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Abstract

In this paper, we investigate the total colorings of the join graph
Gi1 + G2 where G; U G is a graph with maximum degree at most
2. As a consequence of the main result, we prove that if G = (2l +
1)Cm + (21 + 1)Cy, then G is Type 2 if and only if m = n and n
is odd where (2! + 1)Cm and (2! + 1)Cy, represent (21 + 1) disjoint
copies of Cy, and Ch, respectively.

1 Introduction

All graphs in this paper will be finite simple graphs. Given two graphs G,
and G, we define the join graph of G; and G2, denoted by G1+G?a, to be the
graph with vertex set V(G1)UV (G2) and edge set {uv|uv € E(G1)UE(G?2)
or u € V(G,),v € V(Gz2)}. We note that G; + G2 is a complete bipartite
graph if both G; and G; are sets of independent vertices. Let C, and P,
be cycle and path of n vertices, respectively.
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An edge coloring of a graph G is a map ¢ : E(G) — C, where C is the set
of colors, such that no two edges with the same color are incident with the
same vertex. The chromatic index x (G) of G is the least value of |C| for
which G has an edge coloring. In [22] Vizing showed that the edge chromatic
number, x'(G), of a graph G with maximum degree A(G), is bounded by
A(G) € X (G) < A(G) + 1. A fairly long-standing problem has been the
attempt to classify which graphs G are class one (x (G) = A(G)), and
which graphs G are class two (x (G) = A(G) + 1). It is known that the
problem of determining the edge chromatic number of a graph is NP-hard.

A total coloring of a graph G is a coloring of the vertices and edges
of G so that no two edges incident with the same vertex receive the same
color, no two adjacent vertices receive the same color, and no incident edge
and vertex receive the same color. The total chromatic number xr(G) of a
graph G is the least number of colors needed in a total coloring of G.

There is no known analogue for the total chromatic number of Vizing’s
theorem about the chromatic index. Instead we have the Total Chromatic
Number Conjecture (TCC) of Behzad [1] and Vizing [23] that

A(G)+1 < xr(G) S AG) +2.

The lower bound here is very easy to prove. This conjecture, now more than
thirty years old, has been verified for graphs G satisfying A(G) > 3|V(G)|
by Hilton and Hind [12], and for graphs G satisfying A(G) < 5 by Kostochka
[17]. It has very recently been shown by Molloy and Reed [19] that there
is a constant ¢ such that x7(G) < A(G) +e¢.

A graph G is called Type 1if x7(G) = A(G) + 1 and Type 2 otherwise.
To classify Type 1 and Type 2 graphs, Chetwynd and Hilton [5], introduced
the following concepts. They defined the deficiency of a graph G, denoted
by def(G), to be

def(G)= > (A(G)—da(v).

veV(G)

A vertex coloring of a graph G with A(G)+1 colors is called conformable if
the number of color classes of parity different from that of |V (G)] is at most
def(G). Note that empty color classes are permitted in this definition. A
graph G is conformable if it has a conformable vertex coloring. It is not very
hard to see that G is Type 2 if G is non-conformable. The Conformability
Conjecture of Chetwynd and Hilton [5], modified by Hamilton, Hilton and
Hind [9] is:

Conjecture 1 Let G be a graph satisfying A(G) > 3(|V(G)|+1). Then G
is Type 2 if and only if G contains a subgraph H with A(G) = A(H) which
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is either non-conformable, or, when A(G) is even, consists of Ka(g)+1 with
one edge subdivided. '

Conjecture 1 has been verified for several cases when A(G) is big and
close to the order of a graph G (see [11], [4], [26], [25], [13], [9], [15] and [14]).
It would be very interesting to provide nontrivial evidence for Conjecture
1 when A(G) is close to one half of the order of a graph G.

A good characterization of all Type 1 graphs is unlikely as Sanchez-
Arroyo [21] showed that the problem of determining the total chromatic
number of a graph is NP-hard. Not only that, there are few results about
the total chromatic numbers of even very nice graphs, for example, the
complete multipartite graphs. In [2], the authors classified which complete
bipartite graphs are Type 1. A natural question is to ask which graph G,
which is obtained from a complete bipartite graph by adding in some edges
in the two parts, is Type 1. Such a graph G can be represented as a join
of two graphs.

In this paper, we investigate the total chromatic number of graphs of
the form Gy + G2, where G and G2 are graphs with maximum degree at
most 2.

The following results will be used in this paper. "

Theorem 1.1 (Behzad, Chartrand and Cooper [2]) Let K, » be the com-
plete bipartite graph. Then K., » is Type 1 if m # n and Type 2 otherwise.

Theorem 1.2 (Kén‘ig’s Theorem) If G is bipartite graph with marimum
degree A(G), then x (G) = A(G).

Let G be the complement of G, ¢(G) = |E(G)| and j(G) be the edge
independence number of G.
Theorem 1.3 (Hamilton, Hilton and Hind [9]) Let G be a graph of even
order 2n. If ¢(G) + j(G) < n(2n — A(G)) — 1, then x7(G) > A(G) + 1.

Theorem 1.4 [18] Let G = G4+ G2, where the mazimum degree of G; s at
most one fori = 1,2. Then G is Type 1 if and only if G is not isomorphic
to Ky n or K.

Theorem 1.5 [18] Let G = Gy + G2. Then G is Type 1 if one of the
following holds.

(1) G is not isomorphic to K4 or K, n and both G, and G- are unions of
paths with |A(G1) — A(Gs)| < 1.

(2) Both G and G, are unions of even cycles with |V(G1)| = |V(G2)|.
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The following lemma is about the list colorings of cycles, which plays
an important role in the proof of our main results. Surprisingly, we could
not find it anywhere although we believe that it exists.

Lemma 1.6 Let G be a cycle. If each edge e of G is assigned a list l(e) of
at least two colors and the total number of colors available to G is at least
3, then there is a proper edge coloring ¢ of G such that c(e) € l(e) for each
edge e of G.

Proof. If an edge e has 3 colors in its list {(e), then we list color the path
G — {e} and then assign e a color from l(e) which is not assigned to its
neighbors. Thus, we assume each list has two colors. Because at least three
colors are available, there are consecutive edges e1, ez and es in G such that
ez has a color A that is not in I(e;). We can list color the path G — {ez}
without using color A on es, then assign ez color A to achieve the desired
coloring.
This completes the proof. ll

2 Type 1 graphs

Lemma 2.1 Let G = G) + G2 where A(G1) = A(G2) = 2. Then G is
Type 1 if |V (G1)| # IV(G2)l.

Proof. Let |V(G1)| < |V(G2)| = n. Then we have that A(G) +1 =
n+ 3. Let B = G — (E(G1) U E(G3)) and M a maximum matching of B
(IM| = |V(G1)]). There is at least one vertex in G, say u, which is not
M-saturated.

To show that G is a Type 1 graph, we need to form a total coloring of
G using n + 3 colors. Such a total coloring can be found by the following
steps:

1. We total color G with colors 1,2,3 and 4 so that the vertices in G
are colored by colors 1,2 and 3. Color the vertex u in G2 by the color
4.

2. Color the edges of M with colors 1,2, 3 and 4 (there is a unique way
to do this if G; consists of only cycles).

3. We edge color E(Ga2) with colors 1, 2, 3, and 4. This can be done
without adjacent edges (including those from M) having the same
color because G2 is the union of cycles and paths and at least two
colors from {1, 2, 3,4} are available on each edge of G2 . Because the
total number of colors available for G is at least 3, by Lemma 1.6, we
can edge color G using only available colors.
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4. Let G! = B—E(M). Form a new graph G* by adding in a new vertex
v* and joining v* to V(G3) except the vertex u. Then dg.(v*) = n—~1,
dg+(z) = n—1 for any z € V(G,) and dg-(y) < n — 1 for any
y € V(Ga2). Therefore, G* is a bipartite graph of A(G*) =n—1 =
A(G) -3.

By Theorem 1.2, we can color the edges of G* with n — 1 colors
5,...,n+ 3. We note that this also gives an edge coloring of B.

5. Color the vertex v € V(G2) — {u}, by the color on vv*.

It is easy to see that we have obtained a proper total coloring of G using
A(G) + 1 colors. This completes the proof. Il

Lemma 2.2 Let G = G1+G> where G, is an independent set and A(G») =
2. Then G is Type 1 if [V(Gy)| > [V(G2)| - 1.

Proof. If |V(G1)| > |V(G2)|, the lemma follows from Lemma 2.1 by simply
adding in some cycles in V(G,). Let B = G- E(G2) and M be a maximum
matching of B. Let |V(G2)| = n.
Case 1. |V(G1)| = |[V(G2)|.

In this case, A(G)+ 1 = n+ 3. A total coloring of G using n + 3 colors
can be obtained as follows.

1. Let H = G2U M. We color the edges of H and the vertices in G; by
colors 1,2 and 3.

2. Let G! = B\E(M). Then A(G") = n — 1. Form a new graph G* by
adding in a new vertex v* and joining v* to each vertex in V(G>).
Then G* is a bipartite graph with A(G*) = n.

There is a proper edge coloring of G* using n colors 4,...,n+3. We
note that this also gives an edge coloring of B.

3. Color the vertex v € V(G2), then v is colored by the color on vv*.

Case 2. |V(G1)| = |[V(G2)| - 1.

In this case, A(G) + 1 = n + 2. There is a vertex u € V(G2) which is
not M-saturated. A total coloring of G using n + 2 colors can be obtained
as follows. '

1. Color u by the color 3. Color the vertices in G; by the color 1.
Without loss of generality, assume dg,(u) = 2 and let £ and y be the
two neighbors in G2. Color the edges in M which are incident to z
and y by color 3. Now the number of available colors from {1,2, 3}
for each of the edge of G, is at least 2, therefore by Lemma 1.6, we
can color the edges in G2 using colors in {1,2,3}.
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2. Let G! = B\E(M). Form a new graph G* by adding in a new vertex
v* and joining v* to each vertex in V(G2)—{u}. Then G isa bipartite
graph with A(G*) =n-1.

There is a proper edge coloring of G* using n— 1 colors 4,...,n + 2.
We note that this also gives an edge coloring of B.

3. Color the vertex v € V(G2) — {u} by the color on vv*.

It is easy to see that in both cases we have obtained a proper total
coloring of G using A(G) + 1 colors.
This completes the proof. il

3 Type 2 graphs

Lemma 3.1 Let G = G1 + G2, where Gy is an independent set and G2 is
a union of cycles and both |V(G1)| and |V(G2)| are odd. Then G is Type
2 if [V(G2)| = [V(G1)] + 2.

Proof. Let |V(G1)] = m and |V(G2)| = n. Then A(G) = m + 2 and
n=m++2.

@) +i@ - XN v ) - an - 1=

m(m—-1) a(n-1)

m-1 n-1
— + —-_n4 —

+

2 2 2 2
~("F 40— (m+2) - 1)

m2+ni—-2n—-2 mi4nm-—2
2 2

= 0.

Therefore, by Theorem 1.3, G is Type 2. |

Lemma 3.2 Let G = G, + G2, where |V(G1)| = |[V(G2)| = n and G, and
G- consist of cycles only. Then G is Type 2 if n is odd.

Proof. We note that A(G) =n + 2.

n-—1

2n(2n—1)
it S A, 2 )

( 5 n® — 2n) + 2(
n(2n — A(G)) - 1.

e(G) + j(G)
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Therefore, x7(G) > A(G)+2 by Theorem 1.3 and hence G is Type 2. This
completes the proof.

We can actually to show that the total chromatic number of these Type
2 graphs is A(G) + 2.

Lemma 3.3 Let G = Gy + G=2, where A(Gy) < 2 and A(G2) < 2. Then
xr(G) £ A(G) +2.

Proof. Let B = G — (E(G1) U E(G2)) and M be a maximum matching of
B. By Theorems 1.4, 1.5 and Lemmas 2.1, 2.2, we need consider only the
following cases.
Case 1. |V(G1)] = |V(Ga)| = n and A(G)) = A(G2) = 2.

In this case, A(G) + 2 = n + 4. We total color G using n + 4 colors as
following.

1. We total color G with colors 1,2,3 and 4. The edges of M receive
colors 1, 2,3 and 4. Then we edge color G'» using colors 1,2, 3, and 4
(this is possible because of Lemma 1.6).

2. Let G! = B\E(M) and let G* be the graph obtained from G' by
adding in a new vertex v* and linking all possible edges from v* to
V(G-) in G . 1t is easy to see that A(G*) = n and G* is a bipartite
graph. Therefore, there is a proper edge coloring of G* using n colors
5,6,...,n+4. We note that this also gives colors of the edges in Gl

3. We color the vertices in V(G3) as follows. For any v € V(Ga), color
v with the color vv*.

It is easy to see that the above coloring is a total coloring using n + 4
colors.
Case 2. |V(G1)| < |V(G2)| = n, A(G1) £ 1and A(G2) = 2.

We note that A(G) = n+ A(G1). We need total color G using n+ 2+
A(G,) colors. Let u be a vertex of V(G2) which is not M-saturated.

1. If A(G,) = 1, we follow the steps 1, 2 and 3 in the proof of Lemma
2.1 to color the edges in M UG UG and the vertices in V(G1)U{u}.
This takes 4 colors 1,2, 3 and 4.

If A(G1) =0, we follow the proof of Case 2, step 1 in Lemma 2.2 to
color the edges in M UG; UG: and the vertices in V(G1)U {u}. This
takes 3 colors 1,2 and 3.

2. Let G! = B\E(M). Form a new graph G* by adding in a new vertex
v* and joining v* to V(G3) except one vertex u. Then A(G*) =n—~1.

Color the edges of G* with n—1 colors 4+ A(G4), ..., n+2+A(Gh).
We note that this also gives an edge coloring of B.
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3. Color the vertex v € V(G2) — {u} by the color on vv*.

We have obtained a proper total coloring of G using A(G) + 2 colors. il

4 Conclusions
To summarize, we have proved the following results.

Theorem 4.1 Let G = G1 + G2, where G1 U G2 has mazimum degree at
most two. Then x7(G) < A(G) +2 (Lemma 3.3).

Furthermore, we have
(A) G is Type 1 if G\ and G salisfy one of the following conditions.

1. Both Gy and G2 are unions of paths with |A(G,) — A(G»)| <1 and G
is not isomorphic to K4 and K,, ,. (Theorem 1.5).

2. Both G; and G are unions of even cycles (Theorem 1.5).
3. [V(G1)| # [V(G1)], A(Gy) = A(G2) =2 (Lemma 2.1).

4. G1 is an independent set, A(Ga) = 2 and |V(Gy)| > |V(G2)| - 1
(Lemma 2.2).

(B) G is Type 2 if one of the following holds.

1. [V(G1)| = |V(G2)| = n is odd and both Gy and G2 are unions of cycles
(Lemma 3.2).

2. G is an independent set and G» is a union of cycles and both |V (G, )|
and |V(G2)| are odd and |V (G2)| = |V(G))| + 2 (Lemma 3.1).

Corollary 4.2 Let G = (21 +1)Cp + (20 + 1)C,,. Then G is Type 2 if and
only if m =n and n is odd.

Proof. This is an easy consequence of (2) and (3) of Part (A) and (1) of
Part (B) in Theorem 4.1.

Acknowledgment We thank the referee for a short proof of Lemma 1.6
and the valuable comment on the proof of Lemma 2.1.
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Corrigendum
“STS-Graphical Invariant for Perfect Codes”
JCMCC {36} (2001), pp. 65-82

1.J. Dejter

Department of Mathematics and Computer Science
University of Puerto Rico, Rio Piedras, PR 00931-3355
dejterij@coqui.net

1. In page 77, line 9, it is written
‘http://home.coqui.net/dejter/gihidden.zip’,
but it should say
‘http://home.coqui.net/dejterij/gihidden.zip’.

2. The last paragraph in the same page, just above the Acknowledge-
ments, starts with: ‘Of the remaining adjacency tables of Phelps-
Soloveva codes, we present below the simplest four’. These tables,
missing in the published version of the paper, are the following ones:
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Adjacency list for bb; :

afa, spabescyapsdyaeys
bagspacsbyscaeeqs fas
dfagsps acyad,se,s

f I 6@ctbasCaspaeys fos

Adjacency list for bds :

ada rpabai2p,40,0
bja 1642 b3 8,2 F2Cp2
biagi6by2.242.3C,248
0'27 balebzczdzes Ca2p3

Adjacency list for bf :

agiaasblzdzeu babca.3
al164601043,3D,349C,

bg;aabll cd3el0 bbs Cat

Adjacency list for ddj :

ada,7bg12¢agad s foa
cIba16Cy3 8 g2e2€42 fo2
cIbar6Ca2p2c263d,2 fon
b g 416C52p2:2¢8002 fo3

afa,4p3bg4conpadyaey
Cgaa%scs basCas€qs foa
elacabscspdyse,s

alagiepbyzcep £8Cq2
bjay2bg16y8 3.2 F2Cp2
biaysbyieyz 2 £3Cg2

ag'{aalzbaczebasbnca

Q3761153468 byspr0
L1,4983c3gbg4p12Cg3

b3a,12b,7C 400444
clagiecys 3 ze2e,2 fo2

ada absc apedgze 2y fo2
c48 Q8p8.8C)3 daz €g2p2 faz
elagsyscachieys Sy

b3a,12b,7 044 £4Cqt
bjay2b,16 43,2 F2Ca8p2
Chagieye basez 2Cq3p2

a5 Ap63 2100 b43 Cq3
b;zaasbocds el2 baa Cg4

clbgr6Casqee2dasey? fo2
clagiec 22 2g3d 2608

diagiecoszeadase s far  €hba1eCoz2c2ge dg2egs
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