [8] it was
shown that the necessary conditions were sufficient for the existence of 1-
BRD(v, 3, A), and in [9] extended to all ¢ = -1.

Originally 0-BRD’s were introduced in [1] and [2]. Such matrices and
their generalizations have been studied by numerous authors, e.g., see [3], [4],
(5], [10], [11], [12], and [14] and the references therein.

As usual, we do not distinguish between the incidence matrix of a

BIBD and the BIBD. The incidence matrix of a BIBD(v, k, A) with no minus
signs is a A-BRD. Recall that all BIBD’s satisfy (1) vr = bk and (2) A(v - 1) =
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1(k - 1). We assume throughout the paper that v > 3.

In (8] it was shown that:
Lemma 1: (A) For every c-BRD(3, 3, A), ¢ = A (mod 4); this extends the
well-known condition that ¢ = A (mod 2) for every c-BRD.

(B) For every 1-BRD(v, 3, 3), v = 1 (mod 4).

(C) For k odd, every c-BRD(v, k,A) satisfies b(k - 1) + cv(v-1) =0
(mod 8).

These were used in [9] to get

Lemma 2: (A) For every c-BRD, vr + cv(v- 1) 20.
(B) Fork=3,¢c=-1, 2b=v(v-1) (mod 8).

When we applied these ideas to the case ¢ = -1, seeking a condition
analogous to Lemma 1(B), we found a striking contrast to the ¢ = 1 case [8].
Suppose A =3. Ask=3,and as A(v-1)=r(k - 1), we have r = 3( v - 1)/2. But
from vr = bk, we see b = vr/k = v(v - 1)/2. From Lemma 1(C), and as ¢ = -1,
we have, for some t, 8t = 2b - v(v - 1) = 0. But this is no restriction at all.
Thus, for all odd v, a (-1)-BRD(v, 3, 3) should exist!

Lemma 3: [9] A (-1)-BRD(v, 3, 3) exists for all odd v.

Proof: From [11, p.49], let (Q, ) be an idempotent commutative
quasigroup of order v, for v odd. Then
{{a,b,acb}la< b €Q)
forms a BIBD(v, 3, 3), (or actually a 3-BRD(v, 3, 3)).We sign acb with -1 in
the incidence matrix. This forms a (-1)-BRD(v, 3, 3) since all pairs (a, b) with
a<b occur only once as the first two entries in a block.
|

We will need the following from [8].

Lemma 4: [8] Ler PB(v, K, A) be any pairwise balanced design. If there
exists a c-BRD(k’, k, w) for each k” in K, then there exists a cA-BRD(v, k, Au)..
]
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2. New necessary conditions

In view of Lemma 1, we expect a (-3)-BRD(v, 3, 5) to existas ¢ = A
(mod 4). However, Lemma 2(A) gives vr > 3v(v - 1) or, r = 3(v - 1), which is
not satisfied since r = 5 in the case v = 3. So, a (-3)-BRD(3, 3, 5) does not exist
after all. This example shows not only that the condition is useful but also that
consideration of negative c-values leads to surprising new results and is thus an
important topic in itself,

Theorem 5. For any c-BRD(v, k, A), T f 7 >k,

Proof. By Lemma 2(A), vr + cv(v - 1) 2 0. Substituting r = A(v - 1)/(k - 1)
we get the result.

When k = 3, the condition gives Icl £ A/2. It turns out that this
potentially restrictive condition is rather weak when k = 3 which is exactly the
case of interest here. There is a new inequality which we now develop which is
sharper but which only applies when k = 3.

Theorem 6. For any ¢c-BRD(v, 3, 1), A 2 3icl.

Proof: Now suppose X denotes any c-BRD(v, 3, A) with ¢ negative. Any two
rows overlap in A non-zero positions. Let x be the number of these A positions
where the two rows have the same entry - either two ones or two minus ones.
Let y be the number of these A positions where the two rows have different
entries. Thus there are at least y minus ones between the two rows. Clearly x +
y=2,andy - x = Icl. From these equations we get y = (A + [cl)/2.

The entries of any column in the incidence matrix of a BRD can be
multiplied by minus one without changing any inner products. We may thus
assume that there is exactly zero or one, minus ones in a column. Since there are
at least y minus ones per pair of rows and there are v(v - 1)/2 pairs of rows, there
must be at least yv(v - 1)/4 minus ones in the complete incidence matrix. The
extra factor of two in the denominator accounts for the fact that each minus sign
occurs in two different row pairs. So we have yv(v - 1) < 4b where b is the
number of blocks in the incidence matrix. As b= Av(v - 1)/6, we get y < 2A/3.

But y = (A + lcl)/2. Thus, Icl < A/3.
|

We point out that when Icl = A/3, each column must use the minus
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sign allotted to it - no column will consist entirely of plus ones.
Table 1 below is used throughout the remaining parts of the paper. The
first half is taken from [11] and the second half from [13].

Necessary and Sufficient Conditions for
A-fold Triple Systems and 0-BRD’s

A v

O mod 6 allv#2
1,5 mod 6 v=1,3 mod6
2,4 mod 6 v=0,1 mod3
3 mod 6 allodd v

m Uowp

0-BRD(v, 3, 2) exist if and only if

v(v - 1) =0 (mod 12).

0-BRD(v, 3, 4) exist if and only if

v(v - 1) =0 (mod 3).

0-BRD(v, 3, 6) exist if and only if

v(v-1)=0 (mod 4).

H. 0-BRD(v, 3, 2t) exist if and only if
2tv(v - 1) = 0 (mod 24).

e

Q

Table 1

3. The case A = 5.

A Hadamard matrix of order n, denoted H(n), is a square matrix of plus
ones and minus ones such that every pair of rows has an inner product of zero.
We define a c-H(n) of order n and index c to be a Hadamard matrix of + 1's such
that every pair of rows has inner product c.

Theorem 7. For c-H(n) to exist, n = c (mod 4).
Proof. Any three rows of c-H(n) form a c-BRD(3, 3, n). By Lemma 1(A), the
result is immediate.

]



It is well-known that, if H(n) is a Hadamard matrix, what we call a 0-
H(n), then n = 0 (mod 4). This now follows as an immediate corollary from
Theorem 7. We can extend the theorem more generally as follows.

Corollary. For any c-BRD(v, v, A), A =c (mod 4).

As an application of the reults so far, we wish to conclude this section
with a closer examination of the conditions concerning A = 5. Lemma 1(A)
shows that (-1)-BRD(3, 3, 5) does not exist since =1 = 5 (mod 4). In the
previous section we saw more generally that, although -3 =5 (mod 4), a (-3)-
BRD(3, 3, 5) did not exist either - in some sense because Icl and A are too close
to each other. We conclude that the only c-BRD(3, 3, 5) occurs whenc=1.

More general conclusions are possible for A = 5. If a 0-BRD(v, 3, 2)
exists and if a (-1)-BRD(v, 3, 3) exists, then by juxtaposition (i.e., combining
the incidence matrices by placing them side-by-side) we get a (-1)-BRD(v, 3, 5).
The first condition is satisfied (Table 1) when v(v - 1) = 0 (mod 12), and the
second is satisfied for all odd v (Lemma 3). But these overlap only when
v = 1, 9 (mod 12). For any BIBD(v, 3, 5), v must be odd [since from A(v-1) =
r(k-1) we get 5(v-1) = 2r]. Also, v(v-1) = 0 mod 6 [since vr = bk and A(v-1) =
r(k-1) give 5v(v - 1) = 6b]. So, v # 5, 11 (mod 12) . What happens if v = 3,7
(mod 12)? To answer this, we first need another necessary condition from [9]
which is extensively applied in the next section,

Theorem 8. [9] Suppose v(v - 1) 2 0(mod 12). Then for any c-BRD(v, 3,
A), ¢ = A (mod 4). Further, (A) For any (-2s-1)-BRD(v, 3, 6t + 1), s # t (mod

2).(B) Suppose A=6t+ 3. Ifc= -25-1<0,thent=s(mod2). (C)Ifc=2s
and A =21, then s = t (mod 2).

Theorem 9. Suppose v 2 3. (-1)-BRD(v, 3, 5) exist if and only if
v = 1,9 (mod 12).

Proof. When v(v — 1) = 0 (mod 12), the construction above suffices. If
v(v — 1) # 0 (mod 12), then, since —1 # 5 (mod 4), the BRD does not exist

by Theorem 8.
]
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4. Main results: the case ¢ < -2.
We use the next theorem to construct c-BRD’s for many negative
values of c.

Theorem 10. For all v 2 3, (-2)-BRD(v, 3, 6) exist.

Proof: Tables 2 and 3 below show examples of a (-2)-BRD(3, 3, 6) and (-2)-
BRD(@, 3, 6), respectively. Two copies of (-1)-BRD(S, 3, 3) give (-2)-BRD(, 3,
6). Table 4 shows an example of (-2)-BRD(6, 3, 6), or for a different example,
apply Lemma 4.

(-2)-BRD(3,3,6)
-1l 11 [1]1
1 [ 1 [-1]-111]1
111111 ]-11-1

Table 2
-2)-BRD(4,3,6
-11-1 1 1 [-1] 1 1 1 1 0 0 0
1 1 1-1]-1]1-111 0 0 0 1 1 1
1 1 0 0 0 1 (-1)-1[-1]-1[-1
0 0 0 [-1 1 |/-1]1-1] 1 1 1 [-1]-1

Table 3

Table 5 at the end gives an example of a (-2)-BRD(8, 3, 6). Theorem 10 now
follows from Lemma 4 and Hanani’s Lemma 5.3 [7, p.289] which states for
every integer v > 3, a pairwise balanced design PB(v, K3, 1) exists with block
sizes from K3 = {3, 4, 5, 6, 8}.

]

Theorem 11. The necessary conditions are sufficient for the existence of all c-
BRD with c < -2.

Proof: The necessary conditions are ¢ = A (mod 2), and the retrictions given in
Lemmas 1 and 2, Theorem 5, Theorem 6, the Corollary to Theorem 7, Theorem
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8, and Table 1. We will construct examples for all cases allowed by these
restrictions. There are two general cases, each with subcases.

Case 1. v(v - 1) = 0 (mod 12). A juxtaposition construction for each possible ¢
and A is given by Table 6 just below. Since v(v - 1) = 0 (mod 12), each of the
BRD’s in Table 6 necessarily exist, by Table 1. In Tables 6, 7, and 8, *s means
use s copies.

Case 2. v(v — 1) 2 0(mod 12). Here Theorem 8 applies. First suppose c is
even. Say ¢ = -2s. If A = 6t we can juxtapose s-copies of (-2)-BRD(v,3,6), and
{(t-s)/2}-copies of 0-BRD(v,3,12). If A = 6t + 4, compose s-copies of a (-2)-
BRD(v,3,6), {(t-s)/2}-copies of a 0-BRD(v,3,12), and a 0-BRD(v,3,4). When A =
6t + 2, we must consider t even and t odd separately, and we do this in Table 7.
For c odd, we list the cases in Table 8.

In constructing these tables, care must be given to the necessary
conditions in Table 1. For example, if A = 12y + 1 and a BIBD(v, 3, 12y + 1)
exists, then by Table 1(B), v = 1, 3 (mod 6). But in this case, a 0-BRD(v, 3, 4)
exists by Table 1(F). Therefore, in Table 8 for example, we may use a 0-
BRD(v, 3, 4) in the constructions in the row for A = 12y + 1. We may not use a
0-BRD(v, 3, 4) in the rows for A = 12y + 3 and A = 12y + 9, however, since in
these cases v may be any odd number (Table 1(D)), and v(v - 1) need not be a
multiple of 3. By Table 1(H), a 0-BRD(v, 3, 12) necessarily exists and may be

used anywhere in the Tables.
|
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A= 6t A=6t + 2 A=6t + 4
¢ = -28 |(-2)-BRD(v,3,6)*s (-2)-BRD(v,3,6)*s (-2)-BRD(v,3,6)*s
0-BRD(v,3,6)*(t-s) 0-BRD(v,3,6)*(t-s) 0-BRD(v,3,6)*(t-s)
0-BRD(v,3,2) 0-BRD(v,3,4)
A=6t + 1 A=6t + 3 A=6t+ 5
¢ = -2s-1|(-2)-BRD(v,3,6)*s (-2)-BRD(v,3,6)*s (-2)-BRD(v,3,6)*s
(-1)-BRD(v,3,3) (-1)-BRD(v,3,3) (-1)-BRD(v,3,3)
0-BRD(v,3,6)*(t-s-1) |0-BRD{(v,3,6)*(t-s) 0-BRD(v,3,6)*(t-s)
0-BRD(v,3,4) 0-BRD(v,3,2)
Table 6
Az 6142 = 12y + 2, t even
c=-12x-2 c=-12x-6 c=-12x - 10

(-2)-BRD(v,3,6)*(6x+1)
0-BRD(v,3,12)*(y-3x-1)
0-BRD(v,3,4)*2

(-2)-BRD(v,3,6)*(6x+3)
0-BRD(v,3,12)*(y-3x-2)
0-BRD(v,3,4)*2

(-2)-BRD(v,3,6)*(6x+5)
0-BRD(v,3,12)*(y-3x-3)
0-BRD(v,3,4)*2

6t+2=12y +8, 1odd

¢ = -12x
(-2)-BRD(v,3,6)*(6x)
0-BRD(v,3,12)*(y-3x)
0-BRD(v,3,4)*2

c=-12x- 4
(-2)-BRD(v,3,6)*(6x+2)
0-BRD(v,3,12)*(y-3x-1)
0-BRD(v,3,4)*2

c=-12x -8
(-2)-BRD(v,3,6)*(6x+4)
0-BRD(v,3,12)*(y-3x-2)
0-BRD(v,3,4)*2

Table 7
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A c=-12x-3 c=-12x -7 c=-12x - 11
(-2)-BRD(v,3,6)"(6x+1) (-2)-BRD(v.3,6)*(6x+3) (-2)-BRD(v,3,6)*(6x+5)
12y + 1 |(-1)-BRD(v,3,3) (-1)-BRD(v,3,3) (-1)-BRD(v,3,3)
0-BRD(v,3,12)*(y-3x-1) 0-BRD(v,3,12)*(y-3x-2) 0-BRD{v,3,12)*(y-3x-3)
0-BRD(v,3,4) 0-BRD(v,3,4) 0-BRD(v,3.4)
(-2)-BRD(v,3,6)*(6x+1) (-2)-BRD(v,3,6)*(6x+3) (-2)-BRD(v,3.6)*(6x+5)
12 y + 5 |(-1)-BRD(v,3,3) (-1)-BRD(v,3,3) (-1)-BRD(v.3,3)
0-BRD(v,3,12)*(y-3x-1) 0-BRD(v,3,12)*(y-3x-2) 0-BAD(v,3,12)*(y-3x-3)
0-BRD(v,3,4)*2 0-BRD({v,3,4)*2 0-BRD(v,3,4)*2
(-2)-BRD(v,3,6)"(6x+1) (-2)-BRD(v,3,6)*(6x+3) (-2)-BRD(v,3,6)*(6x+5)
12y + 9 |(-1)-BRD(v,3,3) (-1)-BRD(v.3,3) (-1)-BRD{(v,3,3)
0-BRD(v,3,12)*(y-3x) 0-BRD(v.3.12)*(y-3x-1) 0-BRD(v,3,12)*(y-3x-2}
A c=-12x -1 c=-12x -5 c=-12x-9
(-2)-BRD(v,3,6)"6x (-2)-BRD(v,3,6)*(6x+2) (-2)-BRD(v,3,6)" (6x+4)
12y + 3 |[(-1)-BRD(v,3,3) (-1)-BRD(v,3,3) (-1)-BRD(v,3,3)
0-BRD(v,3,12)*(y-3x) 0-BRD(v,3,12)*(y-3x-1) 0-BRD(v,3,12)*(y-3x-2)
(-2)-BRD(v,3,6)*6x (-2)-BRD(v,3,6)*(6x+2) (-2)-BRD(v,3,6)*(6x+4)
12y + 7 |(-1)-BRD(v,3,3) (-1)-BRD(v,3,3) {(-1)-BRD(v,3,3)
0-BRD(v,3,12)"(y-3x} 0-BRAD(v,3,12)*(y-3x-1) 0-BRD(v,3,12)*(y-3x-2)
0-BRD(v,3,4) 0-BRD(v,3,4) 0-BRD(v,3,4)
(-2)-BRD(v,3,6)"6x (-2)-BRD({v,3,6)*(6x+2) (-2)-BRD(v,3,6)*(6x+4)
12y + 11|(-1)-BRD(v,3,3) (-1)-BRD{v,3,3) (-1)-BRD(v,3,3)

0-BRD(v,3,12)*(y-3x)

0-BRD(v,3,4})*2

0-BRD(v,3,12)*(y-3x-1)
0-BRD(v,3,4)2

0-BRD(v,3,12)*(y-3x-2)
0-BRD(v,3,4)"2

Table 8
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