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Abstract. Inclusive connectivity parameters for a given vertex in a graph G are mea-

sures of how close that vertex is to being a cutvertex. Thus they provide a local measure
of graph vulnerability. In this paper we provide bounds on the inclusive connectiv-
ity parameters in K2 X G and inductively extend the results to a certain generalized
hypercube.
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1 Introduction

Let G be a connected graph without loops or multiple edges with vertex
set V(G), edge set E(G), (vertex) connectivity x(G), and edge connectivity
A(G). If not defined here, we follow the notation found in [6].

If S is a set of vertices of G and v is a vertex of G, we denote with
G — S — v the graph obtained from G by deleting all vertices of S with
their incident edges and the vertex v with its incident edges. If S contains
vertices not in V(G) then G — S is the graph obtained from G by deleting
all vertices of S which are in V(G) along with their incident edges. The
open neighborhood of v in G, Ng(v), is the set of all vertices adjacent
to v. Given S C V(G), the subgraph of G induced by S is denoted (S).
A cutvertex of G is a vertex whose deletion either increases the number
of components or increases the number of isolates in G. Note that this
definition permits either vertex of a K2-component to be a cutvertex.
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For v € V(G), the inclusive edge connectivity of v, A;(v,G), formerly
called cohesion, is the minimum number of edges whose removal yields a
subgraph in which v is a cutvertex. For various results on cohesion see
(10, 12, 13, 14, 15, 16, 17). Similarly, for v € V(G), the inclusive vertex
(mixed) connectivity of v, ki(v,G), (1i(v, G)) is the minimum number of
vertices (graph elements) whose removal yields a subgraph in which v is
a cutvertex. The parameters X;(e, G), ki(e, G), and p;(e, G) are defined
similarly for any edge e of G where ‘cutvertex’ is replaced by ‘bridge’ in
the preceding definitions. When the underlying graph is apparent reference
to that graph may be suppressed, for instance we may use );(v) instead
of A;(v, G) when no confusion arises. Inclusive connectivity, also referred
to as i-connectivity, has been studied in [1, 2, 3,4, 5,7, 8,9]. If Sis a
smallest set of vertices (respectively edges, graph elements) whose removal
from G makes v a cutvertex, then we call S a x;—set (respectively \;-set,
pi—set) for v € V(G). If S is a k;-set (respectively A;—set, p;-set) for v in
G and G — S — v leaves a neighbor of v as an isolated vertex then we say
that S is a neighborhood ki—set (respectively A;—set, p;—set) for v.

Figure 1 illustrates these parameters. Note that in this case ;(v) =
4, \;i(v) = 3 so that x;(v) > X;(v) which is in contrast to Whitney’s The-
orem, which gives k(G) < A(G) for the global parameters. This example
also serves to illustrate our rather peculiar definition of a cutvertex. No-
tice that since (N(v)) is complete, the only way to make v a cutvertex
by removing vertices is to isolate it in a Ky component. In fact it is now
apparent that x;(v) = min{deg(w) : w € N(v)} —1 whenever N(v) induces
a complete subgraph in G. For the graph in Figure 1, every x;—set for v is
a neighborhood k;—set.

v
Figure 1: A graph with x;(v) > \i(v).

We now require a few definitions which turn out to be useful in bounding
i-connectivity values in the cartesian product of two graphs. These defini-
tions are motivated by and are very similar to concepts used by Piazza and
Ringeisen [11] to bound graph connectivity in cycle permutation graphs.
Given a graph G and any v € V(G) define K(v) by K(v) = min{|V(C)|}
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where the minimum is taken over all k;-sets S for v € V(G) and all com-
ponents C of G — § — v such that C contains a neighbor of v. We similarly
define L(v) and M(v) with the minimum taken over all );-sets and p;-sets
for v € G, respectively. With Ni(v) we denote the least number of vertices
from Ng(v) in any component of G — S — v when that component contains
vertices of Ng(v) taken over all x;—sets S for v € V(G). By taking the min-
imum over all A\;—sets and p;-sets for v € V(G), respectively, Ny(v) and
N, (v) are defined similarly. We denote the cartesian product of G; and G2
by G = G; x G5 and note that G; X Gs = G2 X G;. In illustration of the
definition of cartesian product, consider the graph in Figure 2. This graph
is isomorphic to both C5 x C3 and C3 X Cs. These graphs are commonly
conceptualized as consisting either of five copies of C3 connected such that
corresponding vertices in the copies form a Cjs or as three copies of Cs with
corresponding vertices joined as triangles. In particular, given a graph G,
K, x G can be conveniently viewed as consisting of two copies of G with
corresponding vertices adjacent. In what follows we denote the two copies
of G in K3 X G by G and G’ and for each v € V(G) the corresponding
vertex of G’ by v'.

Figure 2: The graph Cs x Cj.

Studying connectivity in cartesian products of graphs is interesting not
only because of the richness of the results but also because this is a common
method for expansion of practical networks. For instance, the hypercube
network configuration can be defined recursively by Qo = K and Qn =
Qn_1 X K, for n > 1. We now turn our attention to bounding inclusive
connectivity in K5 X G for an arbitrary graph G. Toward that end the next
lemma is useful.

129



Lemma 1 Let G be a connected graph and v € V(G). Then separating
v’ from some w € Ng(v) into different components of Ko X G requires a
separating set of vertices of size at least min{degg(v)+1, xi(v, G)+ N (v)+

1}.

Proof: Let S* be a set of vertices that separates v' from w € Ng(v) in
(K2 x G) — S*. That is, in the graph (K2 x G) — §*, v/ and w are in
different components. Notice that necessarily v € S* and v’ € S§*. It
could occur that Ng(v) — {w} C S* in which case we immediately obtain
|S*| > degg(v) + 1. Now, if some vertex in the set Ng(v) — {w} —S* is not
reachable from w in G — S* then at least x;(v,G) + 1 internally disjoint
paths of G between w and that vertex must have been severed with the
removal of S* from K, X G. Thus, in this case, |S*| > &:(v, G) + Ni(v) +1
due to the existence of paths of the form zz'v' in Ko X G where z is a
vertex of Ng(v) which is in the same component of (K3 x G) — S* as is
w. The remaining alternative is if every vertex from Ng(v) — {w} — S* is
reachable from w in G — S*. Then for any u € Ng(v) — {w} reachable from
win (K2 X G) — S*,+' € S*. Thus S* must contain at least |Ng(v) — {w}|
vertices of G’ and additionally S* must contain the vertices w’ and v for a
total of at least degg(v) + 1 vertices. The result is thereby established. O

Theorem 2 Let G be any connected graph and v € V(G). Then
min{degg(v), ki(v,G) + Ni(v),2k:(v,G) + 1} < ki(v, K2 X G)
< min{dega(v), 26:(v,G) + 1, K(v,G) + K(u)}.

Proof: First we establish the lower bound. Let S be a x;—set for v in
Ky X G. If there exists a vertex w € Ng(v) with w and ¢’ in different
components of (K3 X G) — S — v, we obtain the result by Lemma 1. The
only other possibility is that S separates vertex u from vertex w, where
both u and w are vertices of Ng(v) . Let this be the case. Notice then
that a x;—set for v in G must be a part of S. We require some notation.
Let C; denote the component of G — S — v containing vertex u and C; the
component containing w. The subgraphs of G’ induced by the vertices of
G’ corresponding to C; and C; are represented as C} and C} respectively.
Without loss of generality, let |V(Cy)| < |V(Cz)|. Now, if there is some
z € V(C,) where z is a neighbor of v in G and z’ ¢ S then in the graph
(K2 X G) — S — v there can be no path between z’ and any vertex in
V(C%) which is in G’ — S —v. Then either (a) two neighbors of v’ in G'
must be separated in G' — S — v/ giving xi(v, K2 X G) > 2i(v,G) + 1
or (b) all vertices of C which are neighbors of v’ in G’ are in S giving
ki(v, K3 X G) 2 £i(v, G) + Ni(v). Thus the lower bound is seen to hold.

To verify the upper bound we show that any one of the three numbers
suffice for the size of a set of vertices whose removal from K> x G makes v
a cutvertex. In this respect it is clear that degg(v) suffices.

130



To establish 2x;(v,G) + 1 as an upper bound let S be any x;—set for
v in G and S’ be those vertices of G’ corresponding to S. If there are
two neighbors of v, v and w say, in different components of G — S — v, we
claim that S* = SUS' U {v'} is a set of vertices from V(K2 x G) with
the property that u and w, are separated in (K; x G) — S* —v. Every
u~w path in (K3 x G) — S* — v contains a vertex of G'. Because moving
from one component of G — S — v over to the corresponding component of
G' — S’ — V' yields no new u—w paths, we conclude that u and w are in
different components of (K X G) —S* —v. This upper bound 2«;(v, G) +1
is now seen to be valid since if the removal of S and v isolates a neighbor
of v then this same neighbor can be isolated in Ky x G with the removal
in G’ of |S|+ 1 vertices followed by the removal of v.

To verify ki(v, G) + K(v) as an upper bound let S be any x;-set for v
in G and C be any component of G — S — v which contains a neighbor of
v. Let C’ be the subgraph of G’ corresponding to C. Assume S separates
neighbors of v in G— S —v. Then there is a neighbor of v, say w, such that
w € V(C) and w is separated from some other neighbor of v, say u. Then
S* = SUV(C') separates u and w in (K2 X G)— §* —v. To realize that this
is true notice that there are no u—w paths in (K2 x G) — S* —v consisting
entirely of vertices from V(G) ( since S is a k;—set for v in G ) and no
vertex of G' — S* is adjacent to w or any vertex in the same component,
C,aswin (K3 X G) — S* —v.

Finally, if S is a neighborhood x;—set isolating v in a Kp-component
with vertex u then K(v) = 1 and that same vertex can be isolated in a
K,—component of K2 X G with the removal of |S| + 1 vertices. D

v
(a) (b)

Figure 3: The graph G x K, for Example 1.

The following examples show that the bounds on «i(v, G x K3) provided
by Theorem 2 are sharp.

Example 1. The graph, G, shown in Figure 3(a) is an example of a
graph G used in Figure 3 (b) to form K3 x G where (v, G) + Ni(v) = 3,
25i(v,G) +1 = 5, K(v) = 1 and degg(v) = 2. Therefore the bounds of
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Theorem 2 are 2 < k;i(v, K2 X G) < 2 giving &i(v, K2 X G) = 2 = dege(v).

Example 2. With the graph in Figure 4(a) showing G and the graph in
Figure 4(b) depicting K3 X G we have x;(v, G) + Ni(v) = 2, 2,;(v,G)+1 =
3, K(v) = 2 and degg(v) = 3. Therefore 2 < i(v,K2 x G) £ 3 and in
actuality xi(v, K2 X G) = ki(v, G) + Ni(v) = 2.

(2) (b)

Figure 4: The graph G x K, for Example 2.

Example 3. The graph in Figure 5(a) illustrates a graph G and Figure
5(b) shows K3 X G in which x;(v,G) + Ni(v) = 2, 2k;(v,G) + 1 = 3,
K(v) = 3 and degg(v) = 5. Therefore 2 < (v, K2 x G) < 3 and in
actuality x;(v, K2 X G) = 2x;(v,G) +1=3.

\

{1 i

(a) (b)
Figure 5: The graph G x K3 for Example 3.
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Example 4. Consider the graph G in Figure 6(a). A x;—set for v in G
consists of the two vertices directly above v. The parameters of interest for
G are k;i(v,G) + Ni(v) = 3, 2xi(v,G) +1 =5, K(v) = 2 and degg(v) = 5.
The product G X K is shown in Figure 6(b). Theorem 2 gives the bounds
3 < ki(v, K2 XG) < 4 and in actuality xi(v, K2 X G) = (v, G)+ K (v) = 4.

(a) (b)
Figure 6: The graph G x K, for Example 4.

We now point out a direct result of Theorem 2, providing easily checked
conditions which enable the value of «;(v, K3 X G) to be determined exactly.
Notice for these graphs the removal of the neighbors of the vertex v’ in
V(G") leaves v/ isolated when v is then removed.

Corollary 3 If dega(v) < ki(v,G) + 1 then ki(v, K2 X G) = degg(v).

The next corollary of Theorem 2 is easy to verify upon considering that
it is always the case that x;(v,G) + K(v) 2 ki(v,G) + 1.

Corollary 4 If degg(v) 2 i(v,G)+1 and K(v) =1 then x;(v, Ky X G) =
ki(v, G) + 1 = Ki(v, G) + K(v).

Since Ni(v) > 1 and &4(v, G) 2 1 we also have the following result.
Corollary 5 For any graph G,
min{degg(v), ki(v, G) + 1} < (v, K3 X G).

Essentially the same proof used in showing Theorem 2 establishes the
following result. Notice however that our upper bound has no term depen-
dent upon X;(v, G), i.e., we would expect based on the previous theorem
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2Xi(v,G) + 1 as an upper bound. That this is not the case in general is
demonstrated with the graph G from Example 3 where 2X;(v,G) +1 =3
yet Ai(v, K3 X G) = 4. This difference arises since the removal of vertices
(from k;-sets) may delete many associated edges. In particular, when try-
ing to make v a cutvertex in Ky X G by removing vertices we may wish to
delete the vertex v’ (the vertex of G’ corresponding to v).

Theorem 6 Let G be any connected graph and v € V(G). Then
min{degg(v), Ai(v, G)+Na(v)} £ Mi(v, K2xG) < min{degg(v), Ai(v, G)+
L(v)}.

In the case of mixed i-connectivity the methods employed in Theorem
2 can be modified easily to yield the next assertion.

Theorem 7 Let G be any connected graph and v € V(G). Then
min{degg(v), pi(v, G)+Nu(v)} < pi(v, K2xG) < min{degg(v), 2p:(v, G)+
1, pi(v,G)+ M(v)}.

In order to extend Theorem 2, we define a a generalized hypercube
recursively in terms of products of K, and an arbitrary graph G. More
formally, let the generalized hypercubes be defined by G, = G X K3, and for
n > 1, Gpy1 = Gp X K. Notice that this gives the definition for hypercubes
when G = K. Also notice that for any G, G; = G X K2 = G X @, and
in general G, = G X Qn, where Q, is the hypercube with degree n. Using
this definition we have the following result.

Theorem 8 Let G be any connected graph and v € V(G). Then
min{degg(v) +n—1, Ki(v,G) +n} < ki(v,Gn) <
min{degg(v) +n—1, 2"(ki(v,G) +1) — 1, xi(v,G) + (2" ~ 1)K (v)}.

Proof: We proceed by induction on n. The base step, when n = 1 fol-
lows from Theorem 2 and Corollary 5. Assume the theorem is true for n.
Consider the case for n + 1.

Let Gn41 be considered as two copies of G, where the second copy is
denoted by G/, (and vertices in this copy also are denoted using primes) with
the corresponding vertices adjacent. Let S be a x;—set for v € V(Gr+1) =
V(Gy. x K3). This means that either the removal of S leaves v in a K3 so
that the removal of v isolates a vertex, or there exist two neighbors of v,
say u and w, where u and w are in different components of Grn41 — S —v.

Consider first the case when v is isolated in a K3 with +'. Then since
each vertex in Ng, (v) was removed, |S| > degg_(v) = degg(v)+n. Ifvis
isolated in a K with w € V(Gy,) then necessarily Ng,, (v)—{w} and v’ must
be contained in S. This also yields |S| > degg, (v) = degg(v) + n. If the
separated vertices u, w satisfy u,w € Ng, (v) then because V(G,)NS must
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be a x;-set for v in Gy, [SNV(Gy)| 2 min{degg(v) +n— 1,x;(v,G) +n}.
However, in G,; there exists at least one additional path from u to w
so that |S| > [SNV(Gn)| +1 > min{degg(v) + n,x:(v,G) + n+1}. If
w € Ng, (v) is separated from v’ in G4, then for all z € Ng,, (v)— S—{w},
x must be reachable from w (otherwise we have already condisered this
case). For any such z, ' € S. This means for any z € Ng,(v) either
z € Sorz' €S implying |S| > degg, (v) = degg(v) + n. The case when
Ng, (v)—S—{w} = ¢ has already been considered. Hence the lower bound
holds by induction.

Consider now the upper bound. This is shown by demonstrating that
the removal of vertex sets of the appropriate sizes will result in v being a
cutvertex in Gy, 4,. Clearly the removal of all neighbors of v/ in Gy, 4.; —v will
cause v to be isolated upon the removal of v. However, [Ng,,,—»(v')] =
ING,,(v)| = degg(v) + 7.

Let S be a k;i-set for v in V(Gr) and S’ be the corresponding set in
Gy. If SU {v } separates v and w where u,w € Ng,(v), then we claim
SUS'U{v'}U{v} separates u and w in G,4;. Notice that there are no u—w
paths in G4y — S — v that do not leave G,,. However any path leaving the
component of G, containing u can only reach vertices in the corresponding
component of G, and hence cannot reach w. If the removal of S U {v}
from G, isolates w € Ng,(v) then the edge ww' (isomorphic to K3) is
isolated in Gp41 — (SUS U{v'} U{v}). Hence |SUS’ U {v'}| is an upper
bound. However, by the inductive hypothesis |S| < 2°(x;(v,G) +1) — 1
so that [SUS U {v'}| = ||+ |8'| +1 < 2(2"(ki(v,G) +1) - 1) +1 =
27+ (15;(v, G) + 1) — 2+ 1 = 2% (5(v, G) +1) — 1.

Finally to see that x;(v, G)+(n+1)K(v) is an upper bound, recall that
Gnt1 = G X Qn41 so that there are 2"+ copies of G and v € V(G) is
connected in an (n + 1)-hypercube to n other copies of v. In the original
graph, G, we know that for any k;-set in G there exists a component of
G — S — v, C, where C contains a neighbor of v and |C| = K(v). Let
C1,Ca,...,Cpryq1 be the corrresponding sets in the n + 1 copies of G in
Gn+1 in which v has neighbors. Let $* = SUV(Cy)U...UV(Cry1). We
claim that S* is a k;—set for Gp41.

If, in the original graph, G, neighbors of v, u and w, are separated in
G — S — v, then there exists a neighbor of v, say w, such that w € V(C)
and w is not reachable from u. Notice that in G,+; — S* — v there are no
u~w paths because there is no u~w path consisting entirely of vertices from
V(G) and no path from w to some other copy of G in Gy, since all of the
components corresponding to C' (which contains w) have been removed.

Finally if S is a neighborhood &;—set isolating v in a K3 component with
the other vertex w then §* = SU{w,}U...U{wp41}, [V(C)|=1=K(v)
and the same K3 is isolated in Gn41 — S*. For this case |S*| = xi(v,G) +
n+1=ri(v,G)+(n+1)K(v). O
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The following result about the generalized hypercube follows directly
from Theorem 8.

Corollary 9 For the n + 1-dimensional hypercube x;(v, Qn41) = n.

The following two results can be obtained with conditions relating the
various parameters of the original graph G.

Corollary 10 If for any graph G, degc(v) < #i(v,G) then xi(v,Gr) =
dege(v)+n—1.

Corollary 11 If the only way to makev a cutvertez is to isolate a neighbor
of v, that is, if a minimum k;-set for v is a neighborhood k;—set for v then
K(v) = 1 and hence min{degg(v) +n — 1,%:(v,G) + n} < xi(v,Gn) <
min{degg(v) +n —1,2"(xi(v,G) + 1) — 1}

Corollary 12 If v € V(G) has a k; neighborhood set and degg(v) <
ki(v,G) +1 then ki(v,Gn) = degg(v)+n—1.

We note as a final observation the following corollary to Theorem 8.
Corollary 13 For sufficiently large n, ki(v, Gy) is of order n.

As a simple example of this notice that for the graph G used in Example
3, ki(v,G1) = 3 # degg(v)+1—1 =5, but k;(v, G2) = 6 = degg(v)+2—1.
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