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Abstract

Erdds and Gallai (1963) showed that any r-regular graph of order
n, with r < n — 1, has chromatic number at most 3n/5, and this
bound is achieved by precisely those graphs with complement equal
to a disjoint union of 5-cycles.

We are able to generalize this result by considering the problem
of determining a (j —1)-regular graph G of minimum order f(j) such
that the chromatic number of the complement of G exceeds f(7)/2.
Such a graph will be called an F(j)-graph. We produce an F(j)-
graph for all odd integers j > 3 and show that f(j) = 5(5 — 1)/2 if
j=3(mod 4), and f(j)=1+5(7—1)/2if j =1 (mod 4).

1. Introduction

All graphs considered in this paper are finite, simple and loopless. We use
the terminology of Parthasarathy [4]. A covering of a graph G is a partition
P of V(G) such that for each V; € P, the induced subgraph G[V;] in G is
a complete graph. The covering number of G is denoted by ¢(G) and is
defined by

¢(G) := min{|P| : P is a covering of G}.

Evidently ¢(G) = x(G) for any graph G and its complement G, where x
denotes chromatic number. Erd6s & Gallai [1] used this relationship when
proving that any r-regular graph of order n with » < n — 1 has chromatic
number at most 3n/5, and this bound is achieved by precise those graphs
with complement equal to a disjoint union of 5-cycles. This means that the
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bound 3n/5 is the best for an r-regular graph of order n when r = n—3, so
j :=n—r = 3. In this paper, we define an F(j)-graph to be a (j - 1)-regular
graph of minimum order f(j) with the property that its covering number
exceeds f(j)/2. We determine F(j)-graphs for all odd integers j > 3. In
fact, we shall prove the following theorem:

Theorem 1. For any odd integer j > 3, we have f(j) = %(j -1) if
j = 3(mod 4) and f(j) =1+ 3(j — 1) if j = 1(mod 4).

As an application, we shall have the following theorem:

Theorem 2. Any r-regular graph of order n with odd j :=n —r > 3 has

chromatic number at most ! 2‘} :5 1 -n, and this bound is achieved by precise

those graphs with complement equal to a disjoint union of F(j)-graphs.

2. Upper bound

In this section, we shall give an upper bound for f(j) by constructively
showing the existence of a (j — 1)-regular, triangle-free hamilton graph
on g(j) vertices for odd j > 3, where g(j) = 3(j — 1) if j = 3(mod 4),
and g(j) = 1+ 3(j — 1) if j = 1(mod 4). Before going to the proof, we
introduce some graph construction notation. Let A, B be non-empty sets.
Let K(A, B) be the complete bipartite graph with bipartitioning sets A and
B. Let G and H be any two graphs, with V(G) and V(H) not necessarily
disjoint. Then G + H is the graph obtained from G and H such that
V(G+ H)=V(G)UV(H) and E(G+ H) = E(G)U E(H). It is clear that
the binary operation “+4” is associative.

If j = 3(mod 4), put j = 4k+3. Let V4, V3, V3, Va4, V5 be pairwise disjoint
sets, each of which has cardinality 2k + 1. We define

G() := K(V, Vo) + K(Va, V) + K (Va, Va) + K (Va, Vi) + K(V&, V1)

Each v € G(j), has degree d(v) = 4k+2 = j—1, so G(j) is (j — 1)-regular.
Furthermore G(j) is a triangle-free and hamiltonian. Thus ¢(G(j)) =
1(g(j) + 1), where g(j) = 3(j — 1).

If j = 1(mod 4), put j = 4k+1. Let V3, V2, V3, Vy, V5 be pairwise disjoint
sets such that |V3| = 2k — 1, |Va| = |V5| = 2k and |V3| = |Va| =2k + 1. We
define

G(J) = K(W, Vo) + .K(Vz, V3) + H + K(Va, Vs) + K(Vs, V1)

where H is a 2k-regular bipartite graph with V3 and V} as its bipartitioning
sets. Each v € G(j) has degree d(v) = 4k = j—1. Once again G(j) is (j—1)-
regular triangle-free hamilton graph on g(j) = 10k+1 =14 2(j —1). Thus
c(G(9)) = 3(9(4) +1).
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Hence we have f(j§) < g(j) for all odd j > 3.

3. Elementary facts about F'(j)-graph

In Section 4 we shall show that f(j) = g(j) by assuming that f(j) <
9(j) and obtaining a contradiction. But first, we need to develop some
elementary facts about F(j)-graph which we shall require. From now on,
if G is an F(j)-graph, then G will have order f(j) and we shall assume
that f(j7) < g(j). It is clear that if G is a graph of order n with 1-factor
then ¢(G) < 3. Thus an F(j)-graph has no 1-factor. Wallis [6] showed
that if G is a (§ — 1)-regular graph of even order and G has no 1-factor,
then n > 3(j — 1) + 4 if j is odd and n 23(j—1)+7if j is even. This
exceeds the bound f(j) < g(j) <1+ 2 (] — 1) obtained in Section 2, so
if G is an F(j)-graph it follows that its. order f(j) must be odd. We had
9(j) = 10k+5 = 3(j—1) when j = 4k+3, and g(j) = 10k+1 = 1+3(j—1)
when j = 4k + 1, so because f(j ) is odd, in both cases f(j) < g(j) requires
f() < 3(j = 1). Hence f(j) < $(j - ).

Jackson [3] showed that a 2-connected r-regular graph with at most 3»

vertices is hamiltonian.

Proposition 1 Any F(j)-graph is hamiltonian.

Proof The claim holds when j = 3 since it is clear that f(3) = 5 and the
F(3)-graph is a 5-cycle. Now assume that j > 5. It is enough to show that
if G is an F(j)-graph, then G is 2-connected. Moreover, by the minimality
of the order n := f(j) of G, we may assume that G is connected. If G has
a cut vertex v and G\ {v} = G1UG?, where |G| = n; and |G| = n3, then
0(G1) =6(G2) = j — 2. Thus A(Gy) =n1—j+1and A(Gg) =ns—j+1,
where G; and G; are the complements of Gy and G5 in in Kn, and K,
respectively. By Brooks’s Theorem [4, p. 279], we have x(G1) < ny —j+1
and x(Gz2) < ng — j + 1. Thus

{G) < 1+¢(G1)+c(Ga)
= 1+ x(G1) + x(G2)
Sl+m—j+1l+4n—-j+1
=n-—2j+3.

Since G is an F(j)-graph, % < ¢(G) < n — 2j + 3. Therefore n > 4j — 6 >
f(j), which is a contradlctlon. Hence G is 2-conected, as required. l

Results of Hanson, Wang and MacGillivray [2] show for odd n < 3( J -1)
and odd j > 5 that a (j—1)-regular graph of order » must contain a triangle.
In proving our result in the next section, a triangle in a hamilton cycle of
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an F(j)-graph will play a crucial role in order to get a contradiction, so, we
shall name such a triangle according to the way it fits in the hamilton cycle.
Let H be a hamilton cycle and ABC be a triangle as shown in Figure 1.
Since p+ g+ r + 3 = f(j) is the order of the odd cycle H, it follows that
P+ ¢+ r must be even. We call ABC an even triangle with respect to H
if p, ¢, r are all even; otherwise ABC is an odd triangle.

A U2a41 A V2p41

Up Yq
%] V2 U Va2
U n (73] N
B C B C

4 @ 4 @
w1 wo w3 Wy w) Wa w3 Wae
Figure 1 Figure 2

We omit the details of routine argument which proves the following
proposition:

Proposition 2 Let G be an F(j)-graph. Then neither of the following is
possible:

1) G has a hamilton cycle H and a triangle ABC which is even with
respect to H;

2) G has a hamilton cycle H and two vertices u,v which are adjacent
in G and at distance 2 on H.

Hence, without loss of generality we may assume that p = 2a + 1,9 =
2b+1 and r = 2¢, where q, b, c are positive integers (see Figure 2). Let U =

{UI,UZ,...,Uga.g.l}, V = {1)],‘02,...,‘025..;.1} and W = {wl,w-_w,...,wgc}.
Further, we let X = {u;,us,...,U2q41,¥1,3,-..,v2541} and let ¥ = {ua,
Uqgy ..., U2q, V2,04, .. ')UZb}'
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We also omit the details of routine argument which proves the following
proposition:

Proposition 3 Let G be an F(j)-graph. Then neither of the following is
possible:

1) X contains vertices u; and v; which are adjacent in G,

2) X contains any vertex which is adjacent to both B and C' in G.

Finally, let G be an F(j)-graph and H a hamilton cycle of G labeled so
that V(H) = Z, and ij € E(H) if and only if |[i — j| = 1. Since G cannot
have an even triangle, each i € Z,, can be adjacent to at most one vertex
in {i+2k—1,i+2k}. Since n = f(j) < g(j), each i € Z, must be adjacent
to at least one vertex on any path of length at least %( j — 1) along the
hamilton cycle.

4. Proof that f(j) = g(J)

By using facts from Section 3, we are now able to show that f(j) = g(j)-
To show this, we use the graph in Figure 2 and consider two cases, when
¢ =0 and ¢ > 0. With the assumption that f(j) < g(j), we shall finally get
a contradiction in each case.

Proposition 4 f(j) = g(Jj).

Proof (1) Suppose ¢ = 0. Let G be an F(j)-graph containing a hamilton
cycle H with an odd triangle ABC such that B is adjacent to C on H. Using
the notations in Section 3, we find that 2(a+b)+5 = f(j) < 2(j—1) < g(j)
and hence | X| = a+b+2 < 3(j—1). Since the hamilton cycle H has no even
triangle, |N(B)NX|+|N(C)NX| = |(N(B)JUN(C))NX| < [X] < 3(j-1).
Thus [N(B)NY|+ IN(C)NY|>2(j -1)-4-3(-1)=3(-1) -4
We may assume that [N(B)NY| > %( j — 1) — 2. Hence there are at most
(a+b)-3(G-1)+2<3(i—1)= 50 —1) = Z(j — 1) vertices in ¥ not
adjacent to B. By looking at the vertex u;, we have N(u;)NN(B)NY # 0
or Nu))NX # 0. If N(uy) N N(B)NY # B, then there exists an even
triangle with respect to H. Assume that there exists z € X such that
uy is adjacent to z. If x is in V, then G is not an F(j)-graph. Thus u;
must be adjacent to some u; in X for some odd integer ¢ > 5. If there
exists u; € U with 1 < s < i such that u, is adjacent to v in X, then
G is not an F(j)-graph. If u, € U with 1 < s < i is adjacent to u; in
X, > i, and there exists u,,, € U with 1 < m < t such that u,, is adjacent
to vr in X, then G is not an F(j)-graph. Without loss of generality, we
may assume that u; is adjacent to u; for some odd integer i > 5 and
no u; € U with 1 < s < 7 is adjacent to any vertex in X except on
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the path from u; to u; along the hamilton cycle H. It should be noted
that for the path from u; to u; along the cycle H, we find that u; can be
adjacent to at most one vertex of each pair of the form {uax—_1,uax} with
1<k< 1(1 — 1). Similarly u;_, can be adjacent to at most one vertex
of each pair of the form {ugk,uak41} with 1 < k < (z — 1). Moreover,

N(uw)NN(ui—1)N(Y\ {u1,uz, ..., u;}) = @ because, otherw1se, we will have
an even triangle. Thus |N(u,)|+|N(u,~_1)| =2(j-1) < i+2g—igl;’+b+3.
Therefore 42 > 2(7 —1) —(a+0+3) 22— 1) - 3(i—-1) = 3( - 1).
In this case we . have i > (] — 1) — 1 and there must exist u, € U with
1 < s <iwhichis adJacent to v;. This is a contradiction.

(2) We may now suppose ¢ > 0 and there is no triangle which has ¢ =0
relative to any hamilton cycle in G.

In order to get a contradiction in this case, we first consider the following
facts:

1. If z,y, z are 3 consecutive vertices along the hamilton cycle H, then
N(2) N N(y) = N(y) A N(z) = 0 and [N(z) A N(z)| > L — 1).

2. If z,y, z are 3 vertices in G such that z,y, 2 form a path in G, then
IN(z) N N()| + IN(5) NN ()] + [N (2) AN ()] 2 36— D).

Since G is an F(j)-graph of order f(j) < g( ]) any hamilton cycle of
G cannot contain an even triangle. We may assume that ABC is an odd
triangle with respect to H such that ¢ is minimized. By this assumption,
we have N(B)NN(C)NW = 0.

(2.1) Suppose u; is not adjacent to any vertex in X. Then |[N(B)NY| <
2( = 1), because otherwise N(u)) N N(B) # 0 or u, must be adjacent
to consecutive vertices in W. Similarly, [N(C) NY| < 1(j — 1). We now
consider the path u; — B — C, we have

IN(u1) N N(B)| + IN(B) N N(C)| +|N(u1) N N(C)| 2

[ IR

G-1.

But N(u;)NN(B) =0 and A € N(B)NN(C). Furthermore, since N(B)N
N(C)NX = NB)NN(C)NW = Nu ) NN{C)NX = 9, we have
lN(B)ﬂN(C’)r‘lY|+|N w)AN(C)NY|+|N(w)AN(C)NW| > (i -1).
Since [N(C)NY| < 4(j— 1) and N(uy)NN(B) = 0, we have |N(B)I'1N(C)
Y|+|N(u1)nN(C)ﬂY| < 1(j—1). Therefore |N(u1)r‘|N( )ﬁWl > 1(-1).

Let {w;,,wi,,.. ,w.,} =Nuw)NNC)NW, with i) <ia<...< . It
is clear that {il, i2,...,1;} contains no consecutive integers in W. We now
construct i, pairs of vertices in W such that the k** pair is {w;,, w,k.H} or
{wi, —1,w;, }, according as i is odd or even, respectlvely Sincet > = (] 1),
v; must be adjacent to at least one vertex in a pair, say k*” pair. But one
vertex in the pair was adjacent to u; and C, so v; must be adjacent to the
other vertex in the pair. Thus G is not an F(j)-graph.
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(2.2) Now suppose u, is adjacent to some vertice u; € X. Then i > 5
and of course 7 is odd. Without loss of generality, we may assume that no
u; € U with 1 < s < is adjacent to any vertex in X except those vertices
from u; to u, along the hamilton cycle.

By looking at N(u;) and N(u;-1), we first claim that |(NV (u;)UN (u;-1))N
W|>e+3(5-1)

For suppose that |(N(w;) U N(uim1)) NW| < ¢+ 4(j — 1) — 1. By
counting all possible vertices that are either adjacent to u; or u;—; and
N(us) N N(ui—1) =0, we havea+b+c+ 3(j — 1)+ 3+ Hl>2(-1).
Thus

il

t -1)—(a+b+c+3)

3
>3G-1)-3G-1D=1G-.
Therefore, ¢ > %(] ~ 1). In this case v; must be adjacent to at least one
vertex u, € U with 1 < s <. Thus G is not an F(5)-graph.

Thus, by contradiction we may assume that |(N(u;) UN(ui_1))NW| >
c+ %(] — 1). Hence there are at least %(j — 1) disjoint pairs of consec-
utive vertices in W, all of which are either adjacent to u; or u;_,. Let
{wi,, Wiy g1, Wiy, Winy1, ..., Wi, Wi} be t = 1(j — 1) disjoint pairs of
consecutive vertices with ¢; < i < ... < 4;. By removing w;, , wi, 41, w;,
and w;,4; from the set and considering the path from w;, 42 to w;,_; along
the hamilton cycle, we find that one of Wi, Wi, 41 is odd, one of w;,, w;, 41
is even and the length of the path from w;, 42 to w;,- is at least j — 5. If
Jj>9,then j—5> %(j— 1). Thus vy must be adjacent to at least one vertex
on the path from w;, 42 to wj,—;. It is easy to see that no matter whether
v1 is adjacent to wy for an odd or even k in the interval i; +2 < k < 4, — 1
it turns out that G can not be an F(j)-graph. '

Thus we have completed the proof of Theorem 1. It can be easily seen
that Theorem 2 is a consequence of Theorem 1 together with the fact that
any 2r-regular graph must contain a 2-factor [5] and for given integer n and
odd integer j such that n > £(j), there exists a (j — 1)-regular, triangle-free
and hamilton graph G on n vertices.
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