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Abstract

An edge-graceful (p, g)-graph G = (V, E) is a graph with p vertices
and g edges for which there is a bijection f: E = {1,2,...,q} such
that the induced mapping f* : V = Z, defined by f*(u) = ¥ f(uv)

uvEéEl

(mod p), for u € V, is a bijection. In this paper, some results on edge-
gracefulness of trees are extended to k-fold graphs based on graphs
with p vertices and p — 1 edges. A k-fold multigraph G[k] derived
from a graph G is one in which each edge of G has been replaced by
k parallel edges with the same vertices as the original edge. Certain
classes of k-fold multigraphs derived from paths, combs, and spiders
are shown to be edge-graceful, as well as other graphs constructed
by combining these graphs in specified ways.

1 Introduction
In this paper, the term “graph” means finite multigraph (not necessary

connected) having no loop and no isolated vertex. The term “set” means
multiset. Set operations are viewed as multiset operations. Let A be a set

*Paper presented at the Thirteenth Midwestern Conference on Combinatorics, Cryp-
tography and Computing, Normal, Illinois, October 1999.

tPartially supported by FRG, Hong Kong Baptist University.
{Research is done while on sabbatical at San José State University in 1998.

JCMCC 38 (2001), pp. 81-95



and let n be a positive integer. A X n denotes the set which is n copies of
A. All undefined symbols and concepts may be looked up in [1]. A graph
G = (V,E) is a (p, ¢)-graph if p and g are its order and size respectively,
ie,|V|=pand |E|=q.

Let G = (V,E) be a (p,q)-graph. Let f : E = {d,d+1,...,d+q—
1} be a bijection for some d € Z. The induced mapping f+ : V — Zyp
of f is defined by f*(u) = Y. f(uv) (modp) foru € V. If f* is a

E

uv
bijection or a constant mapping, then G is called d-edge-graceful or d-edge-
magic respectively. If d = 1, then G is simply called edge-graceful or edge-
magic, f an edge-graceful labeling or edge-magic labeling of G respectively.
A necessary condition for a (p, ¢)-graph being edge-graceful is

glg+1)=4p(p-1) (modp) (1.1)

Since edge-graceful labelings were introduced by Lo [10] in 1985. many
researchers have investigated certain families of graphs. The interested
reader is referred to (3, 5, 6, 7, 10, 11, 13, 14, 17, 18]. Recently, Riskin and
Wilson [12, 19] investigated the disjoint union and product of cycles; some
of their results were shown earlier by Schaffer [13]. A graph with p = 2
(mod 4) cannot be edge-graceful [3].

Let G be a graph and let k be a positive integer. G[k] is a graph which
is obtained by splitting each edge into k parallel edges. We call G[k] the
k-fold multigraph (or k-fold graph) of G. kG denotes the k copies of the
graph, i.e., kG=G+---+G.

L
k times

Let S be a set. We use S x n to denote the n-copies of S. Suppose
S contains gk elements. If P is a partition of S such that each class of P
contains k elements, then P is called a (g, k)-partition of S.

Suppose A is a set consisting of r integers. If the sum (in the ring Z,,) of
elements of A is s, then A is called an (s; r)-set and s is called the sum of A.
Ifr=1,2, or 3, it is called an s-singleton, an s-doubleton or an s-tripleton
respectively. We will frequently use the term s-set when the value r is clear.

We let [r] = {1,2,...,r} for a positive integer » and [0] = @. A map-
ping f is called a k-fold edge-graceful labeling or k-fold edge-magic labeling of
a (p, g)-graph G if there is a (g, k)-partition P of [gk] such that f: E —» P
is a bijection and the induced mapping f* : V — Zy is a bijection or a
constant mapping respectively, where

fflu) = Z Z (mod p).
uv€EE i€ f(uv)

Thus, G[k] is edge-graceful (respectively, edge-magic) if and only if there is a
k-fold edge-graceful labeling (respectively, k-fold edge-magic labeling) of G.
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Consider ¢ = pQ + R, where 0 < R < p. After taking modulo p, the set
[g] is equal to the set ([p] x Q) U[R]. Thus, for a (p, ¢)-graph G = (V, E),
there is an edge-graceful labeling f : E — [q] if and only if there is a
bijection g : E — ([p] x Q) U[R] such that g* : V — Z, is a bijection.

2 General Edge-graceful Properties of k-fold
Graphs

Let T be a (p,p — 1)-graph (not necessarily connected). Note that if p
1s even, then T is never edge-graceful, by condition (1.1), though T[k] may
be edge-graceful. However, if T[k] is edge-graceful, then an application of
the congruence in (1.1) gives

0 dp) ifpisodd,
p#2 (mod4) and k(k_ng{,21 (modp) itpis odd,

(2.1)

Lemma 2.1 [2, 8]: Let G be a (p, q)-graph.

(a) There is an edge-magic labeling f of G[2p] such that f* is a zero map-
ping;

(b) if p is odd, then there is an edge-magic labeling f of G[p] such that f+
is @ zero mapping; ]

(¢) if p is even and all vertex degrees are odd (respectively even), then
there is an edge-magic labeling f of G[p] such that the value of f* is &
(respectively 0).

Lemma 2.2: Let G be a (p,q)-graph. For k> 1

(a) G[2p+ k] is edge-graceful if G[k] is edge-graceful;

(b) if p is odd, then Gp+ k) is edge-graceful if G[k] is edge-graceful;

(c) if p is even and all vertex degrees are odd (or even), then G[p + k] is
edge-graceful if G[k)] is edge-graceful. :

Proof: Suppose GI[k] is edge-graceful. There is a k-fold edge-graceful
labeling g of G = (V, E). Let f be a 2p-fold edge-magic labeling of G. Now
the set of integers [q(2p + k)] (mod p) is equal to ([p] x 2¢) U [¢k] and
Gl[2p + k] = G[2p] U G[k], where G[2p] and G[k] are edge-disjoint. Define
#(e) = gle) U f(e) for e € E. Clearly, ¢ is a (2p + k)-fold edge-graceful
labeling of G. We have proved part (a). By a similar argument we have
parts (b) and (c). 1

Corollary 2.3: Let G be a (p, q)-graph. Suppose G[n] is edge-magic and

p is a factor of nq. For k > 1, if G[k] is edge-graceful then G[n + k] is
edge-graceful.
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Proof: Let gn = cp for some c. Since [g(n + k)] (mod p) is equal to
([p] % c) U[gk], by a similar proof of Lemma 2.2(a) we have the corollary.l

Corollary 2.4: Let G be a (p, q)-graph. Suppose Glp| is edge-magic. For
k > 1, if G[k] is edge-graceful then Glp + k] is edge-graceful.

If G is a (p,¢)-graph. By Lemma 2.2, we can reduce the problem for
proving that G[k] is edge-graceful to k < 2p, or k < pif G satisfies Corollary
2.4.

3 Edge-gracefulness of k-fold (p, p—1)-graphs

In this section we shall consider the edge-gracefulness of k-fold (p, p—1)-
graphs. First we show a useful lemma.

Lemma 3.1: For any integer 1 < k < 2m+1, ifk(k—1) =0 (mod 2m+1),
then [2mk] has a (2m, k)-partition such that the sums of the classes are
nonzero and distinct taken in Zomy1.

Proof: In this proof, arithmetic is taken in Zopy,+1. We observe that [2mk]
(mod 2m + 1) is equal to ([2m + 1] x (k — 1)) U[2m + 1 — k]. Each
[2m + 1] may be grouped into m zero-doubletons and 1 zero-singleton as
follows:

— 1 2 v om=1 m

am+1l2m 2m—-1 - m+2 m+1 (3.1)

We shall deal with [2m 4+ 1 — k]. [2m + 1] is clearly a 0-set, and
the condition k(k — 1) = 0 (mod 2m + 1) implies that [2mk] is a 0-set,
so [2m +1 — k] is also a O-set. If 2m + 1 —k > m + 1, then the set
{k,k+1,...,2m+1—k} may be grouped into m—k+1 zero-doubletons. So
we only have to deal with [k — 1]. If 2m+1—k < m, then 2m+1-k < k-1.
Both of these cases may be reduced to the case of handling the 0-set [r],
where 0 <r <k -1.

Case 1: k is even.
Since k = 2 does not satisfy kg.k —1) =0 (mod 2m+ 1) we may assume
k > 4. First we choose 2 copies of [2m + 1] and arrange them as follows:

-1 2 3 -- m m+1 m+2 .- 2m 2m + 1

1 2 3 4 ... m+1 m+2 m+3 .-.- 2m+1 _—
Sum |[1][3 5 7 ---][2m+1] 2 4 2m [0 ]
We have 2m doubletons which are 2-, 3-, ..., (2m)-, (2m + 1)-sets, one

1-singleton and one O-singleton. Let A; denote the i-doubleton obtained
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above, 2 < i < 2m. The 0-doubleton {m, m + 1} will be handled together
with other 0-doubletons.

After grouping the remaining [2m + 1]’s as (3.1), we have a O-set [r]
with 0 < r < k — 1; A;, where 2 < ¢ < 2m; one 1-singleton; some number
of 0-doubletons and some number of O-singletons. Note that r is odd.

We combine [r] with the 1-singleton and an appropriate number of
O-doubletons, if necessary, to form a (1;%)-set. Group the remaining 0-
singletons into 0-doubletons. Then combining an appropriate number of
0-doubletons with A; we obtain 2m sets whos e sums are 2,3,...,2m.
Hence we obtain a required partition.

Case 2: k is odd.

We partition a copy of [2m + 1] into 2m+1 singletons, namely A; = {i}
for 1 < i < 2m and a 0O-singleton {2m + 1}. The other [2m + 1]s, if any,
are grouped as (3.1). Now we have a 0-set [r] with 0 < » < k —1; A;,
where 1 < ¢ < 2m; some number of 0-doubletons and some number of
0-singletons. Note that r is even. Similar to Case 1, we combine [r] with
A) and certain appropriate number of 0-doubletons, if necessary, to form a
(1; k)-set. The rest is the same as Case 1. 1

A technique similar to the above proof was used in some other papers,
for example [2, 15, 16].

Theorem 3.2: Let G be a (2m + 1,2m)-graph. If G is edge-graceful and
k(k—1)=0 (mod 2m + 1), then G[k] is edge-graceful.

Proof: We may assume that 1 < k£ < 2m+1. From Lemma 3.1 we have a
(2m, k)-partition {C; | 1 < i < 2m} of [2mk], where C; is an i-set (taken
in Zym41). Let g be an edge-graceful labeling of G. Define f(e) = C; if
g(e) = i. Then f is a k-fold edge-graceful labeling of G. |

Let P, and Sa denote the path with n vertices and the star with max-
imum degree A, respectively. It is known that Pymy1 and Spy,, are edge-
graceful for m > 1 [4, 10].

Let G be a graph. A vertex u of degree one in G is called a pendant. Let
v be a vertex of G and let P be a path originating from v to a pendant of
G. If all internal vertices of P are of degree 2 in G, then V(P)U E(P)\ {v}
is called a leg of v. The number of edges £ is called the length of the leg.
The leg will also be called an £-leg. A graph G is called a spider with A
legs (called superstar in some articles) if it is obtained from the union of A
paths with one of the end vertices of each path identified. The identified
vertex is called the center of the spider graph. If all legs are ¢-legs, then G
is called a regular spider graph with A legs of length ¢, and denoted by S, ¢.
Note that Sa; = Sa. Lee [9] proved that Sy, . is edge- graceful. Small
(18] also proved the same result. We use Example 3.1 below to illustrate
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the proof of Lee in [9].

Example 3.1: Consider the regular spider graph Ss3. Following is an
edge-graceful labeling f. Numbers labeled in vertices are the values of f*.

This labeling method can be generalized to an edge-graceful labeling for
S2m,t-

Then we have

Corollary 3.3: Let m > 1. Ifk(k —1) =0 (mod 2m + 1), then Papp1[k]
is edge-graceful; and if k(k — 1) = 0 (mod 2ml + 1), then Som ¢[k] is edge-
graceful.

Some more families of trees such as odd caterpillars with at most one
vertex of degree 2, complete (2k + 1)-ary trees with 2s + 1 layers, are edge-
graceful. The interested reader is referred to [4].

Let G = (V, E) be a (p, ¢)-graph. A mapping (not necessary bijective)
f 1 E = Zyis called a Z,-edge-graceful labeling of G if the induced mapping
ff:vo Zp is a bijection, where f*(u) = 2 f(uv) (mod p). A similar

concept called Z,-edge-magic labeling was mtroduced in [15, 16].

Theorem 3.4: Let G = (V, E) be a (p,q)-graph. If G[k] is edge-graceful
then there is a Zy-edge-graceful labeling f of G such that 3 f(e) = %kq(kq+
e€E

1) (mod p).

Proof: G[k] is edge-graceful if and only if G has a k-fold edge-graceful

labeling g. For e € E if g(e) = Ce, then {C. | e € E} is a (g, k)-partition

of [gk]. Hence Z llg(e)ll = kq(kq + 1), where |lg(e)|| = 3 j. Define
j€cC.

fle) = llg(e)l} (mod p). Since g is a k-fold edge-graceful labeling, f is a
Zy-edge-graceful labeling of G and Y, f(e) = 1kq(kg +1) (mod p). |
e€E

Corollary 3.5: Let G = (V, E) be a (p, p—1)-graph. If G[k] is edge-graceful
then there is a Zpy-edge-graceful labeling f of G such that if p is odd, then
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Y- f(e) =0 (mod p) and if p is even, then
e€E

- sk(k—1) (mod if k i ,
Sro={ i) Gy fhar oo
Proof: For p odd, since k(p — 1)[k(p— 1) + 1] = 0 (mod p), ZEf(e) =
(mod p). For p even, e€

2 f& = k- Dlikp-1-1]=

2k(k—1) (mod p) if k is even,
—3k[k(p— 1) +1] (mod p) if k is odd.

Note that if p is even, from (3.2) we have
2) fle)=k(k-1)=% (mod p) (3.3)
eEE

or equivalently

Zf =% or 3 (mod p). (3.4)

e€eFE

4 Examples

Example 4.1: If G is a (4, 3)-graph. Then G = P, or S; if G is connected
and G = K,[2] + K> if G is disconnected.

(a) Suppose G = K»[2] + K. It is easy to see that there is no Zsedge-
graceful labeling.

(b) Suppose G = S5 and f is a Zsedge-graceful labeling of S3. Then
f(e) are distinct for all e € E and Z f(e) =1 o0r 3 (mod 4). The only

possible cases are {f(e) | e € E} = {2 3,4}or {f(e) | e € E} = {1,2,4}
(see the following figures).
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(c)

From (3.2), k =2, 3,6 or 7 (mod8). From (34),if k = 2or 3
(mod 8), then {f(e) | e€ E} ={2,3,4};if k = 6 or 7 (mod 8), then
{f(e) |e€E}—{l 2,4}.

For k = 2 or 3, it suffices to find a (3, k)-partition of [3k] such that
the sums of the classes are 2, 3, and 4. For k = 2, [6] is partitioned
as {{2,4},{1,2},{1,3}}. Following are edge-graceful labelings of S3[k]
for k =2,3.

2 2 2 2
For k = 6 or 7, following are k-fold edge-graceful labelings of S3.

{1,3,1,2,3,4} {1,1,3,1,2,3,4}

{1,2,1,2,3,4} {2.4,1,2,3,4} {1,1,2,1,2,3,4) {2,4,4,1,2,3,4}
In fact by Lemma 2.2(c) the edge-gracefulness of S3{2] and S3[3] imply
that S3(6] and S3[7] are edge-graceful.

Suppose G = P, and f is a Zs-edge-graceful labeling of P4. Then the
possible cases are {f(e |e € E} ={2,3,4}, {1,2,2}, {1,1,3} , {1,2,4}
or {2,2,3}. Following are all the Z4-edge-graceful labelings of Pj.

C4:2030 020304OC1:2:2:C]:I:3O

:4:l:2: 010204130202030

Similar to (b) if ¥ = 2 or 3 (mod 8), then {f(e) | e € E} = {2,3,4},
{1,2,2} or {1,1,3}; if £ = 6 or 7 (mod 8), then {f(¢) | e € E} =
{1,2,4} or {2,2,3}.

For k = 2 or 3, if {f(e) | e e E} = {2,3,4}, then a partition of
[3k] is the same as in part (b); if {f(e) | e € E} = {1,2,2}, then
{{2,3},{1,1},{2,4}} is a required partition of [6] = [4] U [2] (mod 4)
and {{1,4,4}, {2,1,3},

{2,1,3}} is a required partition of [9] = ([4] x 2) U [1] (mod 4); if
{f(e) | e € E} = {1,1,3}, then {{2,3}, {1,4}, {1,2}} is a required
partition of [6] and {{1,4,4}, {1,2,2}, {1,3,3}} is a required partition
of [9].

FoE }c = 6 or 7, if {f(e) | e € E} = {1,2,4}, then a partition of
[3K] is the same as in (b); if {f(e) | e € E} = {2,2,3}, then {{1,3}U
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[4], {2, 2)U[4], {1,4}U[4]} and {{1,1,2}U[4], {1,3,4}U[4], {2,3,4}U
[4]} are required partitions of [18] = ([4] x 4)U[2] (mod 4) and [21] =
([4] x 5) U[1] (mod 4) respectively.

Example 4.2: We consider a spider graph ¥ described in the following
figure. In this example, arithmetic is taken in Zs. A Zg-edge-graceful
labeling, say f, of ¥ is also described in the figure. Numbers labeled on the
vertices are values of f+.

3 3

To show W[4] edge-graceful, it suffices to partition [28] = ([8] x 3) U [4]
into a (7, 4)-partition which consists of two 1-sets, two 3-sets, one 2-set, one
5-set and one 7-set. A possible partition is:

3 2 1 1 3 1 7
4 4 2 1 5 2 8
4 5 3 2 5 3 8
6 6 4 7T 6 7 8
Sum |1 1 2 3 3 5 7
Each column forms a class of the partition. 1

5 Labelings of k-fold Combs and Paths

In this section we consider a class of trees called the combs. Let E, be

a (2n,2n — 1)-graph whose vertex set is AUB, where A = {a1,...,a,} and
B = {b,,...,b,}, such that the induced subgraph E,[A] = P, and b; is only
adjacent to a;, 1 < i < n. Then E, is called a comb. By the remark pre-
ceding Lemma 2.1, E, is never edge-graceful, and if E,[k] is edge-graceful,
then n = 2¢ for some ¢ > 1. From Corollary 3.5, a necessary condition of
E5[k] being edge-graceful is that there exists a Z4-edge-graceful labeling
f such that

Z fle)=tor 3t (mod 4t),

e€E
where E is the edge set of Ej;. From now on, unless stated otherwise
arithmetic is taken in Zg;.

Lemma 5.1: There are two Zy-edge-graceful labelings g, and g3 of E2 =
(V, E) such that Y gq(¢) = at (mod 4t), a=1,3.
e€E
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Proof: Keep all the notations defined as above. Define g; : E — Z4; by

2t if jis odd

,1<7<2t-1.
0 ifjiseven =J=

g1(a;ib;) =i, 1 <i< 2t and g1(ajaj41) = {

Then Y g1(e) =t.
ecE

Define g3 : E — Z4: by ga(azebae) = g1(azeba:)+2t = 0 and gs(e) = gi(e)

otherwise. Then ) gs(e) = 3t. It is easy to check that g; and g3 are Z4,-
e€E
edge-graceful labelings of Eo;. |

We shall show that Eq[k], where k(k — 1) = 2¢, is edge-graceful. By
Lemma 2.2 we may assume that 1 < k < 8¢ and k satisfies the (congruence)
equation k(k — 1) = 2t. In fact, k = 1 is not a case. It suffices to partition
[(4t — 1)k] into a (4t~ 1, k)-partition P such that P consists of ¢t (2t)-sets;
(t = 1) zero-sets; one 1-, 2-, ..., (2t — 1)-set each; and either one additional
2t-set or 0-set according to the Z4-edge-graceful labeling g; or g3 defined
in Lemma 5.1, respectively. The choice of g; or g3 depends on the value of .

Remark: Let ¢ be a fixed positive integer. If k¢ satisfies the (congruence)
equation k(k — 1) = 2t, then so does ko + 4t and vice versa. If ko satisfies
1(4t—1)k[(4¢—1)k+1] = t then ko-+4t satisfies §(4t—1)k[(4t—1)k+1] = 3t.

If k = 2, then k satisfies k(k — 1) = 2¢ only when ¢t = 1. Since E; = Py,
from Example 4.1 E,[2] is edge-graceful. If k = 3 and satisfies k(k—1) = 2t,
then ¢t = 1 or 3. Also from Example 4.1, E5[3] is edge-graceful. We shall
show that Eg[3] is edge-graceful in the following example.

Example 5.1: Since ¥ = 3 and t = 3, we use g3 as our frame (see the
figure below). Thus we need to partition [33] = ([12] x 2) U[9] into a (11,
3)-partition such that it consists of three 6-sets; three 0-sets, one 1-, 2-, 3-,
4-, 5-set each.

@ o
1 (2 (3 (4 |5 jo

DA e aOaraLaralarad
1 2 3 4 5 6 7 8 9 10 11
11 10 9 8 7 9 5 4 8 2 1
1 2 3 4 5 3 6 6 7 12 12
Sum | 1 2 3 4 5 6 6 6 0 0 0
Each column forms a class. i
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Lemma 5.2: Let4 < k < 8t anda=1o0r3. If1(4t—1)k[(4t—1)k+1] = at
(mod 4t) then [(4t — 1)k] has a (4t —1, k)-partition P such that P consists
oft (2t)-sets; (t — 1) O-sets; one 1-,2-, ..., (2t — 1)-set each and one
(t + at)-set.

Proof: [(4t — 1)k] = ([4t] x (k—b))U[4tb — k], where b=1if4 < k < 4
and b=2if4t+ 1< k < 8t.

We shall deal with [4tb — k]. Since [(4f — 1)k] is an (at)-set and [4¢]
is a (2t)-set, [4tb — k] is a (20t + at)-set if k is even and (2bt + (a — 2)t)-set
if k is odd.

If 4¢b— k > 2t + 1, then the set {k,k+1,...,4tb— k} may be grouped
into some 0-doubletons and one (2t)-singleton {2t}. So we only have to
deal with the set R = [k — 1] U {2t}. If 4tb — k < 2¢, then 4tb— k < k.
We let R = [4tb — k]. Both of these cases may be reduced to the case of
handling a residual set R with |R| < k which is a (2b¢ + at)-set if & is even
and (2bt + (@ — 2)t)-set if k is odd. Note that if |R| = k then 2¢ € R.

Each [4t] may be grouped into (2t — 1) 0-doubletons, one (2t)-singleton
and one 0-singleton as follows:

4

1
4t -1

2
4 —2

2t—-1
2041

2t

(5.1)

Case 1: Suppose 4 < k < 4t,ie., b=1.
Subcase 1.1: Suppose k is even. Since k > 4, we can choose two copies of
[4t] and group them as follows:

412 .-.- t—1 t+1 t+2 --- 2A—-1|[2t -
123-.. ¢t 3t—13t—2--- 2A+1(1- 2
Sum|T 35 -~ 2t 1|0 0 0 || |
2+12t+2 --- SYH+13H+2 --- dt-1|[-
$-14-2 ... 3t+1 t+2 ... 20-1|4 (5.2)
Sum [ 2% 2 - 2 2 4 2 —-2|[]
or
412 -« t—1 t+1 t+2 - 2A-1|-
123-.. ¢ 3t—13t—2--- 2t+1||2
Sum|[T 35 - 2t—1]J[0]0 0 0]
2 2A+1 20+2 --- 3t—1 JE+1 3t +2 .- dt—1
4t 4t —14t—2 --- 3t+1 t+1 t+2 .- 21| (5.3)
Sum|[2¢ 2t 2 --- 2 |2 4 2 —2]

91



After grouping the other [42]’s as (5.1), we have ¢t (2t)-doubletons; one
(2t + at)-set R; some 0-singletons; some (2t)-singletons; some 0-doubletons,
one 1- to (2t — 1)-doubleton each and one t-singleton or (3t)-singleton ac-
cording to (5.2) or (5.3). Note that |R| is even.

For this subcase we use (5.2). If |R| < k — 2, then combine R with the
t-singleton, a (2t)-singleton and an appropriate number of 0-doubletons, if
necessary, to form a (t + at)-set. If |R| = k, then combine R\ {2t} with the
t-singleton and an appropriate number of 0-doubletons, if necessary, to form
a (t + at)-set. Group the remaining O-singletons and (2t)-singletons into 0-
doubletons. Combine each of the other doubletons obtained from (5.2) with
an appropriate number of 0-doubletons to obtain a required class. Thus we
obtain a required partition.

Subcase 1.2: Suppose £ is odd. Since k > 4, we can choose three copies
of [4t] and group as follows:

- 1 2 - t=-1]t|ft+1 t+2 --- 2t

1 2 3 -t -3t -13t-2 ... 2t
4 —1|4—-3 4—-5-.- 2t+1|- 1 3 .- 2t-1
Sum|[ 0 ][ 0 0 - 0 0z 3 - 2a-—-1]

26+12t+2 -+ 3t|{3t+13t+2 .- 4t —1|4t]] -
44 —-14 -2 .- 3| t+1 t+2 --- 2t —1][4¢)] -

U+22+4 ... 4t||2—-—22%—4a... 2 |-l 69
Sum| 2 i o 2 2 - % 0]
or
= T 3 - I-1|t|[t+l t+2 - =
1 2 3 ... t [I3t||st—-13t-2... 2
at— 1|4t —3 4t —5 --- 2 +1{|-|| 1 3 ...2—1
Sum|["0 J[© 0 - 0 J[0]1 3 .- 2—1]

H+12+2 --- JH—1|[3t|[3+1 3t+2 --- 4t —1|[4t]|[-
44—-14-2--- t+1||-||t+1 t+2 --- 2t =1 4t||-
U+22+4--- 4t-2|-||2t-22t—-4--- 2 |[2t]j4

Sum|[ 2 4 a2 2 2 - 2t 2t ]
(5.5)

After grouping the other [4t]’s as (5.1), we have ¢ (2¢)-tripletons; one
(at)-set R; (t — 1) O-tripletons; some O-singletons; some (2t)-singletons;
some 0-doubletons, one 1- to (2¢ — 1)-tripleton each and one ¢-singleton or
(3t)-singleton according to (5.4) or (5.5). Note that |R] is odd.
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If |R| < k — 2, then we use (5.4) and combine R with the ¢-singleton,
a O-singleton and an appropriate number of 0-doubletons, if necessary, to
form a (t + at)-set. If |R| = k, then we use (5.5) and combine R\ {2¢} with
the (3t)-singleton and an appropriate number of 0-doubletons, if necessary,
to form a (¢ + at)-set. Group the remaining 0-singletons and (2¢)-singletons
into 0-doubletons. Combine each of the other tripletons obtained from (5.4)
or (5.5) with an appropriate number of 0-doubletons to obtain a required
class. Thus we obtain a required partition.
Case 2: Suppose 4t+ 1< k < 8t,i.e.,, b = 2. For k even, we use (5.3) and
the combination is similar to Subcase 1.1. For k odd, we use (5.5) and (5.4)
for the cases |R| < k — 2 and |R| = k respectively, and the combination is
similar to Subcase 1.2.

The construction above may be used to give k-fold edge-graceful label-
ings of a number of graphs. Suppose a graph G is composed of ¢ copies of
P4 together with ¢t — 1 “linking edges” K3 such that each linking edge has
its vertices identified with any (not necessarily distinct) vertices of the Py’s.
The edges of the P4’s are labeled (1,2¢,2), (3,2t,4), ..., (2t — 3,2¢,2t — 2)
and (2t — 1,2¢, s) in order, where s is either 0 or 2¢ depending on the value
of k. The edges K3 are all labeled 0. This labeling is a Z4-edge-graceful
labeling of G. It may be given a k-fold edge-graceful labeling based on the
partition obtained from Lemma 5.2. As the diagram below shows, many
graphs may be composed in this way, including the combs F; and the
paths Pjy,.

1 3] O 7Ts
6 6 s
2 4 s
5
6
§

G+,

In the above figure, s is 0 or 6 and heavy edges are linking edges.

By Lemma 5.2 we have the following theorem.

Theorem 5.3: Suppose k > 1 and satisfies k(k — 1) = 2t (mod 4t). Then
E3:[k] and Py (k] are edge-graceful.
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As further examples of graphs which are not themselves edge-graceful,
but which may have k-fold edge-graceful labelings, define a comb with n legs
or “bristles” of length ¢, En(c), in the same way as Ey,, except that we now
subdivide each edge a;b; by ¢ — 1 additional vertices, thus replacing edge
a;b; by a path of length ¢. Then E,(c), for ¢ = 3 (mod 4), and Ex(¢c), for
¢ =1 (mod 4), are each easily decomposed into a number of P4’s and one
fewer linking edges K3, and so Lemma 5.2 provides k-fold edge-graceful
labelings. Also, if ¢t = ng + n; + - -- + ng4 is any partition of ¢, then the
disjoint union of a path and cycles Py, + n1C4 + n2Cs + - - - + ngCqq may
be similarly decomposed and k-fold edge-gracefully labeled.

In our experience, there are many ways for us to partition [gk] into a
required (g, k)-partition, so we believe that the following conjecture is true.

Conjecture: Let G = (V, E) be a (p,q)-graph. For k > 2, if there is a
Zy-edge-graceful labeling f of G such that Y f(e) = Jkq(kg+1) (mod p),
ecE

then G[k] is edge-graceful.
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