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ABSTRACT. A snake in a graph is a simple cycle without chords. A
snake-in-the-box is a snake in the n-dimensional cube Q.. Combining
the methods of G. Zemor (Combinatorica 17 (1997), 287-298) and of
F.I Solov’jeva (Diskret Analiz. 45 (1987), 71-76) a new upper bound
for the length of a snake-in-the-box is derived for 16 < n < 19081.

1 Introduction

A snake in a graph is an induced cycle, that is a simple cycle with no chords.
Let Qn be an n-dimensional cube. This is the graph with all binary words
of length n as vertices, and all pairs of vertices which differ in exactly one
coordinate as edges. A snake in @, is called a snake-in-the-boz code or,
shortly, a snake-in-the-boz. More precisely, suppose

S=X01X11"':X1”n—1

is a list of m words in @,. The distance d(X;, X;) between two words of S
is defined to be the Hamming distance, that is the number of coordinates
in which X; and X differ. The list distance ds(X;, X;) is defined as the
minimum number of words from X; until X; in S, i.e.
ds(Xs, X;) = min {|i —j|,m — i - j[}.
Then, S is a snake-in-the-box if for every i,j with0 <i<m,0<j <m,
d(X;, Xiy1) =1,

d(X:, X;) =1=>ds(X;, X;) =1

where subscripts are reduced modulo m.
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For applications of snakes we refer to [6, 7, 8]. A central problem in
the study of snakes is to determine the maximal length of a snake. We
denote this maximal length by s(n). At present, the exact value of s(n) has
been determined only for six values of n, i.e. 5(2) =4, s(3) =6, s(4) =
3(5) = 14, s(6) = 26, and s(7) =48. For all remaining values of 7 one has
to be satisfied with lower and upper bounds for s(n) for the time being.
The best lower bound at this moment is the one established by Abbot and
Kachalski. In [1] they proved that s(n) > A2™, with A = 0.300781....

In the course of time several upper bounds have been derived. We mention
here several upper bounds found since 1987. In [13] Solov’jeva derived

s(n) < (1- 2 )2"-1, n>T. (1)

n2 —-n+2
Her method, based on counting four-cycles intersecting S in ¢ vertices,
0 <1< 4, is discussed in Section 2.
In (12] Snevily improved this bound by deriving

1
< —————— n—1 X
s(n) < (1 20”_41) 2m=, n>'12 (2)
His method is based on estimating the average number of vertices in S
adjacent to a vertex not in S.

By refining some details of the proof in {12], Emelyanov [3] found

13

And by using some parts of Snevily’s proof and Solov’jeva’s method, Emelyanov
and Lukito (4] showed that for n > 7

s(n) < (1 — et )2”-1, n>10. (3)

@ < (1 2 (n® — 18n* + 68n® + Tn? — 298n + 270) on1.
s — 310 + 47n% — 57n3 + 362n2 — 8067 + 540
2
< -] 2"
< (1 5n+59+o(1)) 2 )

Finally, Zemor [15] proved that for all n

s(n) < le— 0 oot 5)

6n+4§—7
< (- 893‘*0( )

applying a technique of counting vertices of “high degree” outside S. We
shall discuss parts of his method in Section 2. We remark that Zemor ap-
pears to have introduced an essentially new element, since his upper bound

148



is not of the type r(n)2", where r(n) is some rational function of n, but
rather shows a y/n-dependence. We also remark that although, asymptoti-
cally, Zemor’s bound is the best bound thusfar, bound (4) is better on the
interval 7 < n < 19079.

In this paper we shall sharpen bound (4) even further; by combining

Solov’jeva’s approach and (part of) Zemor’s approach. We shall do so by
considering a configuration of four vertices such that one of these vertices
is adjacent to the other three. Such a configuration usually is called a claw.
In (15] it is shown that any subpath of S of length 7 contains four vertices
adjacent to a claw outside S. Zemor exploits this property to derive a lower
bound for the total degree of vertices not in S.
In Section 3 we discuss a relationship between such claws and four-cycles
having only one vertex in common with S. This relationship enables us
to refine Solov’jeva’s technique of counting four-cycles, and hence, to im-
prove her bound for n > 17. This improved bound is also better than
Zemor'’s bound for 7 £ n < 15603. However it is not better than bound
(4). Therefore, we extend Zemor’s result on claws. In Section 4 we present
four lemmas that play a major role in proving that any subpath of length
9 contains a set of vertices adjacent to two claws, not necessarily disjoint,
outside S. Because of its technical arguments, with many subcases, the
proof will not be presented in this paper. Instead we refer to [11]. This
result is used in Section 5 to prove our main result, stated in Corollary 2,
yielding an upper bound for snake-in-the-box codes better than all other
bounds mentioned in this Introduction for 30 < n < 19081. For sufficiently
large n, Zemor’s bound remains the best bound known thusfar.

As for our notation, edges in @, will be indicated by lowercase letters
and vertices by uppercase letters. A snake subpath will be denoted by a
sequence of edges and vertices

e e i
2vn2u2y . vy gy

where the edge {V;—1, V;} is identified with the “unit vector” e; := Vi, +V;.
Remember that vertices in Q,, stand for binary n-tuples, and hence, that we
can add vertices componentwise mod 2. Because of the snake properties, e;
is an n~tuple with zeros in all positions, except in the position where V;_,;
and V; differ, and we have

€ # €it+1, e # €it2, (6)

for all relevant values of i.
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2 Previous methods

Throughout the rest of this paper, let S be a fixed snake of length s(n).

The method applied in [13] to derive an upper bound for s(n) is by
counting four-cycles (i.e. simple cycles of length 4) having i vertices in
common with a snake S, for ¢ € {1,2,3,4}.

Definition 1 The set A; is the set of four-cycles in Q, having precisely i
vertices in common with S.

Any two vertices in @, at Hamming distance 2 determine precisely one
four-cycle. Hence, the total number of four-cycles in @y is equal to ;(3)2".
Furthermore, assuming n > 2, |44]| = 0. So, we can write

1
ol + 142+ L4al + sl = 1) m

Since any subpath of S of length 2 determines precisely one four-cycle
having exactly the three vertices of this subpath in common with S, we
have |A3] = s(n). In order to deal with the numbers |A;| and |A;| the
following notion is introduced (cf. [13]).

Definition 2 Let X be a vertex of the snake S. Then the symbol a(X)
denotes the total number of four-cycles containing X, but no other vertices
of S.

It is clear immediately that

1] =) a(X). (8)

Xes
Using simple counting arguments (cf. [13, 14]) one can infer that
1 -
aal = m-9s+3 Y (("57) -atn) )

Xes

= (n-3)s(n)+ % (" ; 2) s(n) — % > aX). (10)

Xes
Substituting expressions (8) and (9) in (7), and leaving out |Ag| provide us
with the inequality

(()-)sms(Gr-Ten @

Xes
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The result in [13] uses the following:
Lemma 1 (Glagolev) For n > 7 one has that a(X) > 2.

For the proof we refer to [13].

In [15] an upper bound for s(n) is determined by deriving a lower bound
for the number of edges in Y := Q, —S. A basic tool in Zemor’s method
is counting vertices of high degree.

Definition 3 Let A, B,C and D be distinct vertices of Qn. We say that
{A,B,C,D} is a claw with center A, if A is adjacent to the other three
vertices.

Another important ingredient in [15] is the )-degree of some vertex
X €@n.

Definition 4 Let X be some vertex of Qn. The symbol §(X) denotes the
degree of X in ), or §(X) :=|N(X) NY|, where N(X)-is the neighborhood
of X in Qn.

The following property is essential in [15].

Proposition 1 (Zemor) If {A4,B,C,D} is a claw, then 6(A) + 6(B) +
8(C) +6(D) = n.

Proof: From the definition of S it follows that not all vertices of a
claw {4, B, C, D} can be vertices of S. The same holds for the claw {A+e;,
B +e¢;, C +e;; D +e;}, which is a translation by an edge e; of the first
claw. Applying this observation for all i with 1 < i < n gives the above
inequality. m ’

It is shown in [15] that any subpath of S of length 7 contains four
vertices being neighbors of four vertices in ) which form a claw. We call
such a configuration an adjacent claw. Hence, applying Proposition 1, it
follows that any such subpath contains a vertex V such that some neighbor
Y of V has degree 6(Y') > % in ). Such a vertex Y is called a “vertex of
high degree”, and it contributes at least % edges in ). However, disjoint
subpaths of S of length 7 may produce the same vertex of high degree.
Zemor continues by proving that whenever this happens, it in turn produces
more vertices of high degree. A careful analysis, combining both arguments,
yields a lower bound % (s(n) — 10)(/% — 6) for the number of edges in Y.
This in turn provides us with upper bound (5) for the length of a snake S
(cf. Section 1).
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3 A combined approach

We are now going to combine the method of [13] and part of the techniques
used in [15], which will result in a new upper bound, which is better than
bound (1) for n > 17 and better than bound (5) for n < 15603.

Basic to our approach is the following property, relating the functions
« and 6.

Proposition 2 Let X € Sand Y € NX)nY. If §(Y) = k, then
a(X)>k—2.

Proofi There exist k vertices in Y at distance 2 from X. Since a pair
of vertices at distance 2 from each other determines a unique four-cycle,
these k vertices determine & four-cycles through X. At most two of these
four-cycles contain a second vertex of S. B

From Propositions 1 and 2 it is clear that a claw the vertices of which
are adjacent to four different vertices of S gives rise to a.contribution of at
least n —4(2) =n—8 to the sum } y. s @(X). The more claws of this type
that can be proved to exist, the better a lower bound for }_ y s a(X) we
obtain, and the better an upper bound for s(n) by applying (11).

If we apply Zemor’s result that any subpath of S of length 7 has an
adjacent claw, we obtain for n > 7

5 o) 2| 20| > 260 =9) 12)

Xes 8

Here, we used the property that s(n) is even.
Substituting this lower bound for } ¢ s @(X) in (11) yields the follow-
ing upper bound for the length of a snake

n—38 6n
< - e—— n=—1 ———— >
“’(”)—(1 4n2-3n—8)2 t@miomoy "7 1)
(cf. also [14]).

This bound is better than bounds (1) and (2) for n > 17. It is also
better than bound (3). It is an improvement of Zemor’s bound (5) for
T < n < 15603. However, bound (13) does not improve (4) which was
derived by different means. For this reason we shall extend our method.
More precisely, we shall prove that any subpath T of S of length 9 has
two adjacent claws in ). The vertices of these two claws are not necessarily
different and neither are their neighbors in Z, as long as the edges connecting
the vertices of the claws to the vertices in Z can be chosen such that these all
are distinct. In order to deal with the situation that two different vertices
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of adjacent claws (or of the same claw) are adjacent to the same vertex of
T, we prove the following property.

Proposition 3 Let X € Sand let Y,Z € N(X)NY. Then a(X) 2>
5(Y)+6(Z) —5.

Proof The statement follows immediately from Proposition 2 since
four-cycles through X and Y differ from four-cycles through X and Z,
except the uniquely determined four-cycle through X,Y,and Z. =

4 Four lemmas

In this section we shall present four lemmas (cf. Section 1) dealing with
claws which exist under typical, rather frequently occurring conditions.

Lemma 2 Let €2 Vo &2 V] RV, &2 V3 44V, & V; be a subpath of S. If
eo, €1 7 €4 and ez # e5, then W= {Vp +e4, V) +e4,Vaz+e4,Vl+e2} isa
claw in Y.

Proof: From the conditions of the Lemma and from inequalities (6)
it follows that all vertices of W are in Y. It is clear that Vo +eq4, V5 +e4
and V3 + e4 are all different vertices, and that Vg + e4 and Vo + e4 are
neighbors of V; 4+ e4. Now, we can write V3 + e = Vg + €1 +e2 +e3 +
es + ez = (Vo +e4) + €1 + e3. Hence, V3 +e; # Vp + e4. Similarly, we
have V3 + ez = Vo +e3 +e4 +e2 = (V2 +¢4) + e2 + e3 # V; + 4. Finally,
Vatea=(W +e4)+ea, which shows that V4 +e2 and V] + ¢4 are adjacent.

n
_LemmaSLetVb—-‘-Vl-ng Vs &V, & V; &8 Vs &2 Vi, be a subpath of
S. If e;1 = e5 and ey = eg, then V := {Vy +e3,V5 +e3, V5 + €3,V +e5}
8 a claw in Y.

Proof: Since e; = eg it follows that es # e; and eg # e3, because
of the first inequality of (6). Furthermore, e; # e3, since otherwise we
would have V7 = Vg +e4, and hence d(Vp, V7) = 1, contradicting the second
condition for a snake. So, we can apply Lemma 2, yielding the statement
of the Lemma. m

Lemmadlet Vi &V 2V, V34V, & V; &8 Vi & V7 £ be g subpath
of S. If ey =e4 and ez = eg, then U :={V1 +e7, Vo + ey, V3 +e7, V7 + 1}
is a claw in Y for some r € {es,es}. Moreover, if eg # es, then T :=
{Ve + €2, Vg +e2, V5 +e2, V1 +e5} is another claw in Y.
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Proof: Since e; = e4 and e3 = eg it follows that er # ey, since other-
wise we would have Vz = Vp + es, and hence d(V7, V) = 1, contradicting
the snake conditions. For similar reasons we have er # ej,es, e4. Since
er # ey, es, either Vr+e4 € Y or V7 +e5 € Y. Assume V7 4-¢4 €Y. Then
Vet+es = Vi+er)+er+es, Vot+eg=(Vater)+esand Vo+eq =
(V3 +e7) + e5 +eg. Hence, U is a claw in Y with center V3 +e7. In case
that V7 +eg € ) there is a similar proof.

Now, assume eg 7 es. Since we also have es, eg,e7 7# e and e; # es,
the vertices V@ +e2, Vg +-€2, Vs +e2 and V7 +e5 are all in . From the
relations V7 +-e2 = (Vi +e5) +eq4 +e7, Vo +e2 = (V| +e5) +e4 and
Vs +exa =V +ex+e3+es+es +ex = (V1 +e5)+e2 +e3 it follows that
T is a claw in Y with center V5 +e;. m

Lemma 5 Let Vg &V} 2V, & V3 &4V, &5V &8 V; 2 V; 28 pe ¢
subpath of S with e1 = eq = e7. If ex # eg and e3 # eg, then Z :=
{V1 +es, V2 + €5, V5 + €5, V7 +e3} is 6 claw in ).

Proof: We have eg # ez, because of (6), and hence eg # e;. We
also have eg # e3, since otherwise we would have d(Vz, V) = 1. Therefore,
it follows that all vertices of Z are in ). Furthermore, we have e; # e,
since otherwise d(Vp, Vs) = 1. The Lemma now follows from the relations
Vo+eg = (Vr+es3)+es, Vi +es = (Va+e3)+ex+e5 and V3 +e5 =
(Vr+e3)+e3+es. m

5 A new upper bound for snakes

The following result can be proved, applying the lemmas of Section 4. Since
the proof is a matter of routine case analysis, with many subcases, we refer
to [11] for the technical details.

Theorem 1 Aﬁy subpath of S of length 9 contributes at least 2n — 10
four-cycles each of which has precisely one vertez in common with S.

Now the following corollary is immediate.

Corollary 1

a'(‘S) = aX)2 n 10)18?(71) =, n2r

Xes

Proof:

(2n — 10) (s(n) — 8)
10

(S) > (2n — 10) ls(n)J
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since s(n) is even. m
Next, using inequality (11), we obtain our main result.

Corollary 2 For n > T, one has

2n—-20 16n — 80
< [ b, n—-1 , _ -7 -
sn) < (1 5n2 - 3n — 20) Z 5n2 —3n — 20

B 5n +47 + 2 5n2 —3n —20°

We remark that this bound is better than bound (4) for n > 7 and
better than bound (1) for n > 16. It is an improvement of Zemor’s bound
(5) for 7 < n < 19081.
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