ON F(j)-GRAPHS AND THEIR APPLICATIONS*

Narong Punnim

Department of Mathematics Srinakharinwirot University Sukhumvit Soi 23, Bangkok 10110, Thailand

Abstract

Erdös and Gallai (1963) showed that any r-regular graph of order n, with r < n - 1, has chromatic number at most 3n/5, and this bound is achieved by precisely those graphs with complement equal to a disjoint union of 5-cycles.

We are able to generalize this result by considering the problem of determining a (j-1)-regular graph G of minimum order f(j) such that the chromatic number of the complement of G exceeds f(j)/2. Such a graph will be called an F(j)-graph. We produce an F(j)-graph for all odd integers $j \geq 3$ and show that f(j) = 5(j-1)/2 if $j \equiv 3 \pmod 4$, and f(j) = 1 + 5(j-1)/2 if $j \equiv 1 \pmod 4$.

1. Introduction

All graphs considered in this paper are finite, simple and loopless. We use the terminology of Parthasarathy [4]. A covering of a graph G is a partition P of V(G) such that for each $V_i \in P$, the induced subgraph $G[V_i]$ in G is a complete graph. The covering number of G is denoted by C(G) and is defined by

 $c(G) := \min\{|P| : P \text{ is a covering of } G\}.$

Evidently $c(G) = \chi(\bar{G})$ for any graph G and its complement \bar{G} , where χ denotes chromatic number. Erdös & Gallai [1] used this relationship when proving that any r-regular graph of order n with r < n - 1 has chromatic number at most 3n/5, and this bound is achieved by precise those graphs with complement equal to a disjoint union of 5-cycles. This means that the

^{*}Paper presented at the Thirteenth Midwestern Conference on Combinatorics, Cryptography and Computing, Normal, Illinois, October 1999.

bound 3n/5 is the best for an r-regular graph of order n when r = n - 3, so j := n - r = 3. In this paper, we define an F(j)-graph to be a (j-1)-regular graph of minimum order f(j) with the property that its covering number exceeds f(j)/2. We determine F(j)-graphs for all odd integers $j \geq 3$. In fact, we shall prove the following theorem:

Theorem 1. For any odd integer $j \geq 3$, we have $f(j) = \frac{5}{2}(j-1)$ if $j \equiv 3 \pmod{4}$ and $f(j) = 1 + \frac{5}{2}(j-1)$ if $j \equiv 1 \pmod{4}$.

As an application, we shall have the following theorem:

Theorem 2. Any r-regular graph of order n with odd $j := n - r \ge 3$ has chromatic number at most $\frac{f(j)+1}{2f(j)} \cdot n$, and this bound is achieved by precise those graphs with complement equal to a disjoint union of F(j)-graphs.

2. Upper bound

In this section, we shall give an upper bound for f(j) by constructively showing the existence of a (j-1)-regular, triangle-free hamilton graph on g(j) vertices for odd $j \geq 3$, where $g(j) = \frac{5}{2}(j-1)$ if $j \equiv 3 \pmod{4}$, and $g(j) = 1 + \frac{5}{2}(j-1)$ if $j \equiv 1 \pmod{4}$. Before going to the proof, we introduce some graph construction notation. Let A, B be non-empty sets. Let K(A, B) be the complete bipartite graph with bipartitioning sets A and B. Let G and G be any two graphs, with G and G and G not necessarily disjoint. Then G + H is the graph obtained from G and G and G and G and G is clear that G the binary operation "+" is associative.

If $j \equiv 3 \pmod{4}$, put j = 4k+3. Let V_1, V_2, V_3, V_4, V_5 be pairwise disjoint sets, each of which has cardinality 2k+1. We define

$$G(j) := K(V_1, V_2) + K(V_2, V_3) + K(V_3, V_4) + K(V_4, V_5) + K(V_5, V_1).$$

Each $v \in G(j)$, has degree d(v) = 4k + 2 = j - 1, so G(j) is (j - 1)-regular. Furthermore G(j) is a triangle-free and hamiltonian. Thus $c(G(j)) = \frac{1}{2}(g(j) + 1)$, where $g(j) = \frac{5}{2}(j - 1)$.

If $j \equiv 1 \pmod{4}$, put j = 4k+1. Let V_1, V_2, V_3, V_4, V_5 be pairwise disjoint sets such that $|V_1| = 2k-1$, $|V_2| = |V_5| = 2k$ and $|V_3| = |V_4| = 2k+1$. We define

$$G(j) := K(V_1, V_2) + K(V_2, V_3) + H + K(V_4, V_5) + K(V_5, V_1)$$

where H is a 2k-regular bipartite graph with V_3 and V_4 as its bipartitioning sets. Each $v \in G(j)$ has degree d(v) = 4k = j-1. Once again G(j) is (j-1)-regular triangle-free hamilton graph on $g(j) = 10k + 1 = 1 + \frac{5}{2}(j-1)$. Thus $c(G(j)) = \frac{1}{2}(g(j) + 1)$.

3. Elementary facts about F(j)-graph

In Section 4 we shall show that f(j) = g(j) by assuming that f(j) < g(j) and obtaining a contradiction. But first, we need to develop some elementary facts about F(j)-graph which we shall require. From now on, if G is an F(j)-graph, then G will have order f(j) and we shall assume that f(j) < g(j). It is clear that if G is a graph of order n with 1-factor then $c(G) \le \frac{n}{2}$. Thus an F(j)-graph has no 1-factor. Wallis [6] showed that if G is a (j-1)-regular graph of even order and G has no 1-factor, then $n \ge 3(j-1)+4$ if f is odd and f and f and f are second that if f is an f and f and f are second that if f is an f and f and f are second that if f is an f and f and f are second that if f is an f and f and f are second that its order f and f are second that f and f are second that f and f are second f

Jackson [3] showed that a 2-connected r-regular graph with at most 3r vertices is hamiltonian.

Proposition 1 Any F(j)-graph is hamiltonian.

Proof The claim holds when j=3 since it is clear that f(3)=5 and the F(3)-graph is a 5-cycle. Now assume that $j\geq 5$. It is enough to show that if G is an F(j)-graph, then G is 2-connected. Moreover, by the minimality of the order n:=f(j) of G, we may assume that G is connected. If G has a cut vertex v and $G\setminus\{v\}=G_1\cup G_2$, where $|G_1|=n_1$ and $|G_2|=n_2$, then $\delta(G_1)=\delta(G_2)=j-2$. Thus $\Delta(\overline{G_1})=n_1-j+1$ and $\Delta(\overline{G_2})=n_2-j+1$, where $\overline{G_1}$ and $\overline{G_2}$ are the complements of G_1 and G_2 in K_{n_1} and K_{n_2} respectively. By Brooks's Theorem [4, p. 279], we have $\chi(\overline{G_1})\leq n_1-j+1$ and $\chi(\overline{G_2})\leq n_2-j+1$. Thus

$$c(G) \leq 1 + c(G_1) + c(G_2)$$

$$= 1 + \chi(\overline{G_1}) + \chi(\overline{G_2})$$

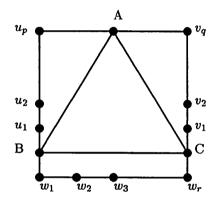
$$\leq 1 + n_1 - j + 1 + n_2 - j + 1$$

$$= n - 2j + 3.$$

Since G is an F(j)-graph, $\frac{n}{2} < c(G) \le n - 2j + 3$. Therefore n > 4j - 6 > f(j), which is a contradiction. Hence G is 2-conected, as required.

Results of Hanson, Wang and MacGillivray [2] show for odd $n < \frac{5}{2}(j-1)$ and odd $j \ge 5$ that a (j-1)-regular graph of order n must contain a triangle. In proving our result in the next section, a triangle in a hamilton cycle of

an F(j)-graph will play a crucial role in order to get a contradiction, so, we shall name such a triangle according to the way it fits in the hamilton cycle. Let H be a hamilton cycle and ABC be a triangle as shown in Figure 1. Since p+q+r+3=f(j) is the order of the odd cycle H, it follows that p+q+r must be even. We call ABC an even triangle with respect to H if p,q,r are all even; otherwise ABC is an odd triangle.



 u_{2a+1} A v_{2b+1} u_2 u_1 u_1 u_2 u_3 u_2 u_1 u_2 u_3 u_2

Figure 1

Figure 2

We omit the details of routine argument which proves the following proposition:

Proposition 2 Let G be an F(j)-graph. Then neither of the following is possible:

- 1) G has a hamilton cycle H and a triangle ABC which is even with respect to H;
- 2) G has a hamilton cycle H and two vertices u, v which are adjacent in G and at distance 2 on H.

Hence, without loss of generality we may assume that p=2a+1, q=2b+1 and r=2c, where a,b,c are positive integers (see Figure 2). Let $U=\{u_1,u_2,\ldots,u_{2a+1}\},\ V=\{v_1,v_2,\ldots,v_{2b+1}\}$ and $W=\{w_1,w_2,\ldots,w_{2c}\}$. Further, we let $X=\{u_1,u_3,\ldots,u_{2a+1},v_1,v_3,\ldots,v_{2b+1}\}$ and let $Y=\{u_2,u_4,\ldots,u_{2a},v_2,v_4,\ldots,v_{2b}\}$.

We also omit the details of routine argument which proves the following proposition:

Proposition 3 Let G be an F(j)-graph. Then neither of the following is possible:

- 1) X contains vertices u_i and v_j which are adjacent in G;
- 2) X contains any vertex which is adjacent to both B and C in G.

Finally, let G be an F(j)-graph and H a hamilton cycle of G labeled so that $V(H) = \mathbb{Z}_n$ and $ij \in E(H)$ if and only if |i-j| = 1. Since G cannot have an even triangle, each $i \in \mathbb{Z}_n$, can be adjacent to at most one vertex in $\{i+2k-1, i+2k\}$. Since n = f(j) < g(j), each $i \in \mathbb{Z}_n$ must be adjacent to at least one vertex on any path of length at least $\frac{1}{2}(j-1)$ along the hamilton cycle.

4. Proof that f(j) = g(j)

By using facts from Section 3, we are now able to show that f(j) = g(j). To show this, we use the graph in Figure 2 and consider two cases, when c = 0 and c > 0. With the assumption that f(j) < g(j), we shall finally get a contradiction in each case.

Proposition 4 f(j) = g(j).

Proof (1) Suppose c = 0. Let G be an F(j)-graph containing a hamilton cycle H with an odd triangle ABC such that B is adjacent to C on H. Using the notations in Section 3, we find that $2(a+b)+5=f(j)<\frac{5}{2}(j-1)< g(j)$ and hence $|X| = a+b+2 < \frac{5}{4}(j-1)$. Since the hamilton cycle H has no even triangle, $|N(B) \cap X| + |N(C) \cap X| = |(N(B) \cup N(C)) \cap X| \le |X| < \frac{5}{4}(j-1)$. Thus $|N(B) \cap Y| + |N(C) \cap Y| > 2(j-1) - 4 - \frac{5}{4}(j-1) = \frac{3}{4}(j-1) - 4$. We may assume that $|N(B) \cap Y| > \frac{3}{8}(j-1) - 2$. Hence there are at most $(a+b) - \frac{3}{8}(j-1) + 2 < \frac{5}{4}(j-1) - \frac{3}{8}(j-1) = \frac{7}{8}(j-1)$ vertices in Y not adjacent to B. By looking at the vertex u_1 , we have $N(u_1) \cap N(B) \cap Y \neq \emptyset$ or $N(u_1) \cap X \neq \emptyset$. If $N(u_1) \cap N(B) \cap Y \neq \emptyset$, then there exists an even triangle with respect to H. Assume that there exists $x \in X$ such that u_1 is adjacent to x. If x is in V, then G is not an F(j)-graph. Thus u_1 must be adjacent to some u_i in X for some odd integer $i \geq 5$. If there exists $u_s \in U$ with $1 \leq s \leq i$ such that u_s is adjacent to v_k in X, then G is not an F(j)-graph. If $u_s \in U$ with $1 \leq s \leq i$ is adjacent to u_t in X, t > i, and there exists $u_m \in U$ with $1 \leq m \leq t$ such that u_m is adjacent to v_k in X, then G is not an F(j)-graph. Without loss of generality, we may assume that u_1 is adjacent to u_i for some odd integer $i \geq 5$ and no $u_s \in U$ with $1 \leq s \leq i$ is adjacent to any vertex in X except on the path from u_1 to u_i along the hamilton cycle H. It should be noted that for the path from u_1 to u_i along the cycle H, we find that u_i can be adjacent to at most one vertex of each pair of the form $\{u_{2k-1}, u_{2k}\}$ with $1 \leq k \leq \frac{1}{2}(i-1)$. Similarly u_{i-1} can be adjacent to at most one vertex of each pair of the form $\{u_{2k}, u_{2k+1}\}$ with $1 \leq k \leq \frac{1}{2}(i-1)$. Moreover, $N(u_i) \cap N(u_{i-1}) \cap (Y \setminus \{u_1, u_2, \ldots, u_i\}) = \emptyset$ because, otherwise, we will have an even triangle. Thus $|N(u_i)| + |N(u_{i-1})| = 2(j-1) \leq i + \frac{2a+1-i}{2} + b + 3$. Therefore $\frac{i+1}{2} \geq 2(j-1) - (a+b+3) \geq 2(j-1) - \frac{5}{4}(j-1) = \frac{3}{4}(j-1)$. In this case we have $i \geq \frac{3}{2}(j-1) - 1$ and there must exist $u_s \in U$ with $1 \leq s \leq i$ which is adjacent to v_1 . This is a contradiction.

(2) We may now suppose c > 0 and there is no triangle which has c = 0 relative to any hamilton cycle in G.

In order to get a contradiction in this case, we first consider the following facts:

- 1. If x, y, z are 3 consecutive vertices along the hamilton cycle H, then $N(x) \cap N(y) = N(y) \cap N(z) = \emptyset$ and $|N(x) \cap N(z)| \ge \frac{1}{2}(j-1)$.
- 2. If x, y, z are 3 vertices in G such that x, y, z form a path in G, then $|N(x) \cap N(y)| + |N(y) \cap N(z)| + |N(x) \cap N(z)| \ge \frac{1}{2}(j-1)$.

Since G is an F(j)-graph of order f(j) < g(j), any hamilton cycle of G cannot contain an even triangle. We may assume that ABC is an odd triangle with respect to H such that c is minimized. By this assumption, we have $N(B) \cap N(C) \cap W = \emptyset$.

(2.1) Suppose u_1 is not adjacent to any vertex in X. Then $|N(B) \cap Y| < \frac{1}{4}(j-1)$, because otherwise $N(u_1) \cap N(B) \neq \emptyset$ or u_1 must be adjacent to consecutive vertices in W. Similarly, $|N(C) \cap Y| < \frac{1}{4}(j-1)$. We now consider the path $u_1 - B - C$, we have

$$|N(u_1) \cap N(B)| + |N(B) \cap N(C)| + |N(u_1) \cap N(C)| \ge \frac{1}{2}(j-1).$$

But $N(u_1) \cap N(B) = \emptyset$ and $A \in N(B) \cap N(C)$. Furthermore, since $N(B) \cap N(C) \cap X = N(B) \cap N(C) \cap W = N(u_1) \cap N(C) \cap X = \emptyset$, we have $|N(B) \cap N(C) \cap Y| + |N(u_1) \cap N(C) \cap Y| + |N(u_1) \cap N(C) \cap W| \ge \frac{1}{2}(j-1)$. Since $|N(C) \cap Y| < \frac{1}{4}(j-1)$ and $N(u_1) \cap N(B) = \emptyset$, we have $|N(B) \cap N(C) \cap Y| + |N(u_1) \cap N(C) \cap Y| < \frac{1}{4}(j-1)$. Therefore $|N(u_1) \cap N(C) \cap W| > \frac{1}{4}(j-1)$.

Let $\{w_{i_1}, w_{i_2}, \ldots, w_{i_t}\} = N(u_1) \cap N(C) \cap W$, with $i_1 < i_2 < \ldots < i_t$. It is clear that $\{i_1, i_2, \ldots, i_t\}$ contains no consecutive integers in W. We now construct i_t pairs of vertices in W such that the k^{th} pair is $\{w_{i_k}, w_{i_k+1}\}$ or $\{w_{i_k-1}, w_{i_k}\}$, according as i_k is odd or even, respectively. Since $t > \frac{1}{4}(j-1)$, v_1 must be adjacent to at least one vertex in a pair, say k^{th} pair. But one vertex in the pair was adjacent to u_1 and C, so v_1 must be adjacent to the other vertex in the pair. Thus G is not an F(j)-graph.

(2.2) Now suppose u_1 is adjacent to some vertice $u_i \in X$. Then $i \geq 5$ and of course i is odd. Without loss of generality, we may assume that no $u_s \in U$ with $1 \leq s \leq i$ is adjacent to any vertex in X except those vertices from u_1 to u_s along the hamilton cycle.

By looking at $N(u_i)$ and $N(u_{i-1})$, we first claim that $|(N(u_i) \cup N(u_{i-1})) \cap W| \ge c + \frac{1}{2}(j-1)$.

For suppose that $|(N(u_i) \cup N(u_{i-1})) \cap W| \leq c + \frac{1}{2}(j-1) - 1$. By counting all possible vertices that are either adjacent to u_i or u_{i-1} and $N(u_i) \cap N(u_{i-1}) = \emptyset$, we have $a + b + c + \frac{1}{2}(j-1) + 3 + \frac{i+1}{2} \geq 2(j-1)$. Thus

 $\begin{array}{ll} \frac{i+1}{2} & > \frac{3}{2}(j-1) - (a+b+c+3) \\ & \geq \frac{3}{2}(j-1) - \frac{5}{4}(j-1) = \frac{1}{4}(j-1). \end{array}$

Therefore, $i \geq \frac{1}{2}(j-1)$. In this case v_1 must be adjacent to at least one vertex $u_s \in U$ with $1 \leq s \leq i$. Thus G is not an F(j)-graph.

Thus, by contradiction we may assume that $|(N(u_i) \cup N(u_{i-1})) \cap W| \ge c + \frac{1}{2}(j-1)$. Hence there are at least $\frac{1}{2}(j-1)$ disjoint pairs of consecutive vertices in W, all of which are either adjacent to u_i or u_{i-1} . Let $\{w_{i_1}, w_{i_1+1}, w_{i_2}, w_{i_2+1}, \ldots, w_{i_t}, w_{i_t+1}\}$ be $t := \frac{1}{2}(j-1)$ disjoint pairs of consecutive vertices with $i_1 < i_2 < \ldots < i_t$. By removing $w_{i_1}, w_{i_1+1}, w_{i_t}$ and w_{i_t+1} from the set and considering the path from w_{i_1+2} to w_{i_t-1} along the hamilton cycle, we find that one of w_{i_1}, w_{i_1+1} is odd, one of w_{i_t}, w_{i_t+1} is even and the length of the path from w_{i_1+2} to w_{i_t-1} is at least j-5. If $j \ge 9$, then $j-5 \ge \frac{1}{2}(j-1)$. Thus v_1 must be adjacent to at least one vertex on the path from w_{i_1+2} to w_{i_t-1} . It is easy to see that no matter whether v_1 is adjacent to w_k for an odd or even k in the interval $i_1 + 2 \le k \le i_t - 1$, it turns out that G can not be an F(j)-graph.

Thus we have completed the proof of Theorem 1. It can be easily seen that Theorem 2 is a consequence of Theorem 1 together with the fact that any 2r-regular graph must contain a 2-factor [5] and for given integer n and odd integer j such that $n \geq f(j)$, there exists a (j-1)-regular, triangle-free and hamilton graph G on n vertices.

Acknowledgement

I would like to thank Professor Roger B. Eggleton for drawing my attention to the subject.

References

[1] P. Erdös and T. Gallai, Solution of a problem of Dirac, Theory of Graphs and its applications: Proceedings of the symposium,

- Smolenice, June 1963. Publishing House of the Czechoslavian Academy of Science, Prague (1964) 167-168.
- [2] D. Hanson, P. Wang and G. MacGillivray, A note on minimum graphs with girth pair $(4, 2\ell + 1)$, J. Graph Theory 18 (1994) 325-327.
- [3] B. Jackson, Hamiltonian cycles in regular 2-connected graphs, J. Combin. Theory Ser.B, 29 (1980) 27-46.
- [4] K.R. Parthasarathy, "Basic Graph Theory", Tata McGraw-Hill Publishing Com. Ltd., New Delhi, 1994.
- [5] J. Peterson, Die Theorie der regularen Graphen, Acta Math. 15 (1891) 193-220.
- [6] W.D. Wallis, The smallest regular graphs without one-factors. Ars Combinatoria 11 (1981) 295-300.