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Abstract

A mandatory representation design MRD (K ;v) is a pairwise bal-
anced design PBD (K;v) in which for each k € K there is at least
one block in the design of size k. The study of the mandatory repre-
sentation designs is closely related to that of subdesigns in pairwise
balanced designs. In this paper, we survey the known results on
MRDs and pose some open questions.

1 Introduction

A pairwise balanced design (PBD) is a pair (X, B), where X is a set of
points and B is a collection of subsets of X called blocks, such that each
pair of distinct points from X occurs in a unique block. A PBD (K;v) is
a PBD on v points in which each block has size an integer in the set K.
A mandatory representation design MRD (K;v) is a PBD (K;v) in which
for each k € K there is at least one block in the design of size k. Define
B(K) = {v € Z* : there exists a PBD (KX,v)} and MB(K) = {ve Z*:
there exists an MRD (X,v)}. Then clearly MB(K) C B(K), but the
reverse is not generally true. For example, 7 € B({3,6}) (let X = Z7 and
develop the triple 0 1 3 mod 7) but 7 ¢ M B({3,6}) (as soon as a block of
size 6 is prescribed, all remaining blocks must have size 2).

A pairwise balanced design PBD (K;v) with K = {k} and v > k is
called a balanced incomplete block design and is denoted (v, k,1)-BIBD.
A (v,3,1)-BIBD is called a Steiner triple system STS (v); it is well known

*Paper presented by invitation at the Thirteenth Midwestern Conference on Combi-
natorics, Cryptography and Computing, Normal, Illinois, October 1999.

JCMCC 38 (2001), pp. 33-43



that there exists an STS (v) if and only if v = 1 or 3 mod 6. The following
analogues for block sizes 4 and 5 were established by Hanani [15].

Theorem 1.1 A (v,4,1)-BIBD exzists if and only if v=1 or 4 mod 12; a
(v,5,1)-BIBD exists if and only if v =1 or 5 mod 20.

If (X, B) and (X', B') are PBDs, then (X', B) is a subdesign, or flat,
of (X,B) if X’ C X and B’ C B. For example, if we construct a one-
factorization of the complete graph Kg with one-factors Fj,j € Z7, and
adjoin a new point j to each pair in Fj, we can then construct an STS
(7) on the 7 new points to yield an STS (15) with a sub-STS (7). The
first major result on the existence of subdesigns is the following well-known
theorem, established by Doyen and Wilson [10] in 1973.

Theorem 1.2 An STS (v) with a sub-STS (w) with v > w ezists if and
onlyifvyw=1o0or3 mod6 andv > 2w+ 1.

The following analogue for block size 4 was established as a result of the
combined efforts of Brouwer and Lenz [3, 4], Wei and Zhu [22], and Rees
and Stinson [21].

Theorem 1.3 A (v,4,1)-BIBD containing a sub-(w,4,1)-BIBD with v >
w exists if and only if v,w =1 or 4 mod 12, and v > 3w + 1.

We can rephrase Theorems 1.2 and 1.3 in terms of mandatory represen-
tation designs, as follows.

Corollary 1.4 (i) For each k = 1 or 3 mod 6 with k > 3, there exists
an MRD ({3,k};v) if and only if v=1 or 3 mod 6 and v > 2k + 1;

(i) For each k = 1 or 4 mod 12 with k > 4, there exists an MRD
({4,%k};v) if and only if v=1 or 4 mod 12 and v > 3k + 1.

Proof. Note that when ¥ =1 or 3 mod 6, we can obtain an STS (v) with
a sub-STS (k) from an MRD ({3, k};v) by constructing an STS (k) on the
points of the block(s) of size k; on the other hand, we can obtain an MRD
({3, k}; v) from an STS (v) with a sub-STS (k) by removing the blocks (but
not the points) from the sub-STS (k). The proof of (ii) is similar. O

Now suppose that we start with a one-factorization of the complete
graph Kg with one-factors Fj,j = 1,2,...,5. If we adjoin a new point j
to each pair in F; and define {1,2,3,4,5} to be a block, we obtain a PBD
({3,5*};11), that is, a PBD ({3,5};11) with exactly one block of size 5.
The following was established by Huang, Mendelsohn, and Rosa [17].

Theorem 1.5 For each k =5 mod 6, there erists a PBD ({3,k*};v) with
v>kifand only if v="5 mod 6 and v > 2k + 1.



Rees and Stinson [21] established an analogue to Theorem 1.5 for block
size 4.

Theorem 1.6 For each k =T or 10 mod 12, there ezists a PBD ({4,k*};v)
withv >k ifand only ifv="7 or 10 mod 12 and v > 3k + 1.

Theorems 1.5 and 1.6 can be translated directly into the language of
mandatory representation designs:

Corollary 1.7 (i) For each k = 5 mod 6, there exists an MRD ({3, k};v)
having ezactly one block of size k if and only if v = 5 mod 6 and
v>2k+1.

(ii) For each k =T or 10 mod 12, there exists an MRD ({4, k};v) having
ezactly one block of size k if and only if v = 7 or 10 mod 12 and
v>3k+ 1.

Mandatory representation designs were formally introduced by Mendel-
sohn and Rees [18], who considered in detail the case where 3 € K. A
lot of information can be determined about this case by concentrating on
the particular case K = {3,k}. Now Corollaries 1.4 (i) and 1.7 (i) do not
quite cover all possibilities for MRD ({3, k};v) when k is odd. For exam-
ple, if we start with a transversal design TD (3,4) (which is equivalent to
a Latin square of side 4) and adjoin a common point to the groups of size
4 we get an MRD ({3,5};13). That is, there do exist MRD ({3, k}; v) with
k = 5 mod 6 and v = 1 or 3 mod 6; this requires, however, that there be at
least 3 blocks of size & (the number of blocks of size k¥ must be a multiple
of 3) and therefore that v > 3k — 2. The following was established in [18].

Theorem 1.8 Let k = 5 mod 6. Then for every v = 1 or 3 mod 6 with
v > 3k — 2, there exists an MRD ({3, k}; v) having ezactly 3 blocks of size
k.

“Most” of the designs in Theorem 1.8 are easy to obtain, using the
Doyen-Wilson Theorem (Theorem 1.2/Corollary 1.4 (i)), as follows. Take
a transversal design TD (3, k — 1) (which is equivalent to a Latin square of
side k — 1) and adjoin a common point to the groups to obtain an MRD
({3,%};3k — 2). Since 3k — 2 = 1 mod 6, we can apply Corollary 1.4 (i)
to obtain an MRD ({3,3k — 2};v) for all v = 1 or 3 mod 6 with v >
2(3k — 2) + 1 = 6k — 3; now construct a copy of the MRD ({3, k}; 3k — 2)
on the block of size 3k — 2 in this design to yield an MRD ({3, k}; v) for all
v =1 or 3 mod 6 with v > 6k — 3.

Designs in the remaining interval 3k — 2 < v < 6k — 3 were then con-
structed by using a combination of direct and simple recursive construc-
tions, most notably Wilson’s Fundamental Construction; see Construction
1.10.

35



Griitttmiiller and Rees [14] considered the “analogue” to Theorem 1.8
for block size 4, noting that Corollaries 1.4 (ii) and 1.7 (ii) do not cover
the remaining possibility for £ = 1 mod 3, namely that £ = 7 or 10 mod 12
and v = 1 or 4 mod 12. This case requires that there be an even number
(therefore, at least two) of blocks of size k and therefore that v > 4k — 3.
The following was established in [14].

Theorem 1.9 Let k = 7 or 10 mod 12. There exists an MRD ({4,k};v)
for everyv =1 or 4 mod 12 with v > 4k — 3, with at most 56 ezpectations.

In “most” cases, the MRDs constructed in Theorem 1.9 have exactly
two (intersecting) blocks of size k; see ahead to Section 3 for details.

We complete this section with some terminology and notation that we
will use in the sequel. General references for design theory are [2] and [6];
a general reference for graph theory is [23].

A group-divisible design (GDD) is a triple (X, G, B), where X is a set
of points, G is a partition of X into groups, and B is a collection of subsets
of X (blocks) such that any pair of distinct points occur together either
in some groups or in exactly one block, but not both. A K-GDD of type
97195 ...g%* is a GDD in which each block has size from the set K and in
which there are ¢; groups of size ¢;,7 = 1,2,...,s. We may alsosay K-GDD
of type S, where S is the multiset containing ¢; copies of g;,1=1,2,...,s.
A transversal design TD (k,n) is a {k}-GDD of type n*; it is well known
that a TD (k, n) is equivalent to a set of £ — 2 MOLS of order n.

One of the most important recursive constructions used in the proofs of
Theorems 1.8 and 1.9 is the following, due to Wilson (see [6]).

Construction 1.10 Let (X,G, B) be a K-GDD of type S and let w : X —
Z* U {0} (w is called a weighting). If for each block b € B, there exists
a {k}-GDD of type {w(z) : = € b}, then there exists a {k}-GDD of type
{>_ w(z):G:i€G}.

z€G,;

If G is a graph, then we denote by V(G) and E(G) the vertex set of G
and the edge set of G, respectively. The line graph G* of G is the graph
whose vertex set is E(G), in which two vertices are adjacent if and only if
the corresponding edges share a vertex in G. A clique in a graph G is a
complete subgraph of G. We denote the complement of G by G°.

2 Mandatory Representation Designs MRD
(K;v) With 3 € K

As we stated in the introduction, we can obtain a lot of information about
MRD (K;v) with 3 € K by paying particular attention to the case where
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K = {3,k}, see [18, Section 1] for details. Now Corollaries 1.4 (i), 1.7 (i)
and Theorem 1.8 establish the spectrum for these designs when k is odd.
Thus, we henceforth assume that K = {3, k} where k is even.

2.1 wvis Odd

In this case, each point must be contained in an even number of blocks of
size k. Since there is at least one block of size k, there must therefore be at
least k£ + 1 such blocks. This forms the basis for the following lower bound.

Theorem 2.1 [18, Theorem 2.5 (iii)] Suppose that there exists an MRD
({3,k};v) withv odd. Ifk =0 or4 mod 6, thenv=1 or3 mod 6 and v >
$k(k+1); if k = 2 mod 6, then either v =1 or 3 mod 6 and v > Lk(k+1),
orv=>5 mod 6 and v > Fk(k+2)+ 1.

Now Gronau, Mullin, and Pietsch [11] and Griittmiiller [12] have shown
that the conditions in Theorem 2.1 are sufficient for all even k, 4 < k < 50,
except for (k,v) = (6,21), by using a combination of hill-climbing and
recursive constructions. Subsequently, Rees [20] established the following
result.

Theorem 2.2 The necessary conditions of Theorem 2.1 are sufficient when-
ever v > 1k? + 6k.

With regards the case (k,v) = (6,21), no such design exists ([see, e.g.
[20]):
Theorem 2.3 There does not exist an MRD ({3,6};21).

Proof. An MRD ({3,6};21) would have exactly 7 blocks of size 6, with
each pair of blocks intersecting in a point. These 7 blocks of size 6 therefore
can be regarded as an edge-partition of K7 (i.e. the line graph of K7) into
cliques with 6 vertices, and the triples of the MRD would form an edge-
partition of (K7)° into triangles (K3s). But no such edge-partition of (K3)°
exists, by [1). 0O

In view of the foregoing, we are prompted to pose the following.

Conjecture 2.4 The conditions of Theorem 2.1 are sufficient for the ez-
istence of an MRD ({3, k};v), with the single exceptional case of (k,v) =
(6,21).

This conjecture promises to be difficult to prove, particularly for values
of v close to the lower bounds in Theorem 2.1. It will involve analyzing the
complements of line graphs of complete graphs with a view to decomposing
the edge sets of these graphs into triangles and one-factors. In the extreme
case, one will be forced to consider the following very difficult problem,
posed by Alspach and Heinrich in 1990 [1]:
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Problem 2.5 Does there ezist an N such that if four transversals of a
partial Latin square of order n > N are prescribed, then the square can
always be completed?

For a full discussion of the foregoing, we refer the reader to [20].

2.2 vis Even

This is the most difficult case of all, as each point must be contained in
an odd number (hence, at least one) of blocks of size k. The following
necessary conditions for existence were established in [18] and [12]. Let
p(m) = min{n > 0 : K,, contains m edge-disjoint K3s}.

Theorem 2.6 Suppose that there exists an MRD ({3,k};v) with v even.
Then

(i) if k=0 or 4 mod 6, then v =0 or 4 mod 6 and v > kp(t) — 2t when
v=—2t mod k,0<t < k/2;

(i) if k = 2 mod 6, then v > kp(t + 3dk) — 2(t + 1dk) when v =
—2t mod k,0 < t < k/2, where d = —[v/k] mod3 if v = 0 or
4 mod 6, whiled = —[v/k] +1 mod 3 ifv=2 mod 6,0< d < 3;

(iii) v # 4k — 2.

Note that when ¢ = 1, we get a lower bound of v > 3k — 2 (which can
always be achieved by adjoining a common point to the groups in a TD
(3,k—1)). On the other hand, since p(m) ~ v/6m, the expression kp(t)— 2t
is of order k% when ¢ = k/2 — 1. This means that for each value of k we
can expect many ‘gaps’ in the spectrum of MRD ({3, k};v) for v between
(roughly) 3k and k7. Gronau, Mullin, and Pietsch [11] and Griittmiiller
[12] have established that the necessary conditions given by Theorem 2.6
are sufficient for all even k,4 < k < 50. Now, in general, because each point
must lie in an odd number of blocks of size k, we cannot make effective use
of the Doyen-Wilson Theorem, as was the case in the proof of Theorem 1.8,
for example. Instead, we can make use of the following classes of 3-GDDs,
constructed in [8].

Theorem 2.7 (i) If g = 0 mod 6, then there exists a 3-GDD of type
g'm! forallt>3 and all m =0 mod 2 with 0 < m < g(t — 1);

(ii) if g = 2 mod 6, then there exists a 3-GDD of type g¢'m! forallt > 3
and all0 <m < g(t—1), where m =0 mod2 ift =0 mod 3,m =
0 mod6 ift=1mod 3, and m=2 mod 6 ift =2 mod 3;
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(iti) if g = 4 mod 6, then there eists a 3-GDD of type g'm! for all > 3
and all 0 < m < g(t — 1), wherem = 0 mod 2 ift = 0 mod 3,m =
0 mod 6 ift =1 mod 3, and m =4 mod 6 ift =2 mod 3.

Thus, for example, from Theorem 2.7 (i), we get the following.

Corollary 2.8 Let k =0 mod 6. If there exists an MRD ({3, k}; o), then
there exists an MRD ({3,k};v) for all v = vy mod k with v > 2uvg + k.

The strategy for £ = 0 mod 6 then is to construct a representative MRD
({3, k};v:) in each fibre v, = =2t mod k,0 < t < k/2and t=0o0r 1 mod 3
(when & = 0 mod 6 we must have v = 0 or 4 mod 6, see Theorem 2.6 (1)).
By using this and similar strategies for ¥ = 2 or 4 mod 6, Griittmiiller and
Rees have obtained the following result, see [13).

Theorem 2.9 There exists an MRD ({3, k}; v) whenever
(1) k=0 mod 6 and v=0 or 4 mod 6 with v > 2k? — Tk + 8;
(1)) k =4 mod 6 and v =0 or 4 mod 6 with v > 2k% — 3k + 4;
(iii) k =2 mod 6 and v even with v > 6k% — 11k + 8.

Now the bound in Theorem 2.9 (i) is obtained as follows. Let ¢t = 0
or 1 mod 3,0 < ¢ < k/2, and let s = 2t + 1. Then there is an STS (s).
Apply ‘weight’ k — 1 to this STS (that is, replace each point z in the STS
by k — 1 new points z1,z2,...,zk-1 and each triple {z,y,2} in the STS
by a TD (3,k — 1) with groups {z1,22,..., 261}, {¥1,¥2,-- -, ¥k-1} and
{z1,22,...,2k-1}) to obtain a 3-GDD of type (k — 1)*. Adjoin a common
point to the groups in this GDD to obtain an MRD ({3, k}; s(k — 1) + 1).
Note that since s = 2t+1 we have v; = s(k—1)+1 = —2¢ mod k. Moreover,
the maximum value for s occurs when ¢ = k/2 — 2, i.e. s =k — 3; hence,
the maximum value for v, is (k — 3)(k — 1) + 1 = k% — 4k + 4. Applying
Corollary 2.8 then yields the bound of 2k? — 7k + 8. This is, of course,
significantly greater than the lower bound in Theorem 2.6 (i), which was
noted to have order k3. In order to come close to this latter bound, we will
need an affirmative solution to the following problem, for k = 0 mod 6:

Problem 2.10 Is it possible to construct a family of representative MRD
({3, k}; ve)s where v, = —2t mod k,0 <t < k/2 and t = 0 or 1 mod 3, so
that all v.s have order at most k% 2

Similar problems come to consideration in the cases k¥ = 2 or 4 mod 6.
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3 Mandatory Representation Designs MRD
(K;v) With 4 € K

As with the case 3 € K, we can obtain a lot of information about MRD
(K;v) with 4 € K by concentrating on the case K = {4, k}. Now Corollaries
1.4 (i) and 1.7 (i) and Theorem 1.9 cover the various possibilities when k =
1 mod 3. In the cases where k = 0 or 2 mod 3, Griittmiiller has developed
a complex set of necessary conditions for the existence of MRD ({4, k};v)s
(see [13] or {14, Theorem 1.5]). Mullin et al. [19] have confirmed that these
conditions are sufficient for 5 < k < 9, with at most 25 exceptions.

With regard to Theorem 1.9, we remarked that in “most” of the cases,
the MRDs constructed have exactly two (intersecting) blocks of size k.
Many of these designs are easily obtained using Theorem 1.3/Corollary 1.4
(i), as follows. First we construct an MRD ({4, k}; 4k — 3) having exactly
two (intersecting) blocks of size k; these exist for all ¥ = 7 or 10 mod 12
except possibly for k£ = 19 (see [14, Lemma 3.1]). Since 4k —3 = 1 mod 12,
we can apply Corollary 1.4 (ii) to obtain an MRD ({4,4k — 3};v) for all
v=1 or 4 mod 12 with v > 3(4k — 3) + 1 = 12k — 8; now construct a copy
of the MRD ({4, k}; 4k —3) on the block of size 4k —3 in this design to yield
an MRD ({4, k}; v) having exactly two (intersecting) blocks of size k for all
v=1or 4 mod 12 with v > 12k — 8, except possibly for k¥ = 19. Solutions
to Theorem 1.9 with exactly two blocks of size k are of particular interest,
as they form particular solutions to the following general problem.

Problem 3.1 For which integers v > u > w > z does there exist a O-
IPBD (4;v;u,w;z2), that is, an incomplete PBD with block size 4 on v
points having two holes, one with u points and one with w points, which
intersect in a third hole with z points?

Colbourn et al. [9] have considered the analogue to Problem 3.1 for
block size three, and while considerable progress was made, much remains
to be done. We expect therefore that Problem 3.1 will prove to be very
difficult to solve.

4 Conclusion

Very little is known about the spectrum for MRD ({ko, k}; v)s where ko >
5. For ko = 5 and k = 1 mod 4, for instance, the spectrum for PBD
({5, k*}; v)s have been established (or nearly established) for only a few
small values of k, see [6, I11.1.4].

In another direction, we mention the following related results (see [16]
and [5], and [7], respectively).
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Theorem 4.1 Let Ny3 = {n € Z:n > 3}. Then a PBD (N»3U {k*};v)
with v > k exists if and only if v > 2k + 1, except when

(i) v=2k+1and k =0 mod 2;
(1)) v=2k+2 and k # 4 mod 6,k > 1;
(i1i) v=2k + 3 and k =0 mod 2,k > 6;
(iv) (v, k) € {(7,2),(8,2),(9,2),(10,2),(11,4), (12,2),(13,2), (17,6)}.

Theorem 4.2 Let N, denote the set of all odd positive integers. Then a
PBD (N,gqVU {k*}; v) withv > k ezists if v and k are odd and v > 2k + 1.

Remark 4.3 In each of the foregoing results, the notations imply that the
corresponding PBDs have at least one block of size k, except when k =2 in
Theorem 4.1, in which case the corresponding PBD has exactly one block
of size k = 2.

At the time of writing then, much work remains to be done on the
spectra for MRD ({3, k}; v)s (particularly when k and v are both even) and
MRD ({4, k};v)s (particularly when k =0 or 2 mod 3).

It would also be of interest to investigate the analogue to Theorem 4.1
with N>4 = {n € Z : n > 4}. That is, for which v and k with v > 3k +1
does there exist a PBD (N4 U {k*};v)?
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