On classification of 2-(8,3) and 2-(9, 3) tradest

Z. Eslami, G. B. Khosrovshahi*, and B. Tayfeh-Rezaie
Department of Mathematics, University of Tehran
and
Institute for Studies in Theoretical Physics and Mathematics (IPM)
Tehran, Iran

Abstract

In this paper, the standard basis for trades is used to develop an
algorithm to classify all simple 2-(8,3) trades. The existence of a
total number of 15,011 trades reveals the rich structure of trades in
spite of a small number of points. Some results on simple 2-(9,3)

trades are also obtained.

1. Introduction

For given v,k, and ¢, let X = {1,2,...,v} and let P;(X) denote the set
of all k-subsets of X. The elements of X and P,(X) are called points and
blocks, respectively.

A t-(v, k) trade T = {T}, T3}, consists of two disjoint collections of blocks
T and T3 such that for every A € P(X), the number of blocks containing
A is the same in both T} and Ts.

The foundation of a trade is the set of all elements covered by T and
T and is denoted by found(T). In a t-(v,k) trade, we take v to be the
foundation size. The number of blocks in T}(7T?) is called the volume of the
trade T and is denoted by vol(T).

A t-(v,k) trade T is called Steiner, if each element A € P;(X) occurs
at most once in T1(T3). T is called simple, if there are no repeated blocks
in T1(7T3). Here, we are concerned only with simple trades.

tThis research was partially supported by a Grant from IPM.
*Corresponding author; Mailing address: IPM, P.O.Box 19395-5746, Tehran, Iran;
Email: rezagbk@karun.ipm.ac.ir

JCMCC 38 (2001), pp. 231-242 "



Two trades T = {T},T3} and T’ = {T},T4} are called isomorphic,
if there exists a bijection o : found(T) — found(T") such that o(T) =
{o(Th),0(T2)} = {T1, T3} = T".

For each point z € found(T'), we consider the set of all blocks containing
it and omit z from them. The result is a (t — 1)-(v — 1,k — 1) trade and we
call it the derived trade with respect to .

In [4], Khosrovshahi et al., using some analytic arguments, classified
2-(v,3) trades for v = 6 and 7 and showed that there exist 3 trades with
foundation size 6 and 12 trades with foundation size 7. In this paper, we
give a complete classification of 2-(8, 3) trades and provide some results on
2-(9, 3) trades. Our method is computational and utilizes the standard basis
for trades introduced in [5]. Our computational results confirm those of (4]
and produce a total number of 15,011 simple 2-(8, 3) trades which reveals
the rich structure of trades even with small foundation size.

2. The standard basis for trades

Let 1 <t < k < v, and let X be a v-set. Let P/, = [pa,n] be the (}) x ()
inclusion matriz where, for A a t-subset of X and B a block,

1 if AC B,
PAB =

0 otherwise.

It is known that the rank of P?, is (}), for t < k < v —t and hence its
kernel N}, is a Z-module of dimension (}) — (}). The trade T' = {11, T»}
corresponds to the ("’:)-integral vector F which is a solution of the equation
Py F = 0. That is, the set of all t-(v, k) trades is the kernel of Py,.

Various authors have introduced different bases for N7,. For a brief
description of these bases the reader is referred to [5]. There, Khosrovshahi
and Maysoori introduced a new basis which they called the standard basis.
- We utilize this basis to calssify t-(v,k) trades. The () = () trades of
the standard basis constitute the columns of a matrix M, which has the
following block structure:

I
Mzk:[mk]’ (1)
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where I is the identity matrix of order (}) — (%). The rows coresponding
to I are indexed by the so-called starting blocks and the remaining rows by
the non-starting blocks. By (1), the following observation is obvious.

Lemma. Let T be a trade. Then T # 0 if and only if T contains at
least one starting block.

The starting blocks corresponding to the triple (v, k,f) on the point
set {1,...,v} have the following property. If we choose from among these
starting blocks, the ones containing 1 and omit 1 from them, the resulting
blocks are the starting blocks for the triple (v —1,k—1,¢ - 1) on the point

set {2,...,v}. Hence, we have the following block structure for. MY,
I 0
0 I 0
K L 2)
Q R

The indices corresponding to the first and the third rows of this block
structure are the starting and non-starting blocks for the triple (v — 1,k —
1,t — 1) , respectively.

By Lemma, we have L = 0, therefore Kk = Hf:ll_k_l. Clearly R =

m’;l. Hence by permuting the rows of M, one obtains :

MY, = Mtu—_ll,k—l 0
t,k — N M:);l

An example of the standard basis for v = 8,k = 3 and ¢ = 2 in the form
(2) is given in Table 1.

A direct way to produce all simple ¢-(v, k) trades is to compute linear
combinations of the columns of M, with coefficients 0, 1, and -1 and then
to decide whether the result is a simple ¢-(v, k) trade or not.

Suppose all (t — 1)-(v', k — 1) trades have been classified for v/ < v —1
so that we have one representative for each isomorphism class. Let T be
a t-(v, k) trade and T its derived trade with respect to the point 1. 7" is
clearly isomorphic to one of the representative (t —1)-(v', k — 1) trades such
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as T". So there exists a permutation 7 such that 7" = #T'. Therefore, 7T
(an isomorphic copy of T') will be the extension of T". Hence, to classify t-
(v, k) trades, up to isomorphism, it suffices to extend only representatives of
the isomorphism classes of (t —1)-(v', k — 1) trades. The recursive structure
of M, helps us determine ¢-(v, k) trades by extending (¢ — 1)-(v', k — 1)
trades for v' < v — 1. Let T' be a representative (¢ — 1)-(v', k — 1) trade.
Then the coefficients of the first (}Z}) — (}=1) columns of M, are specified
by the starting blocks of 7”. To extend T, it suffices to set the coefficients
of the remaining columns and then to decide whether the resulting trade is
a simple ¢-(v, k) trade or not. Clearly, these extensions may be isomorphic
and we must apply permutations to extract one representative of each class
of isomorphism.

Using this approach, we were able to classify 2-(8, 3) trades and to obtain
some results on 2-(9, 3) trades which are presented in the next sections. This
method is also applied to count the number of ways of halving the complete
design 2-(10, 3,8) [1].

3. Classification of 2-(8,3) trades

Using the approach described in Section 2, we are able to classify, up to
isomorphism, all simple 2-(8,3) trades. First, 1-(v,2) trades are catego-
rized for v < 7. There exist 47 of these trades. In Table 2, the size of
autmorphism groups and the number of extensions of these 47 trades are
given. In the next step, by using the standard basis, the possible simple
extensions of 1-(v,2) trades are computed. The total number of 2-(8, 3)
trades in this step is equal to 301,625. While the total number of distinct
simple solutions obtained from Table 2 by summing over all products of
the size of extensions automorphism group of each of 1-(v,2) trades and
the number of its is 564,946,923. Then the size of automorphism group of
each trade is determined. After that, we are able to seperate the trades into
disjoint classes with respect to volume and size of automorphism group. In
each class, there are yet isomorphic trades. Hence, in the last step which
is somewhat time-consuming we choose, by applying permutations, only
one representative of each isomorphism class to obtain all non-isomorphic

trades.
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The computational results are presented in Tables 3 and 4 which give
a detailed account of the number of 2-(8,3) trades. The number of trades
with at least 24 automorphisms are given in Table 3 and the rest in Table
4.

Table 2.
No. of automorphisms and extensions of 1-(v,2) trades for v < 7.

trade no. #Aut Ftextensions trade no. #Aut #extensions
1 48 18039 25 2 ' 5812
2 16 14139 26 1 6016
3 12 14144 27 2 6436
4 4 10546 28 2 6028
5 16 9937 29 1 4706
6 4 10834 30 1 4238
7 2 10526 31 1 4672
8 4 7846 32 2 4682
9 2 8055 33 2 3754
10 4 7848 34 2 4682
11 2 7858 35 4 4200
12 1 8095 36 16 3550
13 2 8340 37 14 4455
14 4 8356 38 2 4498
15 40 8833 39 2 4073
16 1 6032 40 4 4324
17 6 5400 41 2 3323
18 2 5650 42 2 3682
19 2 5288 43 2 3280
20 4 5482 44 2 2877
21 12 5103 45 8 2302
22 2 6262 46 2 2266
23 2 6274 47 6 2598
24 8 6284
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There are only 10 trades whose size of automorphism groups exceed
24. These trades are given in Table I of the Appendix. These tables show
that there exists a trade of all volumes ranging from 6 to 24, except for the

volume 23. From the total of 15,011 trades, 13,190 are rigid.
Table 3.
The number of 2-(8,3) trades with at most 24 automorphisms.

#Aut
volume total 1 2 3 4 6 7 8 12 14 16 24
6 1 1
7 1 1
8 13 6 5 1 1
9 21 14 6 1
10 114 49 43 11 2 4 2 3
11 212 184 28
12 669 487 140 26 5 5 4 2
13 1057 1003 51 2 1'
14 2108 1798 263 37 1 7 2
15 2368 2298 67 2 1
16 3137 2683 386 2 38 10 10 3 5
17 2164 2112 52
18 1815 1498 281 2 24 5 6 3
19 750 717 28 5
20 406 252 134 14 6
21 85 77 7 1
22 71 22 33 5 6 3 2
24 7 1 2 4
total: 15,001
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Table 4.The number of 2-(8, 3) trades

with more than 24 automorphisms.

#Aut
volume total 32 40 48 64 128
8 3 1 1 1
16 4 1 2 1
20 1 1
24 2 1 1
total: 10

4. Some results on 2-(9,3) trades

In this section, we consider 2-(9, 3) trades. Our approach is basically the
one described in the previous sections. Here, the dimension of N3 is 48
which suggests the existence of a huge number of trades. Therefore, the
difficulties involved in testing isomorphism among solutions led us to focus
on the following two cases (although a complete classification is not yet out
of reach) :

(i) classification of Steiner trades,
(ii) classification of all trades with volume at most 9.

It is not difficult to show that in these trades at least one of the derived
trades is Steiner. Therefore, it is sufficient to extend only Steiner 1-(v, 2)
trades.

There are only 4 Steiner 1-(v,2) trades for v < 8 with volumes 2, 3,
and 4. The results of extending these 4 trades yield 17 Steiner 2-(9, 3)
trades. The number of these trades in each volume, together with size of
automorphism groups are given in Table 5. Khosrovshahi and Maimani in
[3] provided, through analytic methods, Steiner 2-(9, 3) trades with volume
at most 10. Trades of the remaining volumes, namely 11 and 12, are given
in Table II of the Appendix.

238



Classification of all 2-(9, 3) trades with volume at most 9, shows that
there exist (apart from Steiner ones) 6 non-Steiner trades of volume 8 and
48 non-Steiner trades of volume 9. We also provide the six non-Steiner
trades with volume 8 in Table III of the Appendix.

Table 5.
The number of Steiner 2-(9,3) trades.
#Aut
volume total 2 3 4 6 8 12 18 108
7 1 1
8 3 2 1
9 7 2 1 1 1 1 1
10 3 1 1 1
11 1 1
12 2 1 1

total: 17
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5. Appendix

Table I.

2-(8,3) trades with more than 24 automophisms.

volume| 8 | 8 | 8 16 16 16 16 20 24 24
#Aut | 32 | 64 {12832 48 |48 64 40 32 48

1231123{123 (123 467 (123 358123 378|123 357|123 347|123 2581123 267
157(145]124|124 468(124 456|124 457|124 468|124 348|124 268|124 268
245(246(156|136 578|125 457 (136 478|138 578 (136 356|125 278|125 278
356247256 |145 678|138 678|145 568|146 678|145 357|137 345|137 346
148(3561347|156 147 157 156 156 358|138 346 (138 347

Ty |268(357|348(236 156 234 158 234 456|146 348 (146 356
3781238578 245 267 256 235 236 467 (156 357]148 358
467]458|678|256 268 167 247 245 468 (167 368|156 378

347 278 258 256 267 178 457|157 457

357 347 268 267 258 235 478 (236 458

348 356 348 348 268 247 568 (258 567

358 348 367 347 267 246 567|247 468

124(124125]125 458|126 467|125 458|125 467|125 345|126 248126 248
135]|135]126|126 478|127 478126 567|126 478|126 346 {127 256|127 256
256(236/134[134 567128 567|134 578|134 567|134 367|128 257|128 257
178237234135 568|134 568|137 678(135 568|135 368|134 3471134 348
2381248378 (146 135 147 148 146 457|135 356 (135 357

T, |367|358]478]234 145 156 168 235 458|136 3581136 367
457|456 | 567235 247 236 234 237 567[147 378|145 368
468457|568 246 256 245 237 238 568|157 456|147 456

367 238 347 246 246 168 467|158 467

368 345 238 257 247 234 468 (237 478

378 368 248 358 248 238 478|238 568

457 378 368 378 256 245 679|246 578
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Table II.

Steiner 2-(9,3) trades with volumes 11 and 12.

volume 11 12 12
F#Aut 4 6 18

123 456 | 123 256 | 123 279
158 149 | 149 345 | 149 346
T 248 269 | 158 369 | 158 359
257 359 | 167 378 | 167 378
347 789 | 167 468 | 248 457
368 247 478 | 256 689
124 189 | 124 278 | 124 278
135 279 | 135 347 | 135 347
T 236 349 | 168 389 | 168 389
258 378 | 179 458 | 179 458
457 569 | 236 469 | 236 469
468 259 567 | 259 567

Table III.

Non-Steiner 2-(9,3) trades with volume 8.

#Aut | 8 | 8 | 2 | 2 [ 4 [ 4

123 | 123 | 123 | 123 | 123 | 123
145 | 145 | 145 | 145 | 145 | 145
247 | 248 | 248 | 246 | 239 | 248
T 268 | 249 | 249 | 248 | 247 | 249
356 | 267 | 347 | 239 | 268 | 347
357 | 345 | 356 | 347 | 346 | 356
239 | 568 | 589 | 356 | 357 | 467
589 | 579 | 679 | 789 | 489 | 789
124 | 124 | 124 | 124 | 124 | 124
135 | 135 | 135 | 135 | 135 | 135
236 | 234 | 234 | 234 | 236 | 234
T 237 | 268 | 289 | 236 | 237 | 289
289 | 279 | 367 | 289 | 289 | 367
359 | 458 | 458 | 379 | 349 | 456
457 | 459 | 479 | 456 | 457 | 478
568 | 567 | 569 | 478 { 468 | 479
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