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ABSTRACT. In a graph, a set D is an n-dominating set if for
every vertex z, not in D, z is adjacent to at least n vertices of
D. The n-domination number, y»(G), is the order of a smallest
n-dominating set. When this concept was first introduced by
Fink and Jacobson, they asked whether there existed a function
f(n), such that if G is any graph with minimum degree at
least n, then ¥n(G) < v4(n)(G). In this paper we show that
¥2(G) < 75(G) for all graphs with minimum degree at least
2. Further, this result is best possible in the sense that there
exist infinitely many graphs G with minimum degree at least 2
having 72(G) = 74(G).

1 Introduction

For the purpose of .this paper, we consider only finite undirected simple
graphs. For any undefined terms see [3]. For a graph G, with vertex set V'
and edge set E, a subset D C V is a dominating set if every vertex in V—D
is adjacent to at least one vertex in D. The domination number, denoted
v(G), is the order of a smallest dominating set in G. The area of domination
has been around for quite some time, and is rich in research problems, as
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is evidenced by the extensive bibliography given by Hedetniemi and Laskar
[4].

In this paper, we will concentrate on a generalization of the domination
number of a graph. For a positive integer n, a subset D is an n-dominating
set if for every vertex z, not in D, z is adjacent to at least n vertices of D.
The n-domination number, v,(G), is the order of a smallest n-dominating
set in G. This concept was first introduced by Fink and Jacobson [2], in
which they conjectured:

If G is a graph of minimum degree 6(G) > n, then
'Yn(G) < '72n+1(G)-
In [5] an example of a graph G was given for which

Y (G) = Yn2/4(G)

This still left the problem of deciding whether there existed an integer N
depending on 7 so that

(G) <N (G).
for every positive integer n and all graphs G with §(G) > n. The smallest
such N is denoted by f(n) if it exists.
It is the purpose of this paper to show the following:

Theorem 1. If G is any graph with §(G) > 2, then
12(G) < 15(G).

That is, we show that f(2) < 5. For any positive integer m > 4, the
graph K4, has
Y2(Kam) = 1a(Kam) = 4.
This indicates that f(2) > 4. Hence we have f(2) = 5.

We will give the proof in the next section. The proof technique unfortu-
nately doesn’t seem to generalize in a “nice” fashion and thus the question
of the existence of the function f(n) originally posed in [1] remains open.

2 Main Result

Before proceeding with the proof of Theorem 1, we give the following useful
lemmas.

Lemma 1. Let H be a bipartite graph with partite sets X and Y. If H
has a path
P =upujua...up
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with ug € Y and |N(ug) N V(P)| = 3, then H has a path
Q =vv1v2...Um

with vo € X and |N(v) NV(Q)| = 2.

Proof: Since |[N(uo) N {uy,u2,...,up}| = 3, it must be the case that there
exists 2 < ¢ < j < p such that uou; and ugu; are in E(H). Now since H is
bipartite, u; is in X, and

. UiUi—1Ui—2 . - - UOUjUjt1 .« -Up
is a path that has the desired property since {ug,u;—;} C N(u;). a

Lemma 2. Let H be a bipartite graph with partite sets X and Y. If H
has a path
P =uujuz...u,
with
up €Y, [N(up) NV(P)| 2 4,
then H has a path
Q = ToY1Z1Y2%2 - - - YmTm
with {zo,z1,...,2m} C X and {y1,%2,.--,ym} C Y such that

IN(zo) NV(Q)| 2 2, and [N(zm) NV(Q)| > 2.

Proof: Since |[N(up)NV(P)| >4, let i, jand k besuchthat 0 <i<j <
k < m —1 with upu;, upuj, upur and upuy—y all in E(G). Then, the path

UrUk41 - - UpUiUiyy .. - Uj

has the required properties. O

2.1 Proof of Theorem 1

Let G be any graph with §(G) > 2 and D be a minimum 5-dominating set
with 45(G) elements. To prove the theorem, we need only to show that
there is a 2-dominating set D* with fewer elements than D.

To the contrary, assume that no such D* exists. First we observe that the
maximum degree in the subgraph induced by D is at most 1 for otherwise
if there was a v € D with [N(v) N D| > 2, then D* = D — {v} would
contradict the assumption.

Let T = V(G) — D. Note that T is not empty since a 2-dominating
set of order less than the number of vertices in G clearly exists. Let H
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be the bipartite subgraph of G with all edges between D and T, that is,
E(H) = {uv € BE(G): u € D and v € T}. For each vertex of G, let
Ny(z) = {y: zy € E(H)}.
Further, let
Dy={veD:|N@)NnT|=1},
and
Dy={veD:|Nv)NT| > 2}.

Claim 1. For every z € T, |N(z) N Dy| < 2. Further, if the equality holds,
the two neighbors of = in D, are adjacent in G.

Proof: Note that A(< D >) < 1. It is sufficient to show that = does not
have two neighbors in D; which are not adjacent. Suppose, to the contrary
z has two neighbors u and v in D such that uwv € E(G). It follows that

D* = (D —{u,v}) U{z}
would contradict the assumption. O
Claim 2. H has a path
P =uuiup... up_1up
such that ug € Dy and |[N(up) NV(P)| > 2.
Proof: Let P = ugu; ...up be a longest path in H. Clearly,
Nu(uo) € {u1,u2,...,up—1,up}.

If up € Dy, then ugu; ... u, itself is such a desired path. Suppose ug € D;.
Since
|Nu(u1) N D] 2 5 and [Ng(u1) N Dy <2,

there are at least 3 neighbors of u; in D,. If there is a neighbor wg of u;
which is in Dy — V(P) then Q = woujusz. .. u, would also be a longest path
and Ny (wp) € V(Q). Thus, Q would be a desired path. Otherwise,

|Ngr(uq) N {uz, us, ... ,'u.,,}l >3,

and then by Lemma 1, a desired path results.
Suppose ug € T'. Then

|N(u0) n {uhu21 XX 7uP}| 2 5.
Again, by Lemma 1, there is a desired path. (]

A path P = zoy1Z122%2 . . . ypZp of H with 29 and z, € D having one of
the following properties is called a W-path.
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L. |N(zo) N {y1,%2, ..., ¥p}| = 2 and [N(zp) N {y1,%2,..-,¥p} = 2;

2. lN(zi))nayhy% (X ’yP}I 2>2and Tp € Dl ha'Ving N(zp)n{zO’ 3 PERE
Zp_l =¥V.

Claim 3. H has a W-path.
Proof: By Claim 2, let
P = yujuy...up

be a path in H such that up € Ds and |N(up) N V(P)| > 2 and having p
as large as possible. Clearly, Ny (u,) C {uy,ua, ..., up—1}. If u, € Dy, this
claim would follow immediately. If u, € T, then |N(up)N{uy,u, ..., up—1}|
2 5. By Lemma 2, this claim would follow. Thus, we assume that u, € D;
and N(up)NV(P)N D # O since otherwise there would be a W-path. Since
A(< D >) £1, we have N(up) N (D — {uo,uy, ..., up—1}) = 0.

Note that u,_; € T. By Claim 1, and since P is not a W-path,

N(up-1) N (D1 ~ {uo,v1,u2,...,u,}) = 0.
If there is a vertex wp € N(up_1) N (D2 — {uo, uy, ..., up_1}), the path

UQUL .« . . Up—1Wp

is also a longest path in H with |[N(uo) N {ug,u1,...,up—1}| > 2. Then
Ny(wp) € {u1,ua,...,up—1}. Since w, € Dy, |Ng(wp)| > 2. Thus the
claim holds.

Therefore |[N(up—_1) N {ug,u1,...,up—2}| > 4 since D is a 5-dominating
set of G. By Lemma 2, H has a W-path. O
Claim 4. There is 8 W-path zoy1 7 .. . ypxp such that |N(y) N {zo, zy,. ..,
zP}I < 3 for each y€ T - {yl:w,---,yp}'

Proof: To the contrary, we assume that the claim is not true. Let P =
uQuy ... up be a W-path of H with minimum length. Since the claim fails,
there is a vertex y € T — V(P) such that [N(y) N V(P)| > 4.

Let 0 < i) < iz < i3 < ig < p be such that N(y) D {ui,, uiy, uis, ui,}.

Then

P® = g 4 41 0 Uiy — 1 Uiy YUy Uiy g1 - U
is a W-path and by assumption is not shorter than P. Note that u;,y €
E(H) and uyy € BE(H). Thus by the minimality of the length of P, we
have i; =0 and i4 = p and i3 = iz + 2. In particular, we have shown that
H has a shortest W-path

P = zoy1z1%2%2 . . . YpZp

such that zoyx € E(H) and z,y; € E(H) for some k with 1 < k < p.
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For convenience, let

Xl = {x()rxl) . 'zk—l},
X2 = {Tk, Tkt1,. .., Tp},
X = {zo,z1,...,%p},
Y ={y1,%2,..., 5}
By the assumption, there is a vertex y € T — Y such that |[N(y) N X| >

4. Since P was chosen to be a path of minimum length with the given
properties, then clearly

IN(y) N X;| <2 foreach i =1,2,

for otherwise a shorter W-path with the given properties from zp to z,
would be immediate. Consequently, |N(y) N X1|=2 and |N(y) N X2| =2.
Further, the neighbors of ¥ in X; would have to be consecutive for each
i = 1,2 for otherwise again a shorter W-path would result. Assume that

N(y) N Xy = {zs, 2541}
and
N(y) N Xz = {z¢, Te 1}
Then the path
P* = o171 ... TsYTat1Ys42 - - - Tt
is a W-path and is shorter than P, a contradiction. (]

Let P = zoy1z1 ... ypZp be a W-path such that |[N(y) N X| < 3 for every
vertex y € T — Y, where

X = {z0,%1,...,Zp}

and
Y= {yl:y2: LR )yp}'
Thus |[N(y) N (D — X)| > 2 for every y € T — Y. Let D* = (D — X)UY.

It is readily seen that D* is a 2-dominating set of G with fewer elements
than D, a contradiction. O
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