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Abstract

An isometric path is merely any shortest path between two ver-
tices. Inspired by the game of ‘Cops and Robber’ and a result by
Aigner & Fromme [1], we are interested in determining the minimum
number of isometric paths required to cover the vertices of a graph.
We find a lower bound on this number in terms of the diameter of a
graph and find the exact number for trees and grid graphs.
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1 Introduction

An isometric subgraph of a graph G is defined to be a subgraph H of G such
that for all z,y € V(H), du(z,y) = ds(z,y). Hence, an isometric path
is any shortest path between two vertices of a graph. A set of isometric
paths is said to cover G if every vertex of G lies in at least one of the paths
in the set. We define the isometric path number of G, denoted p(G), to
be the minimum number of isometric paths required to cover the vertices
of G.

The strong product of a set of graphs {G; : i = 1,2,...,k} is the graph
®%_, G; whose vertex set is the Cartesian product of the sets {V(G) : i =
1,2,...,k} and there is an edge between (a3, as,...,ax) and (b1, bz, ..., bk)
if a; is either adjacent or equal to b; in G; for all ¢ = 1,2,...,k. The
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Cartesian product of {G; : i = 1,2,...,k} is the graph O | G; whose
vertex set is the Cartesian product of the sets {V(G;):i=1,2,...,k} and
there is an edge between (a;,a3,...,ax) and (by,bs,... ,b) if and only if
there is some j such that a; = b; for ¢ # j and a; is adjacent to b;.

Examples of both the strong product and the Cartesian product of two
paths are shown in Figure 1. The Cartesian product of two paths is also
called a complete grid graph, or grid, for short. Specifically, an m x n
grid is the Cartesian product of a path on m vertices and a path on n
vertices.

PR P; = Po0OPs =

Figure 1: The strong product of two paths (left) and the Cartesian product
of two paths (right).

The problem of finding the isometric path number of a graph was in-
spired by the game of ‘Cops and Robber’, introduced independently by
Nowakowski & Winkler [3] and Quilliot [4]. The cop side consists of some
set of k cops and the robber side consists of a single robber. The rules of
the game are: given a connected graph G, the cops each choose a vertex,
then the robber chooses a vertex and they then move alternately. The cops’
move consists of some (possibly empty) subset of the cops moving to an
adjacent vertex and the robber’s move is to move to an adjacent vertex or
stay at his current position. The cops win if one or more cops manage to
occupy the same vertex as the robber; the robber wins if this situation never
occurs. The cop number of G, denoted ¢(G), is the minimum number of
cops required to ensure the capture of a robber on G.

It was shown by Aigner & Fromme [1] that a single cop moving on a
isometric path P can guarantee that after a finite number of moves the
robber will be immediately caught if he moves onto P. Therefore, if one
cop is assigned to each isometric path in an isometric path cover, then the
robber will be apprehended. Hence, ¢(G) < p(G) for all graphs G.

Our first result gives a lower bound on the isometric path number in
terms of the diameter of a graph. We then show that for some classes of
graphs, such as the strong product of paths, this bound is actually met.
We also examine the relationship between the isometric path numbers of
a graph and its subgraphs. In Section 3, we determine the isometric path
number of a tree by finding a set of isometric paths that cover not only
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its vertices, but all its edges as well. Finally, in Section 4, we examine
grids. We show the isometric path number of an m x n grid is exactly

[2(m + n — vVmZ + n? — mn)].

2 Preliminary Results

The diameter of a graph G, denoted diam(G), is defined to be the length
of the longest isometric path in G. Therefore, a single isometric path in G
contains at most diam(G) + 1 vertices. This gives us the following lower
bound on the isometric path number of G:

Theorem 1 Let G be any connected graph with vertez set V. Then

Vi
p(G) 2 [diam(G) +1}°
For some common graph families, Theorem 1 is exact.

Theorem 2 Let P,, C,, K., and E, be the path, cycle, complete graph,
and edgeless graph, respectively, on n vertices.

(a) for alln > 1, p(P,) = 1, p(Ky) = [n/2], and p(E,) = n;

(b) for alln > 3, p(Cy) = 2;

(c) foranyk>1and1<n; <ng--- < ng, p(BE Pp,) = 15z 1n,.

Proof: The proofs of (a.) and (b) are straight forward, so we leave them
out. For (c),let G = @5 P, forsomek>1land1<n; <ny--- < ng.
Then diam(G) = max{n; : i = 1,2,...,k} -1 = np — 1. Smce V| =

1% n; then by Theorem 1, p(G) > l'I,_.l n;. Now, let H = B¥-!P,, and
P,, = {z1,22,...,25,}. Then V = {(v,z;) : v € V(H), i =1, 2 ,nk}
For every v € V(H), let P, = {(v,z1), (v,22),...,(v,2s,)} Thls is an
isometric path in G, and P = {P, : v € V(H)} is a set of [V(H)| = I} n;
isometric paths that cover G. Hence, p(G) = II¥_!n;. (]

There is also a relationship between the isometric path numbers of a
graph and its isometric subgraphs.

Theorem 3 Let G be any graph and H be any isometric subgraph of G.
Then p(H) < p(G).

Proof: Suppose p(G) = n and G can be covered by isometric paths
P = {A,P,...,P,}. Let H be an isometric subgraph in G and sup-
pose H = G\ S, for some set of vertices S. For any path P in P, the set
of vertices in P N H, if nonempty, constitute a set of paths in H. Hence,

99



PNH=Q'UQ?U---UQ* for some k > 1 where each @Q* is a path in H
for i =1,2,...,k. Since H is an isometric subgraph of G, there is a path
in H from the last end vertex in Q* to the first end vertex in Q**! that
is isometric in both H and G. This path contains no vertices of PN H
other than its end vertices, due to the isometry of P. Hence, by adding
the isometric paths joining Q* to Qi+! for each i = 1,2,...,k — 1 to the
set {Q',Q?,...,Q%} we obtain a path, Q. Since P was an isometric path
in G, then @ is an isometric path in H, and @ contains all the vertices in
P\ S. Therefore, we can find a set of isometric paths {Q1,Q2,...,Qx},
some of which may be empty, which cover all the vertices of G\ S = H.
Hence, p(H) < p(G). a

Such a relationship does not exist between the isometric path numbers
of a graph and its induced subgraphs. Consider the graphs Figure 2. The
graph G can be covered with two isometric paths, while the graph H, which
is an induced subgraph of G, requires three.

Figure 2: H is an induced subgraph of G such that p(G) < p(H).

The removal of an edge can either increase or decrease the isometric
path number, as well. For example, the isometric path number of a cycle is
two. If we remove any edge of a cycle we obtain a path which has isometric
path number one. However, if we take the graph G in Figure 2 and remove
the edge joining the two vertices of degree two, the resulting graph has
isometric path number three.

The problem of finding the minimum number of paths (not necessarily
isometric) that cover all the edges of a graph, G, was considered by Harary
& Schwenk [2]. They called this the unrestricted path number of G,
denoted 7*(G). Since any edge cover of G induces a vertex cover, 7*(G)
provides an upper bound for p(G) in those cases where isometric paths
provided the optimum edge cover. Trees are an obvious class of graphs to
consider for this, since every path in a tree is necessarily an isometric path.
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The unrestricted path number of a tree was determined in [2]. The
isometric path number of a tree follows as a corollary.

Theorem 4 (Harary & Schwenk [2]) If T is any tree and {(T) is the
number of leaves in T then n*(T) = [£(T)/2].

Corollary 5 If T is any tree then p(T) = [¢(T)/2].

Proof: Any path in a tree, T, may contain at most two leaves. Therefore,
if T has ¢(T') leaves then p(T) > [£(T)/2]. Furthermore, p(T) < #n*(T) =
[€(T)/2]. Hence, p(T) = [£T)/2]. m]

3 Grids

We now determine the isometric path number of a grid. We denote an
n x m grid by G, and label the vertices of G, » as coordinates on the
grid. Hence, V(Gm,n) = {3, 5)i = 1,2,...,m,j = 1,...,n} and the dis-
tance between any pair of vertices (a,b) and (c,d) in G, 5 is given by
d((a,b),(c,d)) = |c—a| + |d — b]. We also wish to assign a direction
to every isometric path, P, in G n. The first end point of P will be
that endpoint of P with the minimum first coordinate, or if the first co-
ordinates are the same then with minimum second coordinate. Hence,
P = {(ag, b0), (@1,b1),...,(an,bn)} implies that either ap < a, or ap = a,
and by < b,. Let P[(a:,b;),(aj,b;)] denote the subpath of P from (a;,b:)
to (aj,b;) for any i < 5.

Lemma 6 Suppose P = {(ao,b0),.--,(ax,bk)} is an isometric path in
Gmn, then

(a) a; S Qi1 for all i =0,1,...,k— 1,‘

(b) ifbo S bk then bi ‘S b,‘+1 fOT‘ alli=0,1,...,k— 1,‘

(c) if bo > by then b; > biyy for alli=0,1,... k-1

Proof: (a) Let P = {(ao, bo), (a1,b1),. .-, (ar,bx)} be a path in Gp,n. Now
suppose that for some %, a; > a;y;. Hence, a;+1 = a; — 1 and b4 = b;.
Since P is an isometric path, each subpath of P is also isometric. Hence,

d((ao, bo), (ax, bx)) d((ao, bo), (as, b:)) + d((as, bi), (@it1, bit1)) +
d((ai+1,bi+1), (ak, b))

la,- - aol + |b.' — bo] +1+ |ak - a.-.HI + Ibk - b.'_|.1|
lai = ao +ar —a; + 1|+ |b; —bo + by — b;| + 1
d((ao, bo), (ak, b)) + 2.

This contradiction implies that e; < a;4; for all i =0,1,...,k%.

v i
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Parts (b) and (c) can be shown similarly. o

For any path P = {(ao,bo), ..., (ak,bx)} if (a), (b) and (c) hold then
P is an isometric path. Therefore, we may categorize each isometric path
in G, as one of two types. Call the path rising if by < by and sinking
if bp > bx. Note that rising paths include those in which b; = biy; for all
i=0,...,k-1.

Suppose P = {(ao, bo), ..., (ax,bx)} is a path with end points (1,1) and
(m,n). Then P cuts the grid into two components, one which lies “above”
the path and one which lies “below”. Therefore, if Q is a path with vertices
in both components of the grid, as determined by P, then Q must intersect
P at some vertex.

Theorem 7 For all integers m,n > 1,
2
P(Gman) > [5 (m+n —vm2 +n? —mn)] .

Proof: Suppose p = p(Gm,n) where 1 < m < n. Obviously, m isometric
paths are sufficient to cover all the vertices of G . Hence, p < m. Let P
be a set of p isometric paths which cover all the vertices of G, The set
P can be partitioned into a set of rising paths and a set of sinking paths,
denoted R and

S, respectively. Suppose p = r + s where r = |R| and s = |S].

We first consider the paths in R. Without loss of generality, we can
assume that each path in R has end points (1,1) and (m,n). (If this is not
the case, the path can be extended to contain these vertices by adding a
rising path from (1,1) to the first end point of the path and a rising path
from the last end point to (m,n)). We wish to show that the maximum
number of vertices covered by the paths in R is (m + n)r — r2. We proceed
by induction on m.

Suppose G = G1,, for some n > 1. Then G is a path, and obviously
one rising path covers at most n vertices in G. If G = G2, then one rising
path on G covers at most n + 1 vertices and two rising paths cover at most
2n vertices. Hence, the result holds for m = 1 and m = 2.

Assume that for all k& such that 1 < k < m, the maximum number of
vertices covered by a set of r rising paths in G = Gi,, where r < k, is
(k +n)r — 2. Also, assume that for any set of r rising paths in G there is
another set of rising paths {Pj,..., P!}, which covers the same vertices as
the original set, but has the additional property that each P! has first end
point (i,1) and last end point (k,n —i+ 1) foralli=1,...,r.

Let G = G, and let R be a set of r rising paths in G. Let (1,5) be
the vertex covered by R such that no vertex (1, j) is covered by R for any
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4 > b. Similarly, let (g, n) be the vertex covered by R such that no vertex
(¢,m) is covered by R for any i < a.

Suppose no single path in R contains both (1,5) and (g, n). Theng > 1
and n > b. Let P and Q be distinct paths in R containing (1,b) and
(a,n), respectively. The paths P and Q must intersect on the subpaths
P[(1,), (m:n)] and Q([(1,1), (a, n)). _

Let the vertex (z,y) be on both P[(1,3),(m,n)] and Q[(1,1),(a,n)).
We wish to consider new paths P* = P[(1,1), (z,3)] U Q[(z, ), (m, n)] and
Q" = Q[(1,1), (z,y)] U P[(z,y), (m,n)]. These paths are both rising and,
hence, isometric. Replace P and Q with P* and Q* in R. The new set,
R*, of rising paths is the same size and covers the same vertices as the set
R.

a single path, say P, contains both (1,b) and (g, n), then P* = P and
R*=R.

In either case, R* is a set of 7 paths which cover the same vertices as
the paths in R. Furthermore, the path P* in R* contains all the vertices
covered by R which have either 1 as a first coordinate or n as a second
coordinate. Therefore, the vertices covered by R* \ P* but not by P* lie
in the set {(¢,7)|1 < i < m,1 < j < n}. The subgraph induced by these
vertices is the graph Gpp—1,p-1.

Therefore, by the induction hypothesis, the maximum number of ver-
tices of the subgraph covered by the r — 1 paths in R* \P*is(m-1+n-
D(r—=1)—(r-1)2=(m+n)(r—1)—r2 +1. Since P* covers m +n — 1
vertices, the total number of vertices covered by the paths in R is at most
m+n-1)+m+n)(r-1)—r2+1=(m+n)r—r.

Also by induction, the vertices covered by any set of r — 1 paths in
Gm—1,n—1 can also be covered by a set of 7 — 1 paths which have {(,1):i=
1,2,...,r—1} as the set of all first end points of the paths and {(m-1,n-3):
¢t = 1,2,...,r — 1} as the set of all final endpoints. This was, however,
assuming that the grid was labeled so that the first coordinates ranged
from 1 to m — 1 and the second coordinates ranged from 1 to n — 1. Since
the (m — 1) x (n — 1) subgrid of Gy, has coordinates from 2 to m and 1
to n — 1, it follows that there is a set of r — 1 paths, say {P}, 31+ PL}
which cover the same vertices as R* \ P* such that P/ has end coordinates
(3,1) and (m,n — i+ 1) for i = 2,3,...,7. Since P* has end points (1,1)
and (n,n), if we let P = P*, then {P],P},..., P} a set of r paths which
have the end points required for the induction.

Hence, for any 1 < m < n, the maximum number of vertices covered
by a set, R, of r rising paths in Gm,n is (m + n)r — r2. Furthermore, by
induction, there is a set of r rising paths which cover the same vertices as
R and can be ordered {P,, P,,..., P} such that P; has end vertices (5,1)
and (m,n—i+1)foralli=1,...,r. Call this set R’.
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Similarly, we can find a set of sinking paths, 8’ = {Q1,...,Qs}, such
that each Q; has end vertices (j,n) and (m, j) for all j =1,...,s, and the
set S’ covers the same vertices as the original set, S. Hence, the number of
vertices covered by S’ alone is at most (m +n)s—s?. However, each path in
S' must intersect every path in R’. To demonstrate, consider a rising path,
P, with end vertices (i,1) and (m,n — i + 1) and a sinking path, P; with
end vertices (j,n) and (m,j), where i < r and j < s. If P, contains either
(j,n) or (m,j), then P, and P, obviously intersect. Otherwise, Py cuts the
grid into two components, one containing (j,n) and the other containing
(m,j). Hence, P, must intersect P, at least once.

Therefore, for each j = 1,...,k, there are r vertices in Q; which have
already been counted in the set of vertices covered by the rising paths.
Therefore, for j = 1,...,s, the path Q; contributes at most |Q;| — r new
vertices to our total. Hence, the number of vertices covered by S’ but not
by R’ is at most (m +n)s — sZ —rs.

Therefore, the total number of vertices covered by R' US’, and thus by
P = RUS, is at most ((m+n)r—r?)+((m+n)s—s?)—rs = (m+n)p—p*+rs,
where s+r = pand rs = s(p—s) = sp—s2. We maximize rs at s = p/2 and,
hence, at most (m +n)p— 3p? vertices in Gm,n are covered by P. If p paths
are sufficient to cover all the vertices of G n, then mn < (m +n)p — %p2.
Hence,

§p"’—(m+n);z)+mn50

4
2 JrZ anZ —
ng(m-i-n— me+n mn)
Hence, p(Gm,n) > [2 (m+n—vVm? +n? - mn)]. O

Now, suppose we have a set of r rising path and s sinking paths which
cover the vertices of Gy, n. Define this cover to be normal if the rising
paths cover the vertices

{(r,1),(r=1,2),...,(1,7),(m=r+1,n),(m-r+2,n-1),...,(m,n—r+1)}
and the sinking paths cover the vertices

{(m—s+1,1),(m~s+2,2),...,(m,s),(1, n—s+1),(2,n—s+2),...,(s,n)}.

Theorem 8 Let r,s,m,n be integers such that m,n > 1 andr,s > 0. If
(m—-r-s)(n—r—s)<rs

then r rising paths and s sinking paths are sufficient to cover all the vertices
of G-
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Figure 3: A cover of G10,s with two rising paths and four sinking paths is
normal if the rising paths cover the circled vertices and the sinking paths
cover the boxed vertices.

Proof: Suppose r + s > min(m,n). Then for 1 < k <, let the k* rising
path on Gy, » go from (1,k) to (m — k + 1,k) to (m — k + 1,n). And for
1 < £ < s, let the £t* sinking path go from (1,n—£+1) to (m—€+1,n—£+1)
to (m' — £+ 1,1). Hence, in this case there is a normal cover of Gy,n with
r rising and s sinking paths. (See Figure 4 for an example.)

| S

e o o o
® o o o
® ¢ o @

<

® o ¢

Figure 4: A Normal Cover of Gpm,» When r + s > n. This shows a normal
cover of G1,7 with 3 rising paths (on left) and 5 sinking paths (on right).

Now, suppose r + s < min(m,n). Without loss of generality, assume
r < sand n < m (if r > s, flip the graph to interchange the bottom and
top; if m < n, flip along the ¢ = j diagonal). Also assume that r < n, since
there is an obvious cover of G, , otherwise.
Then
m-r—38)(n—r-s)<rs
(n—r—35)<s?
n<7r+2s.
r+28—-n2>0
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Note that for r+s < min(m, n), the inequality (m—r—s)(n—r—s) <rs
is not satisfied for r = 0. Hence, we may assume 1 < r < s. Since
T+ 8 < min(m,n) = n, then n > 2. Hence, we need only consider the cases
3<n<<m.

We proceed by induction on n. Let G = Gpp;3. Then r = s = 1 are the
only possible values that need to be tested. Hence, (m —r —s)(n-r—3s) =
(m - 2)(3 — 2) = m — 2. Therefore, (m — r — 8)(n —r — s) < rs only if
m < 3. Since m > n, then m = 3. Therefore, m=n=3andr =s =1 are
the only values which satisfy the inequality, and in fact there is a normal
cover of G3,3 with one rising and one sinking path (see Figure 5).

]

Figure 5: A normal cover of G3 3 with one rising path and one sinking path.

For induction purposes, assume there is a normal cover of G with
' rising and ¢' sinking paths if (m' — ' — §')(n' — ' — §') < 7's’, and
3 < n' < n. We now cover part of G n as follows:

e For 1 < k < r, the k*® rising path goes from vertex (k,1) to (k,n —
s—k+1l)to(n—-s+kn—-s—k+1).

e For 1 < j <r+ 2s—n, the j** sinking path goes from vertex (1,n —
j+)to(r+s—j+1ln—j+1). Forr+2s—n < j < s, the jth
sinking path goes from vertex (1,n—j+1)to (r+s—j+1,n—j+1),
then to (r+s—j +1,s — j + 1) and finally to (m;s — j + 1).

This set of paths covers all the vertices in the first n — s columns and the
first n —r — s rows of Gy . This leavesan (n—(n-8)) x (n— (n—r—3s))
grid to cover. However, the r rising and the first r + 23 — n sinking paths
described above enter this “subgrid” in such a way that a normal cover of
Gm,n can be completed if there is a normal cover of the (m —n+s) X (r + )
grid with r rising paths and r + 2s — n sinking paths (see Figure 6).

Letm'=m—-n+s,n'=r+s,r=rand s =r+2s—n. Then

(m' =7 =sYn—-1r"-5§)=1's = m-2r-s)(n—-r—s)—r(r+2s—-n)
= (m-r—s)(n—r—s)—rs
< 0.

Since n' = r + s < n, then, by induction, there is a normal cover of Gy .
Therefore, there is a normal cover of G, , with r rising and s sinking paths
whenever (m —r - s)(n —r —s) <rs. D
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Figure 6: The problem of covering G30,14 With 4 rising paths and 7 sinking
paths is reduced to the problem to finding a normal cover for Gy3,1; with
4 rising paths and 4 sinking paths.

Figure 7 illustrates the normal cover of G39,14 given by the construction
in the proof of Theorem 8. This requires a normal cover of G13,1; with
four rising and four sinking paths which in turn requires a normal cover of
Gs,s with four rising paths and one sinking path which in turn requires a
normal cover of G ¢ with three rising paths and one sinking path which in
turn requires a normal cover of G4,4 with two rising path and one sinking
paths which in turn requires a normal cover of G3,; with one rising and one
sinking path. This last cover uses the construction in Figure 4 resulting in
an edge on the right side that is in both a rising and a sinking path.

We now show that the construction given in Theorem 6 gives the desired
upper bound on p(Gn, ).

Theorem 9 For all integers m,n > 1,

2 Ve +nZ —
p(Gm,n)§[§ (m+n m? +n mn)].
Proof: Suppose p = [} (m +n — vVm?Z — mn'+n?)]. Then
g('rn+n,—\/m2+n2—mn.)5p<1+§(m+ﬂ.—\/m2+n"’—mn).

3
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Figure 7: A normal cover of Gg,14 with four rising paths and seven sinking
paths.

Since m,n > 1, then vVm? + n? — mn > 1. Therefore,
2
%(m+n— vm? + n? —mn) <p< 3 (m+n+ m2+n2—mn).

This means that p lies between the roots of the quadratic equation §x2 -
(m + n)z + mn. Therefore,

3
PP —(m+n)p+mn <

i < 0
2 P2
pPP—(m+n)p+mn < T
2

m-pn-p) < &

If m > n, we have

p < 1+-§(m+n-—\/m2—-mn+n2)

< 1+§(m+n—\/m2—mn+n2/4)

- 1+§(m+n—(m—n/2))
= 14mn.
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Since p is integer, p < n if n < m. Similarly, p < m if m < n. Therefore,
p < min(m, n).
Suppose p is even. If we let 7 = £ and s = & then

(m-r-sin-r-s5) = (m-p)(n-p)

A

and
r + s = p < min(m, n).

Hence, by Theorem 8, G, can be covered with p/2 rising paths and p/2
sinking paths.

Suppose p is odd. Note that the left side of (m — p)(n — p) < p*/4
is integer, while the right side is an integer plus a quarter. Therefore,
(m — p)(n - p) < (p? — 1)/4. So,if welet r = (p—1)/2 and s = (p + 1)/2
then

(m—-r—s)(n—r—-s5) = (m-p)(n-p)
< Pt
= 4
= 7rs

and
r + s = p < min(m, n).

Hence, by Theorem 8, G, », can be covered with (p — 1)/2 rising paths
and (p + 1)/2 sinking paths. Therefore, G » can always be covered with

r+s=p= [2 (m+n-\/m>]

3

isometric paths, and

P(Gman) < [g (m+n— vm? —mn+n2)] .

Hence, Theorem 7 and Theorem 9 together give us:

Corollary 10 If G, is an m x n grid for some integers m,n > 2 then

P(Gmn) = I% (m +n-— m)-l .
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