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Abstract

We describe an algorithm for finding smallest defining sets of
designs. Using this algorithm, we show that the 104 ST'S(19)
which have automorphism group order at least 9 have smallest
defining set sizes in the range 18-23. The numbers of designs
with smallest defining sets of 18, 19, 20, 21, 22 and 23 blocks
are, respectively, 1, 2, 17, 68, 14 and 2.

1 Introduction

Let V be a v-set, and suppose that B is a collection of k-subsets of V
with the property that each f-subset of V is in exactly A of the elements
of B. Then the ordered pair D = (V, B) is called a t-(v, k, A) design. The
elements of V are called points, and the elements of B blocks. A design
with A = 1 is called a Steiner design, and a 2-(v, 3, 1) design is called a
Steiner triple system on v points, denoted ST'S(v).

A set of blocks S which is a subset of a unique -(v,k, ) design D is a
defining set of D. The size of S equals |S| and S is said to be smallest if
no other defining set of D has smaller size. A defining set is minimal if it
does not properly contain a defining set. Defining sets were introduced by
Gray in the series of papers [3, 4, 5]; see also the survey papers by Street
[12, 13].

Let V be a v-set and T}, T, be collections of m k-subsets of V. We say that
Ti and T3 are t-balanced if each t-subset of V' is contained in the same
number of blocks of T and of T5. If T} and T3 are disjoint and t-balanced,
then T = {7}, T3} is said to be a (v, k,1) trade of volume m.

THEOREM 1: ([3]) Suppose D = (V,B) and S C B. Then S is a defining
set of D if and only if S intersects each trade in D.

1Department of Mathematics. Research supported by ARC grant A69701550.
2Department of Mathematics. Research supported by ARC grant A49937047.
3Dept. of Comp. Science & Elect. Engineering. Research supported by the ARC.

JCMCC 38 (2001), pp. 225-230



PROOF: Suppose S is a defining set of D and {T1,T3} is a trade. If T; is
a trade in D (that is, T} C B), then SNT; # 0, else S is also a subset of
the design with blocks (B\ T1) UT>.

Conversely, suppose S C B intersects each trade in D. If S is not a defining
set of D, then § C D, for some design D, with the same parameters as,
but distinct from, D. Let T} comprise the blocks of D not in D; and T
comprise the blocks of D; not in D. Then {7T1,T:} is a trade, with T} in
D. Since S is disjoint from T}, this is a contradiction. |

For v = 7, 9 and 13, there are one, one, and two non-isomorphic ST'S(v)
respectively. The sizes of smallest defining sets for these were determined
in [3, 4, 6], being three, four, and eight and nine respectively. The sizes
of smallest defining sets for the 80 non-isomorphic STS(15) were found in
[10], and range from eleven to sixteen. In this paper we determine the sizes
of smallest defining sets for the ST'S(19) which have automorphism group
orders of at least 9. There are 104 such designs, and we use the listing
given in the supplement to [1], labelling the designs, in the order given, #1
to #104.

2 Techniques

We describe two standard techniques for investigating defining sets and
trades in designs, and then show how to combine these to yield an algorithm
for finding smallest defining sets.

Suppose that D = (V,B) is a design and that S C B. Then a backtrack
search can be used to complete S; that is, to find all ST'S(19) which contain
S (see, for example, [10]). If the only completion is D, then S is a defining
set and |S| is an upper bound on the size of smallest defining sets. If there
is more than one completion, then S is not a defining set and completions
not equal to D generate trades in D.

Suppose that D = (V, B) is a design with B = {By, B3, ..., By}, and asso-
ciate with each block B; a variable z;. Given a family of trades {7"};es
such that T = {T},T3} and T} C B for all i € I, form the inequality
i, + i, + -+ 2, > 1 for each T} = {B;,, Bi,,..., Bi,}. Now consider
the following integer programme:

Minimise E;=1 z;j, subject to
i, + i, +---+z;, 2 1foreachie ],
and with z; € {0,1} forall 1 < j < b.
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If m is the optimum solution for this integer programming problem, then
D has smallest defining set size of at least m. Moreover, if F = {z; | 1 <
J < b} is a feasible solution for this system, then S = {B; | z; € F,z; = 1}
is a smallest defining set of D if it completes uniquely. Of course, even if
the lower bound m is tight, S need not have a unique completion. This
technique was used in, for example, [8] to find smallest defining sets for the
36 non-isomorphic 2-(9, 3, 2) designs.

Algorithm: The input is D = (V,B), an ST'S(19), and the output is a
smallest defining set S C B of D.

(1) Find some trades of small volume in D and put these in a list 7. Typ-
ically, these trades will be Pasch trades (that is, the unique (v,3,2) trade
of volume four) or trades of volume six. (Only #3, #4, #92, #95, #98
and #100 do not contain any Pasch trades, but they do contain trades of
volume six.)

(2) Form the integer programme corresponding to 7 and find an optimal
solution for this system. Form the set of blocks S corresponding to this
solution.

(3) If S has only one completion then stop. Otherwise, there is at least one
trade in D which does not intersect S. (Note that two completions of S
suffice to show that S is not a defining set; however, the more completions
we generate, the more trades we find.)

(4) Use the automorphism group of D to generate all the copies of the
trade(s) found in (3) in D, and add these to 7.

(5) Minimise the list 7. That is, if TY C B and TY C B are distinct trades
in D and T{ C T7, then delete 7} from 7.

(6) Go to step (2).

This algorithm should be contrasted with that described by Greenhill [6]
which, starting at some lower bound on the size of defining sets, essentially
tests all successively larger subsets of the design until a (smallest) defining
set is found.

3 Results

To solve the integer programmes we used the CPLEX package [2]. We
used nauty [9] to obtain sets of generators for the designs’ automorphism
groups, and GAP [11] to generate the groups’ elements from these. The
partial-design completion programme for Steiner designs described in [10)
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was used to check whether solutions to the integer programme were defining
sets and to generate trades. The remainder of the work was done using
custom-written C programmes.

Our results are summarised in Table 1. Smallest defining sets range from 18
to 23 blocks, and there are 1, 2, 17, 68, 14 and 2 designs with, respectively,
sizes of 18, 19, 20, 21, 22 and 23. A text file containing the data in Table 1,
along with the blocks of the designs and example smallest defining sets, is
available as www.csee.uq.edu.au/"cram/sts19.txt on the World-Wide-
Web.

As a proportion of the 57 blocks in an ST'S(19), the sizes of smallest defining
sets range from 0.316 to 0.404. In comparison, for the 80 ST'S(15) the range
is 0.314 to 0.457. Interestingly, if the data for the ST'S(15) which arises
from the geometry PG(3,2) is omitted, this range becomes 0.314 to 0.400.
Various authors (see, for example, [10, 12]) have noted that, although |S|
is not monotonic with either |A| or #P, these values do seem to be related.
For the data in Table 1 the coefficient of linear correlation between |S| and
|A| is 0.474, and that between |S| and #P is 0.901.

4 Concluding remarks

The results presented here required a great deal of computation. An exact
figure is not available but we estimate that, if the time to check the results
and the fact that the CPLEX package was run in parallel are taken into
account, then approximately one decade of CPU time was required. (The
CPUs were mips R10000 units, clocked at 195 MHz.) The bulk of the time
was spent solving the optimisation problems, which ranged in size from
~1000 to 2290000 equations. Since the complexity of such problems grows
exponentially with the number of variables (that is, blocks), it is unlikely
that progress much beyond v = 19 for general Steiner triple systems can be
made using our technique. However, there are many more ST'S(19) to which
the method could be applied; see, for example, (1] and its bibliography, or
[7). Of course, the algorithm is quite general, and can be applied to other
families of designs.

Acknowledgements: We are grateful to the University of Queensland’s
High Performance Computing Unit for providing computing facilities, and
to Anne Street for reading and commenting on an early version of this
paper.
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TABLE 1: Summary of results. #D is the design’s label, | A| is its automor-
phism group order, #P is the number of Pasch configurations it contains,
and |S] is the size of a smallest defining set.

D |4] #P |5]]| #D JA] #P |5]] #D |4] #P |5
T 432 84 22| 36 32 44 21| 71 12 66 21
9 108 84 23| 37 32 28 21| 72 12 66 22
3
4
5

3t

171 0 21 38 16 60 22 73 12 60 21

57 0 21 39 16 60 22| 74 12 60 21

57 38 22| 40 16 52 21 7 12 60 21
6 144 84 23| 41 16 52 21 76 12 60 21
7 96 28 21 42 16 60 21 77 12 66 22
8 24 42 21 43 16 60 22 78 12 66 22
9 24 42 21 4 16 60 22 79 12 15 21
10 24 42 21 45 16 44 22 80 12 7 20
11 24 30 21 46 16 36 21 81 12 14 21
12 24 42 22| 47 16 44 21 82 12 22 21
13 24 3 21 48 16 36 21 83 12 18 21
14 24 64 22| 49 16 44 21 8 12 18 21
15 24 40 21 50 16 44 21 8 12 23 21
16 24 40 21 51 19 19 21 86
17 24 40 21 52 18 39 18 87
18 24 40 21 53 18 39 19 88
19 12 48 20| 54 18 18 21 89
20 12 48 21 55 18 39 21 90
21 12 48 21 56 18 39 21 91
22 12 48 20| 57 12 26 21 92
23 12 48 20| 58 12 38 21 93
24 12 48 21 59 12 38 21 94
25 12 48 21 60 12 26 21 95
26 12 48 20| 61 12 26 21 96
27T 54 57 22 62 12 50 21 97
28 54 57 21 63 12 26 21 98
29 18 48 20| 64 12 38 21 99
30 18 48 20| 65 12 50 21| 100
31 18 57 20| 66 12 42 21| 101
32 18 57 19| 67 12 42 21| 102
33 18 39 20| 68 12 30 20| 103
34 18 39 20| 69 12 54 22| 104
3 32 44 21 70 12 54 21
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