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Abstract

A lemma of Enomoto, Llado, Nakamigawa and Ringel gives an
upper bound for the edge number of a super edge-magic graph with
p > 1 vertices. In this paper we give some results which come
out from answering some natural questions suggested by this use-
ful lemma.

1 Introduction

All graphs in this paper are finite and have no loops or multiple edges. We
use G(p, g) to denote a graph G with p vertices and g edges. Following [8],
we call a one-to-one function f from elements of a graph G to integers as
a labeling of G. When the domain of f is V(G) (E(G), resp.), f is called a
verter (edge, resp.) labeling of G. When the domain of f is V(G) U E(G),
[ is called a total labeling of G. In general we follow the graph-theoretric
notation and terminology of [1] unless otherwise specified.

According to Ringel and Llado’s definition [6], a graph G(p, ¢) is called
edge-magic if there is a bijection f from V(G) U E(G) to {1,2,...,p+ q}
such that the sum f(uv)+ f(u) + f(v) is a constant s for all edges uv of G.
We shall follow [8] to call such a function f an edge-magic total labeling (to
avoid confusion), and call the constant s the magic sum of G corresponding
to f. A graph G(p,g) is called super edge-magic if there is an edge-magic
total labeling f satisfying f(V(G)) = {1,2, ..., p}.

The idea of edge-magic graphs was introduced and studied by Kotzig
and Rosa [4] nearly three decades ago with a different name as graphs with
magic valuation. It has regained researchers’ attention since Ringel and
Llado’s paper [6] was published in 1996. In Gallian’s most recent version
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of his inclusive dynamic survey [3] on graph labelings we can find a variety
of results on this topic. It should be noted that the words ”edge-magic”
and ”super” have been used with different meaning in the literature, see
for example [5] and [7].

In [2], there is a useful lemma giving an upper bound for the edge
number of a super edge-magic graph with p > 1 vertices:

Lemma 1 If G(p,q) is non-trivial and sitper edge-magic, then ¢ < 2p—3.

This lemma naturally suggests the following questions.

(1) Is this upper bound the best possible?

Notice that for any tree T the join K; + T satisfies the condition ¢ =
2p — 3. (Recall the definition: The join of graphs G; and G2, denoted as
G1 + Ga, is the graph obtained from G; U G2 by joining each vertex of Gy
to each vertex of G2. ) Can we find a family of infinitely many trees T
such that K, + T is super edge-magic for each T in the family?

(2) A more general question is, does there exist a connected super edge-
magic graph G(p, g) for any positive integers p > land p—1< ¢ < 2p— 37

(3) What can we say about super edge-magic regular graphs?

(4) What can we say about the join G1 + G2 for general G1,G27

These questions are discussed in the next section. In addition, a nec-
essary condition for regular edge-magic graphs is also presented, which
enables us to present two infinite families of regular graphs that are not
edge-magic.

2 Main results

There is an obvious duality in the edge-magic total labelings (see [8]): If
f is an edge-magic total labeling of G(p, q), then so is f*, where f*(z) =
p+gq+1— f(z). Obviously, the dual of a super edge-magic total labeling is
an edge-magic total labeling where V(G) receives labels g+1,9+2,...,9+p
and E(G) receives labels 1,2, . ..,q. In fact one can easily prove:

A graph G(p, g) is super edge-magic if and only if there is an edge-magic
total labeling f such that f(E(G)) = {1,2,...,q}.

This gives an alternative definition for the super edge-magic graphs.

For convenience, we shall call a set S of integers consecutive if S consists
of consecutive integers.

Lemma 2 A graph G(p,q) is super edge-magic if and only if there is a
vertez labeling f such that the two sets f(V(G)) and {f(u) + f(v) : uv €
E(G)} are both consecutive.

The proof of Lemma 2 is easy and is left to the reader.

56



Lemma 3 [3] A complete bipartite graph K,, ,, is super edge-magic if and
only if m=1 or n=1.

In other words, the stars are the only complete bipartite graphs that
are super edge-magic.

Now we are ready to answer the questions raised in section 1.
Theorem 1 The join of K\ with any star is super edge-magic.

Proof. Let G = K; + T where T is a star. It is a trivial case when
[V(T)| = 1. So we assume T = K, p_2 with p > 2.

. e b e - SEmdm e O i b

T= KU‘P—Z

Figure 1. K13, +T

As depicted in Figure 1, we define a vertex labeling f of G such that

flv) = 1 if v is the center of the star T
T | p ifvis the vertex of the K,

and the pendant vertices of T are labeled as {2,3,...,p—1}.
Clearly,

f(V(G)={L,2,...,p} and

{f(v) + f(v) :wv € E(G)} = {3,4,...,2p—1}.

Therefore, the graph G = K; + T is super edge-magic by Lemma 2.

Theorem 1 answers the first question completely. The answer for the
second question is given in the following

Theorem 2 For integers p > 1 and ¢ > 0, there is a connected super edge-
magic graph with p vertices and q edges if and only if p— 1< ¢ < 2p—3.
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Proof. The necessity of the inequality is directly from Lemma 1 and
the connectedness of the graph.

From Theorem 1, there is a connected super edge-magic graph H = K+
K p—3 with p vertices and ¢ = 2p — 3 edges. So we only need to show there
exits a connected super edge-magic graph G(p,q) when p—1<q < 2p—3.
In fact, G(p, ¢) can be obtained from the graph H (with the labeling given in
the proof of Theorem 1) by deleting the k edges {(1,2),(1,3),...,(1,k+1)}
where k = 2p — 3 — ¢. By Lemma 2, G(p, q) is super edge-magic.
Note: From the above proof we see that Theorem 1 can be generalized to
the more general form as follows.

Theorem * 1 The join of K; with any non-empty subgraph of a star is
super edge-magic.

Now we come to consider the third question.
Theorem 3 If a k-regular graph is super edge-magic then k < 3.

Proof. By contradiction. Let G(p, ¢) be a k-regular, super edge-magic
graph with k > 4. Then ¢ = kp/2 > 2p, contradicting Lemma 1.

Kotzig and Rosa [5] showed that ¢K; is edge-magic if and only if ¢ is
odd. In fact, for G = ¢K, with ¢ odd, let E(G) = {e1,e2,...,eq} with
e; = uiv; for i =1,2,...,q. Define a total labeling f of G such that

fles)=3¢+1—14,

flu) = [¢/2] when i is odd
W) = (g+1+1)/2 when iis even,

f(vi) = (1+39)/2+i - f(w),

fori=1,2,...,q.

It is easy to show that f is a super edge-magic total labeling. Thus we
have proven:

Theorem 4 A I-regular graph G is super edge-magic if and only if G =
¢K» with ¢ odd.
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That is, each 1-regular, super edge-magic graph G is the union of an
odd number of disjoint edges.

It is also known [3] that the connected 2-regular super edge-magic
graphs are odd cycles. Considering the connected 3-regular super edge-
magic graphs, we have the following result.

Theorem 5 There is a connected 3-regular super edge-magic graph G with
p vertices if and only if p = 2(mod 4).

Proof.

=>.  Assume there is a connected 3-regular super edge-magic graph
G(p, g)- Then p must be even so that either p = 0(mod 4) or p = 2(mod 4).
If p = O(mod 4), we have p = 4h for some positive integer h. Then ¢ =
3p/2 = 6h. Let f be a super edge-magic total labeling of G with the magic

sum s. Then
3 ). f@+ Y fle)

veV(G) e€E(G)

2 ) f)+(1+2+...4+(p+9)
veV(G)

= p(l+p)+(P+9)(1+p+49)/2,

implying that s = 11k + 3/2 . It is impossible. So p = 2(mod 4).

<. Let p=2(mod 4), i.e., p = 4k + 2. For convenience we let
n = p/2 = 2k + 1. We construct a connected 3-regular graph G with p
vertices from two cycles C,, and C, as follows. Let

V(Ca) ={ao,a1,...,80-1}, E(Cn) = {aiaiy1 :i=0,1,,...,n -1},

V(Ch) ={ap,al,...,a,_1}, E(C;) = {aja},, :i=0,1,,...,n—1}.
(Note that in the proof the addition or substraction in indexes is always
taken modulo n.) Now we define V(G) = V(C,) UV(C.), and
E(G) = E(CLVE(C,)U{aia,_;, :i=0,1,,...,n—1}. Clearly, G is a
connected graph with p vertices. It is easy to show that G is 3-regular as
follows. For 0 < i # j < n—1,n does not divide (j—i)k, since ged(k,n) = 1
and n does not divide (j — i). Then (n — ik) is not congruent to (n — jk)
modulo n. Therefore G is 3-regular.
Now we give a vertex labeling f of G as follows (see Figure 2 for the case
p=10.) Let

qs

flag) = (i+2)/2 if ¢ is even
BIZ k+(i+3)/2 ifiisodd,

flal) = 2n —if2 if i is even
VT 2n—-k-(i+1)/2 ifiisodd,

fori=0,1,2,...,n—1.
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Then it is not difficult to verify that

fV(3)=1{1,2,...,2n}, and

{f(w)+ f(v) :wv € E(G)} = AUBUC ={k+2,k+3,...,4n — k},
where
A= {f(a,-)+f(a,-+1) :i=1,2,...,n— 1} = {k+2,k+3,...,k+n+ 1},
B = {f(a})+f(aj;;):1=1,2,...,n=1} = {3n—k+1,3n—k+2,...,4n—
k},
C={f(a:)+f(a}_;) :i=1,2,...,n—1} = {n+k+2,n+k+3,...,3n—k}.
Therefore, G is super edge-magic by Lemma 2.

Figure 2. The case p=10 (Petersen graph).

Note: The graph depicted in Figure 2 is the Petersen graph. So the
Petersen graph is super edge-magic.

Regarding the fourth question, we have the following result.

Theorem 6 The join of nontrivial graphs G1 and G3 is super edge-magic
if and only if

(i) at least one of Gy and G2 has ezactly two vertices, and

(i1) G1 U G2 has ezactly one edge.

Proof.

=. Assume G; + G is super edge-magic with |V (G;)| = m > 2 and
|[V(G2)| =n>2. Let |[E(G1UG,)| = k. Then |V(G1 + G2)| = m+n and
|E(G1+ G2)| = mn + k. By Lemma 1, we have mn + k < 2(m+n) -3. It
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follows that

0<(mM—-2)n—-2)<1—k.....ovvvvinurnannn. ™
So, k< 1.

Note that if k¥ = 0, G; + G2 is a complete bipartite graph so that it
can not be super edge-magic by Lemma 3. Hence, we must have k = 1,
i.e., |E(G1UG2)| = 1. Then it follows from (*) that (m — 2)(n —2) = 0.
Therefore, we must have m =2 or n = 2.

<. Let G = Gy + G satisfy the condition that 2 = |V(G:1| < V(G|
and |E(G;, U G2)| = 1. Then there are two cases as depicted in Fig. 3,
depending on the unique edge of G1 U G2 belonging to Gy or Ga. It is easy
to verify that the vertex labeling given for each case in Figure 3 satisfies
the condition of Lemma 2. Therefore, G is super edge-magic by Lemma 2.

2 $-1
3 2
3

P-1
Figure 3. Two cases of G1 + G2

It is known (see [5] or [6]) that all caterpillars are super edge-magic.
Enomoto et al. [3] conjecture that all trees are super edge-magic. Our next
result gives support to this conjecture.

Theorem 7 For any n > 7, there is a non-caterpillar tree with n vertices
that is super edge-magic.

Proof. For n = 7, there is a unique non-caterpillar tree , which is
depicted in Figure 4. It is easy to verify that the vertex labeling given in
Figure 4 satisfies the condition of Lemma 2 so that the tree is super edge-
magic. For n > 7, let n =7+ k with k > 1. The graph depicted in Figure
5 is a non-caterpillar tree with n vertices. The given vertex labeling also
shows that the graph is super edge-magic by Lemma 2.

Finally we give a necessary condition for a regular graph to be edge-
magic.

Theorem 8 Let G(p,q) be k-regular (k > 1) and edge-magic. Let
d=gcd(k—1,9). Then (p+q)(1 +p+ q) = 0(mod 2d).
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Proof. Let f be an edge-magic total labeling of G with the magic
sum s. Then

s = kY foN+ 3 £
veV(G) e€E(G)
= (k=1 Y, fO)+1+2+...+(p+9)
veEV(G)
It follows that
P+ +p+a)=2(gs—(k—-1) Y. f(v)).

veV(G)

Therefore (p+ ¢)(1 +p+ ¢) = 0(mod 2d).

3 7
1 6 2
4 5
Figure 4. n=7. Figure 5. n=T+k.

Now we give some corollaries.
Corollary 1 The join nK; + nKa is not edge-magic for anyn > 1.

Proof. Let G(p,q) = nKz +nK3. Clearly p=4n, k =2n+1, and
g = kp/2 =2n(2n + 1). Then d = ged(k — 1,9) = 2n. It is easyly verified
that (p+¢)(1+p+4¢) = 2n(2n+3)(1+2n(2n +3)) so that 2d cannot divide

(p+g)(1+p+9)
Therefore, G is not not edge-magic by Theorem 8.

Note that nKy + nK, is K4 when n = 1. So, we see that K, is not
edge-magic.
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Corollary 2 There are infinitely many 3-regular hamiltonian plane graphs
which are not edge-magic.

Proof. For any odd cycle, replace each vertex by the same graph
K3 4+ 2K, to obtain a 3-regular graph as depicted in Figure 6.

\\
) AN
/ \
s \
l \
Odd Cycle }
4
'
1
/
/
/7
K, + 2K,

Figure 6

It is easy to see each graph obtained in this way is not edge-magic by
Theorem 8.
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