On Super Edge-Magic Graphs*

Zhibo Chen
Department of Mathematics
Penn State University, McKeesport
PA 15132, U.S.A.

Abstract

A lemma of Enomoto, Llado, Nakamigawa and Ringel gives an upper bound for the edge number of a super edge-magic graph with p>1 vertices. In this paper we give some results which come out from answering some natural questions suggested by this useful lemma.

1 Introduction

All graphs in this paper are finite and have no loops or multiple edges. We use G(p,q) to denote a graph G with p vertices and q edges. Following [8], we call a one-to-one function f from elements of a graph G to integers as a labeling of G. When the domain of f is V(G) (E(G), resp.), f is called a vertex (edge, resp.) labeling of G. When the domain of f is $V(G) \cup E(G)$, f is called a total labeling of G. In general we follow the graph-theoretric notation and terminology of [1] unless otherwise specified.

According to Ringel and Llado's definition [6], a graph G(p,q) is called edge-magic if there is a bijection f from $V(G) \cup E(G)$ to $\{1, 2, ..., p+q\}$ such that the sum f(uv) + f(u) + f(v) is a constant s for all edges uv of G. We shall follow [8] to call such a function f an edge-magic total labeling (to avoid confusion), and call the constant s the magic sum of G corresponding to f. A graph G(p,q) is called super edge-magic if there is an edge-magic total labeling f satisfying $f(V(G)) = \{1, 2, ..., p\}$.

The idea of edge-magic graphs was introduced and studied by Kotzig and Rosa [4] nearly three decades ago with a different name as graphs with magic valuation. It has regained researchers' attention since Ringel and Llado's paper [6] was published in 1996. In Gallian's most recent version

^{*}Paper presented at the Thirteenth Midwestern Conference on Combinatorics, Cryptography and Computing, Normal, Illinois, October 1999.

of his inclusive dynamic survey [3] on graph labelings we can find a variety of results on this topic. It should be noted that the words "edge-magic" and "super" have been used with different meaning in the literature, see for example [5] and [7].

In [2], there is a useful lemma giving an upper bound for the edge

number of a super edge-magic graph with p > 1 vertices:

Lemma 1 If G(p,q) is non-trivial and super edge-magic, then $q \leq 2p-3$.

This lemma naturally suggests the following questions.

(1) Is this upper bound the best possible?

Notice that for any tree T the join $K_1 + T$ satisfies the condition q =2p-3. (Recall the definition: The join of graphs G_1 and G_2 , denoted as $G_1 + G_2$, is the graph obtained from $G_1 \cup G_2$ by joining each vertex of G_1 to each vertex of G_2 .) Can we find a family of infinitely many trees Tsuch that $K_1 + T$ is super edge-magic for each T in the family?

- (2) A more general question is, does there exist a connected super edgemagic graph G(p,q) for any positive integers p > 1 and $p-1 \le q \le 2p-3$?
 - (3) What can we say about super edge-magic regular graphs?
 - (4) What can we say about the join $G_1 + G_2$ for general G_1, G_2 ?

These questions are discussed in the next section. In addition, a necessary condition for regular edge-magic graphs is also presented, which enables us to present two infinite families of regular graphs that are not edge-magic.

Main results $\mathbf{2}$

There is an obvious duality in the edge-magic total labelings (see [8]): If f is an edge-magic total labeling of G(p,q), then so is f^* , where $f^*(x) =$ p+q+1-f(x). Obviously, the dual of a super edge-magic total labeling is an edge-magic total labeling where V(G) receives labels $q+1, q+2, \ldots, q+p$ and E(G) receives labels 1, 2, ..., q. In fact one can easily prove:

A graph G(p,q) is super edge-magic if and only if there is an edge-magic total labeling f such that $f(E(G)) = \{1, 2, ..., q\}$.

This gives an alternative definition for the super edge-magic graphs.

For convenience, we shall call a set S of integers consecutive if S consists of consecutive integers.

Lemma 2 A graph G(p,q) is super edge-magic if and only if there is a vertex labeling f such that the two sets f(V(G)) and $\{f(u) + f(v) : uv \in G(G)\}$ E(G) are both consecutive.

The proof of Lemma 2 is easy and is left to the reader.

Lemma 3 [3] A complete bipartite graph $K_{m,n}$ is super edge-magic if and only if m=1 or n=1.

In other words, the stars are the only complete bipartite graphs that are super edge-magic.

Now we are ready to answer the questions raised in section 1.

Theorem 1 The join of K_1 with any star is super edge-magic.

Proof. Let $G = K_1 + T$ where T is a star. It is a trivial case when |V(T)| = 1. So we assume $T = K_{1,p-2}$ with p > 2.

Figure 1. $K_1 + T$

As depicted in Figure 1, we define a vertex labeling f of G such that

$$f(v) = \begin{cases} 1 & \text{if } v \text{ is the center of the star } T \\ p & \text{if } v \text{ is the vertex of the } K_1, \end{cases}$$

and the pendant vertices of T are labeled as $\{2, 3, ..., p-1\}$. Clearly,

 $f(V(G)) = \{1, 2, \dots, p\}$ and

 $\{f(u)+f(v): uv \in E(G)\} = \{3,4,\ldots,2p-1\}.$

Therefore, the graph $G = K_1 + T$ is super edge-magic by Lemma 2.

Theorem 1 answers the first question completely. The answer for the second question is given in the following

Theorem 2 For integers p > 1 and q > 0, there is a connected super edge-magic graph with p vertices and q edges if and only if $p - 1 \le q < 2p - 3$.

Proof. The necessity of the inequality is directly from Lemma 1 and the connectedness of the graph.

From Theorem 1, there is a connected super edge-magic graph $H=K_1+K_{1,p-2}$ with p vertices and q=2p-3 edges. So we only need to show there exits a connected super edge-magic graph G(p,q) when $p-1 \leq q < 2p-3$. In fact, G(p,q) can be obtained from the graph H (with the labeling given in the proof of Theorem 1) by deleting the k edges $\{(1,2),(1,3),\ldots,(1,k+1)\}$ where k=2p-3-q. By Lemma 2, G(p,q) is super edge-magic.

Note: From the above proof we see that Theorem 1 can be generalized to the more general form as follows.

Theorem * 1 The join of K_1 with any non-empty subgraph of a star is super edge-magic.

Now we come to consider the third question.

Theorem 3 If a k-regular graph is super edge-magic then $k \leq 3$.

Proof. By contradiction. Let G(p,q) be a k-regular, super edge-magic graph with $k \ge 4$. Then $q = kp/2 \ge 2p$, contradicting Lemma 1.

Kotzig and Rosa [5] showed that qK_2 is edge-magic if and only if q is odd. In fact, for $G = qK_2$ with q odd, let $E(G) = \{e_1, e_2, \ldots, e_q\}$ with $e_i = u_i v_i$ for $i = 1, 2, \ldots, q$. Define a total labeling f of G such that

$$f(e_i) = 3q + 1 - i,$$

$$f(u_i) = \left\{ egin{array}{ll} [i/2] & ext{when } i ext{ is odd} \ (q+1+i)/2 & ext{when } i ext{ is even,} \end{array}
ight.$$

$$f(v_i) = (1+3q)/2 + i - f(u_i),$$

for
$$i = 1, 2, ..., q$$
.

It is easy to show that f is a super edge-magic total labeling. Thus we have proven:

Theorem 4 A 1-regular graph G is super edge-magic if and only if $G = qK_2$ with q odd.

That is, each 1-regular, super edge-magic graph G is the union of an odd number of disjoint edges.

It is also known [3] that the connected 2-regular super edge-magic graphs are odd cycles. Considering the connected 3-regular super edge-magic graphs, we have the following result.

Theorem 5 There is a connected 3-regular super edge-magic graph G with p vertices if and only if $p \equiv 2 \pmod{4}$.

Proof.

 \Rightarrow . Assume there is a connected 3-regular super edge-magic graph G(p,q). Then p must be even so that either $p \equiv 0 \pmod{4}$ or $p \equiv 2 \pmod{4}$. If $p \equiv 0 \pmod{4}$, we have p = 4h for some positive integer h. Then q = 3p/2 = 6h. Let f be a super edge-magic total labeling of G with the magic sum g. Then

$$qs = 3 \sum_{v \in V(G)} f(v) + \sum_{e \in E(G)} f(e)$$

$$= 2 \sum_{v \in V(G)} f(v) + (1 + 2 + \dots + (p+q))$$

$$= p(1+p) + (p+q)(1+p+q)/2,$$

implying that s = 11h + 3/2. It is impossible. So $p \equiv 2 \pmod{4}$.

 \Leftarrow . Let $p \equiv 2 \pmod{4}$, i.e., p = 4k + 2. For convenience we let n = p/2 = 2k + 1. We construct a connected 3-regular graph G with p vertices from two cycles C_n and C'_n as follows. Let

$$V(C_n) = \{a_0, a_1, \dots, a_{n-1}\}, E(C_n) = \{a_i a_{i+1} : i = 0, 1, \dots, n-1\}, V(C'_n) = \{a'_0, a'_1, \dots, a'_{n-1}\}, E(C'_n) = \{a'_i a'_{i+1} : i = 0, 1, \dots, n-1\}.$$

(Note that in the proof the addition or substraction in indexes is always taken modulo n.) Now we define $V(G) = V(C_n) \cup V(C'_n)$, and $E(G) = E(C_n \cup E(C'_n) \cup \{a_i a'_{n-ik} : i = 0, 1, \dots, n-1\}$. Clearly, G is a connected graph with p vertices. It is easy to show that G is 3-regular as follows. For $0 \le i \ne j \le n-1$, n does not divide (j-i)k, since gcd(k,n) = 1 and n does not divide (j-i). Then (n-ik) is not congruent to (n-jk)

Now we give a vertex labeling f of G as follows (see Figure 2 for the case p = 10.) Let

modulo n. Therefore G is 3-regular.

$$f(a_i) = \begin{cases} (i+2)/2 & \text{if } i \text{ is even} \\ k+(i+3)/2 & \text{if } i \text{ is odd,} \end{cases}$$
 $f(a'_i) = \begin{cases} 2n-i/2 & \text{if } i \text{ is even} \\ 2n-k-(i+1)/2 & \text{if } i \text{ is odd,} \end{cases}$ for $i=0,1,2,\ldots,n-1$,

Then it is not difficult to verify that $f(V(G)) = \{1, 2, \ldots, 2n\}, \text{ and } \\ \{f(u) + f(v) : uv \in E(G)\} = A \cup B \cup C = \{k+2, k+3, \ldots, 4n-k\}, \\ \text{where} \\ A = \{f(a_i) + f(a_{i+1}) : i = 1, 2, \ldots, n-1\} = \{k+2, k+3, \ldots, k+n+1\}, \\ B = \{f(a_i') + f(a_{i+1}') : i = 1, 2, \ldots, n-1\} = \{3n-k+1, 3n-k+2, \ldots, 4n-k\}, \\ C = \{f(a_i) + f(a_{n-ik}') : i = 1, 2, \ldots, n-1\} = \{n+k+2, n+k+3, \ldots, 3n-k\}. \\ \text{Therefore, G is super edge-magic by Lemma 2.}$

Figure 2. The case p=10 (Petersen graph).

Note: The graph depicted in Figure 2 is the Petersen graph. So the Petersen graph is super edge-magic.

Regarding the fourth question, we have the following result.

Theorem 6 The join of nontrivial graphs G_1 and G_2 is super edge-magic if and only if

- (i) at least one of G_1 and G_2 has exactly two vertices, and
- (ii) $G_1 \cup G_2$ has exactly one edge.

Proof.

 \Rightarrow . Assume G_1+G_2 is super edge-magic with $|V(G_1)|=m\geq 2$ and $|V(G_2)|=n\geq 2$. Let $|E(G_1\cup G_2)|=k$. Then $|V(G_1+G_2)|=m+n$ and $|E(G_1+G_2)|=mn+k$. By Lemma 1, we have $mn+k\leq 2(m+n)-3$. It

follows that

$$0 \le (m-2)(n-2) \le 1-k \dots (*)$$

So, $k \le 1$.

Note that if k=0, G_1+G_2 is a complete bipartite graph so that it can not be super edge-magic by Lemma 3. Hence, we must have k=1, i.e., $|E(G_1 \cup G_2)| = 1$. Then it follows from (*) that (m-2)(n-2) = 0. Therefore, we must have m=2 or n=2.

 \Leftarrow . Let $G = G_1 + G_2$ satisfy the condition that $2 = |V(G_1| \le |V(G_2|$ and $|E(G_1 \cup G_2)| = 1$. Then there are two cases as depicted in Fig. 3, depending on the unique edge of $G_1 \cup G_2$ belonging to G_1 or G_2 . It is easy to verify that the vertex labeling given for each case in Figure 3 satisfies the condition of Lemma 2. Therefore, G is super edge-magic by Lemma 2.

Figure 3. Two cases of $G_1 + G_2$

It is known (see [5] or [6]) that all caterpillars are super edge-magic. Enomoto et al. [3] conjecture that all trees are super edge-magic. Our next result gives support to this conjecture.

Theorem 7 For any $n \geq 7$, there is a non-caterpillar tree with n vertices that is super edge-magic.

Proof. For n=7, there is a unique non-caterpillar tree, which is depicted in Figure 4. It is easy to verify that the vertex labeling given in Figure 4 satisfies the condition of Lemma 2 so that the tree is super edgemagic. For n>7, let n=7+k with $k\geq 1$. The graph depicted in Figure 5 is a non-caterpillar tree with n vertices. The given vertex labeling also shows that the graph is super edge-magic by Lemma 2.

Finally we give a necessary condition for a regular graph to be edgemagic.

Theorem 8 Let G(p,q) be k-regular $(k \ge 1)$ and edge-magic. Let d = gcd(k-1,q). Then $(p+q)(1+p+q) \equiv 0 \pmod{2d}$.

Proof. Let f be an edge-magic total labeling of G with the magic sum s. Then

$$qs = k(\sum_{v \in V(G)} f(v)) + \sum_{e \in E(G)} f(e)$$

$$= (k-1) \sum_{v \in V(G)} f(v) + (1+2+\ldots+(p+q)).$$

It follows that

$$(p+q)(1+p+q) = 2(qs-(k-1)\sum_{v \in V(G)} f(v)).$$

Therefore $(p+q)(1+p+q) \equiv 0 \pmod{2d}$.

Figure 4. n=7.

Figure 5. n=7+k.

Now we give some corollaries.

Corollary 1 The join $nK_2 + nK_2$ is not edge-magic for any $n \ge 1$.

Proof. Let $G(p,q) = nK_2 + nK_2$. Clearly p = 4n, k = 2n + 1, and q = kp/2 = 2n(2n + 1). Then d = gcd(k - 1, q) = 2n. It is easyly verified that (p+q)(1+p+q) = 2n(2n+3)(1+2n(2n+3)) so that 2d cannot divide (p+q)(1+p+q).

Therefore, G is not not edge-magic by Theorem 8.

Note that $nK_2 + nK_2$ is K_4 when n = 1. So, we see that K_4 is not edge-magic.

Corollary 2 There are infinitely many 3-regular hamiltonian plane graphs which are not edge-magic.

Proof. For any odd cycle, replace each vertex by the same graph $K_2 + 2K_1$ to obtain a 3-regular graph as depicted in Figure 6.

Figure 6

It is easy to see each graph obtained in this way is not edge-magic by Theorem 8.

Acknowledgement

I wish to thank the referee for his many helpful comments and suggestions. I am also grateful to the department of mathematics, University of Pittsburgh, especially Professor C. Y. Chao, for their hospitality during my sabbatical visit in 1999.

References

- [1] J.A. BONDY, U.S.R. MURTY, Graph Theory with Applications, Macmillan, New York, 1976.
- [2] H. ENOMOTO, A.S. LLADO, T. NAKAMIGAWA, G. RINGEL, Super edge-magic graphs, SUT J. Math. 34(2)(1998) 105-109.

[3] J. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics 5(1998), #DS6.

[4] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad.

Math. Bull. 13(1970) 451-461.

[5] S.-M. LEE, W.M. PIGG, T.J. Cox, On edge-magic cubic graph conjecture, Congr. Numer. 105(1994) 214-222.

[6] G. RINGEL, A.S. LLADO, Another tree conjecture, Bull. ICA

18(1996) 83-85.

[7] B.M. Stewart, Supermagic complete graphs, Canadian J. Math.,

19(1967) 427-438.

[8] W.D. Wallis, E.T. Baskoro, M. Miller, Slamin, Edgemagic total labelings, Manuscript.