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Abstract

The scheme associated with a graph is an association scheme iff
the graph is strongly regular. Consider the problem of extending
such an association scheme to a superscheme in the case of a colored,
directed graph. The obstacles can be expressed in terms of t-vertex
conditions. If a graph does not satisfy the ¢-vertex condition, a presu-
perscheme associated with it cannot be erected beyond the (¢t —3)rd-
level.

1 Introduction

An association scheme (@, I'), comprising a certain kind of partition I" of the
direct square of a finite, nonempty set @, corresponds to a binary relation
algebra. A superscheme (Q,TI™) comprises a certain family of partitions
of the direct powers Q"*2? for each natural number n. Superschemes cor-
respond to Krasner (relation) algebras. J.D.H. Smith [9] showed that an
association scheme (@, T) can be extended to a superscheme (Q, ) iff it
is a permutation group scheme, i.e. there exists a transitive, multiplicity-
free permutation group G acting on @ such that each partition I'* of the
superscheme is the set of orbits of G acting componentwise on Qm+2,

A natural question arises: what can prevent an association scheme from
being built up any further to a superscheme beyond the partition I'*? A
scheme can be associated with a graph. This scheme is an association
scheme if and only if the graph is strongly regular. A height ¢ presuper-
scheme consists of the bottom ¢ levels of a superscheme. The current paper
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contains a construction of a presuperscheme associated with a colored, di-
rected graph. If the scheme associated with a colored directed graph is an
association scheme, the graph is strongly regular. The main theorem shows
that if a presuperscheme associated with a colored, directed graph is of
height ¢, then the graph satisfies the (f + 3)-vertex condition. We provide
an example of a colored graph whose presuperscheme cannot be extended
beyond the association scheme level.

2 Basic definitions

Definition 2.1 [1] Let @ be a finite, non-empty set. A (non-commutative)
association scheme (Q,T) on @ is a partition I' = {Co, ..., C,} of the direct
square @ such that three conditions are satisfied:

(A1) Co={(z,2)|lz € Q};
(42) VG €T, {(y,2)l(z,y) €CYET;
(A3) VC; €T, VC;eTl, VC, €T, 3c(4, 4, k) € N.Y(z,y) € Ch,
e Ql@2) €, (5y) € Gl = clidi b,
Definition 2.2 [9] Let Q be a finite non-empty set. A (non-commutative)
superscheme (Q,T*) on Q is a family of partitions I' = {Cg,...,C!} of
the direct power Q"*2, for each natural number n, such that:
(S1)C3 = {(z, 2)le € Q};
(52)¥m,n €N, Vf : {1,...,m+2} — {1,...,n+ 2}, VC} € T",
) ={(z1,-- - 2Zm+2) [ 3(g1, - - Un42) € CT. VI S i< m+2, i = yp())
is an element of I'™;
(S3)V(m,n) € N, VC* € T™, VC} € T", VCI™+" e I™*7,
Jc(4, j, k;m,n) € N.V(zo,...,Zm,¥Y0,..-,¥n) € cp+n,
Hz€ Q| (zo,... 2m,2) €CT, (2,40, ---,Yn) € C7} = c(i, j, k;m, n).

Later on we will need modified versions of (S2) and (S3). Define
N, = {n € N|n <t} and N? = {(m,n) e N} |m+ n < t}.
Then consider the following conditions:

(52:)¥m,n € N,, Vf: {1,...,m+2} — {1,...,n+2}, VC} €T",
f*(C_;‘) = {(xls- v Zmt2) | Y1, Ung2) € C;‘Vl <i<m+2 z;= yj(i)}
is an element of T'™;
(53:)¥(m,n) € N?, VC* € T™, VC} € T", VC*" e T,
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Je(i, j, k;m,n) € N. V(zo,...,Zm,Y0,...,¥) € e,
'{ZGQ'(CBO,... xm,z) eC:n’ (Z)yov-”ryn) ec";‘}l = c(z',j,k;m,n).

A height ¢ (non-commutative) presuperscheme (Q, I';) on Q is a family
of partitions I'"* = {C},...,CP } of the direct power Q"*2, for each number
n € N¢, such that the conditions (S1), (S2;) and ($3;) are satisfied.

Remark 2.3 Additional commutativity axioms were used in [9] and [10]:

(A4) V1 <i gk <s, ci,j, k) =c(j, i, k),
(‘54) V1 Sini’kssﬂl C(i,j,k;0,0)=C(j,i,k;0,0).

However, they are not used in proofs of theorems in [9], therefore results
from this paper can be translated to the non-commutative case.

Definition 2.4 [6] Let G be a colored, directed graph with vertex set V
and mapping E : V? — {0,1,...,d} which assigns to each ordered pair
(z, y) of vertices the value E(z,y), called the color of the arc from z to v.

Let W C V. Then W induces a colored, directed subgraph G(W) of G
with vertex set W and mapping Ew = El|w- : W* — {0,1,...,d}.

Definition 2.5 [6] Let W;,W> C V and 2 and y be two (not necessarily
distinct) vertices of V' which belong both to W) and W,.. We say that
subgraphs G(W,) and G(W,) are of the same type with respect to the pair
(2, y) if there is an isomorphism from the subgraph G(W1) to G(Wa) which
maps & to £ and y to y.

Definition 2.6 [6] We say that a colored graph G satisfies the t-vertez
condition on the arcs of color I, 0 < I < d, if for every k, 2 < k <'t, the
number of k-vertex subgraphs of each fixed type, with respect to an ordered
pair of vertices (&, y) joined by an arc of color I, is the same for all arcs of
color {.

We call a colored graph G, which satisfies the t-vertex condition on the
arcs of all its colors, a graph with the ¢-vertex condition (or a t-regular graph
or a graph with depth t).

Note that if a graph G satisfies the t-vertex condition, then for every
k < t, G satisfies the k-vertex condition.

Definition 2.7 A colored, directed graph G = (V, E) is regular if three
conditions are satisfied:
(R1) Vu,veV, E(u,v) =0& u=v, .
(R2) V0<i<d I<j<d Yu,vev, E(u,v) =i& E(v,u) = j,
(R3) Y0<i<d3cieN.VueV, |[{veV|E(u,v)=i}|=qc.
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Clearly, in a regular graph G, the number of arcs of a given color coming
into a vertex is the same for all vertices.

Example 2.8 [4, 6, 8] If a colored, directed graph G is regular, then it
satisfies the 2-vertex condition.

Conversely, if a colored, directed graph satisfies the 2-vertex condition and
the condition (R1) of Definition 2.7, then the graph is regular. O

Remark 2.9 A different description of a colored, directed graph with the
2-vertex condition can be found in the literature:
“T" is a graph with the 2-vertex condition if and only if all nonisolated
vertices in each of its one colored subgraphs have the same valence.”
However the following example shows that this description is incorrect.

Example 2.10 Consider the colored, directed graph on four vertices, with
92-colored arcs: G = (V, E), where V = {a,b,¢,d} and E(a,a) = E(b,b) =
E(c,c) = E(d,d) = E(a,b) = E(b,c) = E(c,d) = E(d,a) = 0 and E(b,a) =
E(a,d) = E(d,¢) = E(c,b) = E(a,c) = E(c,a) = E(b,d) = E(d,}) = L.
The graph G does not satisfy the 2-vertex condition on the arcs of color 1.
Indeed, consider the type T of the 2-vertex subgraph K = (K, Ex), where
K = {z,y} and Ek(z,z) = Ex(y,y) = Ex(y,z) =0 and Eg(z,y) = 1. If
we choose the pair (x,y) to be (b, a) then the number of 2-vertex subgraphs
of the type T with respect to the pair (z,y) joined by an arc of color 1
is 1. If we choose the pair (z,y) to be (b,d) then the number of 2-vertex
subgraphs of the type T with respect to the pair (z,y) joined by an arc of
color 1 is 0.

3 The 3-vertex condition

Remark 3.1 [3, 5] An undirected graph G is strongly regular (or an SRG)
with the parameters (n,k, A, p) if G is regular, and each pair of adjacent
vertices has A common neighbors and each pair of nonadjacent vertices has
g common neighbors. The parameters n and k respectively denote the
number of vertices of G and the valence of each vertex.

Proposition 3.2 [2, 4, 6, 8, 10} An undirected graph G is strongly regular
iff it satisfies the 3-vertex condition. O

Definition 3.3 We say that a colored, directed graph G = (V,E) is
strongly regular (or an SRG) if it satisfies the 3-vertex condition.

Definition 3.4 [5, 10] Let G = (V, E) be a colored, directed graph. The
scheme associated with G is (V,T), where I' = {Co,C1,...,Cq}, where
Ci=EYl)for0<I<d.
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Proposition 3.5 [6] If the scheme associated with a colored, directed
graph is an association scheme, then the graph is strongly regular.
Conversely, if a colored, directed graph is strongly regular and satisfies the
condition (R1) of Definition 2.7, then the scheme associated with the graph
is an association scheme.

Proof. Let (V,T), with T = {Co,C},...,Cq}, be the scheme associated
with the colored, directed graph G = (V, E). Since (V,T') is an association
scheme, the condition (A1) of Definition 2.1 implies the condition (R1) of
Definition 2.7. The condition (A2) of Definition 2.1 implies the condition
(R2) of Definition 2.7. Finally the condition (A3) of Definition 2.1 with
k = 0 implies the condition (R3) of Definition 2.7. Therefore the graph is
regular, and hence satisfies the 2-vertex condition. The condition (A3) with
1 < k £ d, together with (R2), implies that the number of 3-vertex sub-
graphs of each fixed type with respect to an ordered pair of vertices (z, y),
Joined by an arc of color k, is the same for all arcs of color k. Therefore
the graph satisfies the 3-vertex condition.

Suppose the graph G = (V, E) is strongly regular. Then it satisfies the
3-vertex condition, and therefore the 2-vertex condition. It also satisfies the
condition (R1) of Definition 2.7. Let (V,T), with T = {C, C1,...,Cq}, be
the scheme associated with the colored, directed graph G = (V, E). Since
the graph G satisfies the condition (R1) of Definition 2.7 and the 2-vertex
condition, it is regular (see Example 2.8). Therefore the conditions (R1),
(R2) and (R3) of Definition 2.7 are satisfied. But the condition (R1) means
that the scheme (V,T') satisfies the condition (A1) of Definition 2.1. The
condition (R2) means that the scheme (V,T') satisfies the condition (A2) of
Definition 2.1. The condition (R3) means that the scheme (V,I') satisfies
the condition (A3), with k& = 0, of Definition 2.1. And finally, since the
graph G satisfies the 3-vertex condition, for every color k, 1 < k < d, the
number of 3-vertex subgraphs of each fixed type, with respect to an ordered
pair of vertices (,y) joined by an arc of color &, is the same for all arcs
of color k. But this means that the condition (A3) (with 1 < k < d) of
Definition 2.1 is satisfied, and therefore the scheme (V. T') is an association
scheme. O

4 The main theorem

The question arises: can Proposition 3.5 be generalized? The answer is
given by a connection between height ¢ presuperschemes and (¢ + 3)-regular
graphs.

Let G = (V, E) be a colored, directed graph.
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Definition 4.1 Let G = (V, E) be a graph with totally ordered vertex set
V ={v1 <v2 <...< vy} Then G with such ordered vertices is called a
locally ordered graph.

Let G be a locally ordered graph. The skeleton S(G) of the locally ordered
graph G is the incidence matrix of the graph G with (7, j)-th entry equal
to E(vs, vj).

Next, we will generalize the scheme associated with a graph G to the
concept of a presuperscheme associated with the graph G. The generalization
involves an inductive construction of G-compatible partitions I'* of V12,
This procedure is illustrated by a flow-diagram (Figure 1). For ¢ > 0,
a G-compatible partition I'" of V!*+? satisfies some of the properties of
Definition 2.2. However, it should be noted that a G-compatible partition
at level ¢ > 0 is not necessarily unique and may not be a partition of a
presuperscheme; hence, the need for the left loop in the flow-diagram.

Definition 4.2 For ¢ = 0, the G-compatible partition I['? of V is the
scheme associated with the graph, I'° = {Cy, C1, ..., Cy}.

For t > 0 a G-compatible partition I'* of V is defined in the following
way.

The diagonal classes of I'* are of the form:

f'(C;"l)={(xl, .. .,:c¢+2)|3(y1, .o Y1) € C;-I.Vl <t <t+2,z2; = y!(,-)}

for some function f : {1,...,t4+2} — {1,...,¢+1} and some C;-'l eIl

A non-diagonal class C} € T* consists of lists of ¢ + 2 vertices of G
which belong to locally ordered (t+2)-vertex subgraphs of G with the same
skeleton. Thus there is a correspondence between non-diagonal classes C},
and isomorphism types of skeletons.

Definition 4.3 A set of G-compatible partitions which satisfies the con-
ditions of a presuperscheme from Definition 2.2 is called a presuperscheme
assoctated with the graph G.

Theorem 4.4 If a presuperscheme associated with a graph G has ¢ levels,
then the graph G satisfies the (¢ + 3)-vertex condition.
5 Proof of the main theorem

Case t = 0. If the G-compatible partition I'° is an association scheme
(V.I'9), then by Proposition 3.5 the graph G satisfies the 3-vertex condition.
Caset > 0. Suppose there exists a height ¢ presuperscheme {I'?,..., Tt~
I'*} associated with the graph G. Then the partitions {I'°,...,T*~!} form
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Figure 1: Flow-diagram of the construction of a presuperscheme associated

with the graph G
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a height ¢ — 1 presuperscheme, and by induction, the graph G satisfies the
(t + 2)-vertex condition.

To prove the (t+3)-vertex condition, it suffices to show that the number
of (t+3)-vertex subgraphs of G of the same type with respect to an ordered
pair of vertices (z,y) joined by an arc of color [, 0 <! < d, does not depend
on the choice of the arc of color [.

Let F be a (t + 3)-vertex subgraph of G of some type T, containing
{z,y}. Fix an ordering of the vertices of F. WLOG, the ordered vertices of
Fare: {t<z<y<a;<...<a}.

Let I be the locally ordered 2-vertex subgraph of F with vertices {z <

-

Let J be the locally ordered (t + 2)-vertex subgraph of F with vertices
{z<y<a <...<a}.

Let K be the locally ordered (£ + 2)-vertex subgraph of F with vertices
{z<y<a; <...<a}

Let S(I), S(J), S(K) be the skeletons of the graphs I, J, K respectively.

Let C? be the class of the partition I'® corresponding to the skeleton
S().

Let Cf,,...,C}, be all the classes of the partition I'* corresponding to
the skeleton S(J).

Let Cf ,...,C}, be all the classes of the partition I'* corresponding to
the skeleton S(K).

Then the number of (¢ + 3)-vertex subgraphs of type T with respect to
(z,y) joined by an arc of color [ is equal to:

2;=1 Z;:l |Clthlc(i’ jP’ kQ’ O)t)

(5-1) ne|Stabg y (Aut(F))|

for E(z,y) =1,1<1<d,

where Stab, y(Aut(F)) CAut(F) is the stabilizer of z and y in the auto-
morphism group of the graph F, and ¢; denotes the number of arcs of color
| going out from a vertex.

Note that in each case, the numbers do not depend on the choice of
(z,7), but only on the type T' (on the skeleton S(F)).

The number of ( + 3)-vertex subgraphs of type T with respect to (z, z)
is equal to:

z;:l Z;:l |Ci'q|c(i1 jpi "'qi 0’ t)

(5.2) n|Stab, (Aut(F))|

forl = 0.

So the graph G satisfies the (¢ + 3)-vertex condition. O

52



Example 5.3 Consider the 3-colored graph G on 16 vertices {vy, ..., vi¢}
given by the following adjacency matrix [7]:

[0 3 3 3 33322211111 1]
3 033 2113113232211
33 0213113131312 2
3 3201131131313 722
3 2110333111122 23S3
3 131302113%223131
3 113320131%2%21313
2 3113110223311 23S3
213 11132%0231323T13
21131312 20132333 31
1 3311223310213 3.1
1 3131223132503T1T13
1 23123113313%9073213
1 2132131333120 371
112233131331T1S23TF0 2
11 2231333113312 0]

By direct check, the graph G satisfies the 2-vertex- and the 3-vertex con-
ditions therefore the scheme associated with G is an association scheme.
However G does not satisfy the the 4-vertex condition. Consider the 4-
vertex subgraph F with vertices {z,a,b, c} and the adjacency matrix

0111
1 011
‘ 5_1102
1120

When checking the 4-vertex condition with respect to arcs of color 0 (with
respect to a vertex z), we find out that if 2 = v;, the number of such graphs
is 0, while if x = vg, the number of such graphs is 2. Their vertex sets are
{v3,v7,vs,v10} and {v3,v12,v5,v14}. Thus the presuperscheme associated
with G has only the bottom level I' = {Cy, C}, C», C3}.
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