Randomness in Heuristics: an Experimental
Investigation for the Maximum Satisfiability Problem

H. Drias

USTHB, Institut d’informatique
BP 32 El-Alia
16111 Alger, Algeria
email: drias@wissal.dz

ABSTRACT. In this paper, a genetic algorithm and a tabu search
are investigated for the maximum satisfiability problem. When
the evolutionary algorithm is hybridized with the randomized
procedure G-bit [14], better performance is achieved and it even
outperforms the well known probabilistic procedure GSAT [25].
On the other hand, when the random noise strategy is intro-
duced in the tabu search, the latter competes with GSAT with
walk [27] independently of the length of the tabu list. The basic
result we can argue from this study is that the robustness of
a method seems to be bound to the degree of ‘randomness’ in-
volved in it, but at the expense of the running time. According
to the experiments, GSAT and the genetic algorithm are more
powerful than tabu search in its simplest form because they in-
corporate more ‘randomness’. GSAT with random walk is even
more interesting than simple GSAT for the same reason. Also
heuristic methods and local search become more efficient when
a random strategy such as a noise is introduced to deviate the
search from its usual rules.

1 Introduction

The satisfiability of a logical formula is a challenging problem studied by a
great number of researchers the two last decades. Its wide application to
the domain of Al in automatic reasoning and problem solving for instance
and other domains like VLSI and graph theory motivates the huge interest
shown for this problem. Given a set of boolean variables, we define a literal
as a variable with or without a negation, a clause as a disjunction of literals
and an instance of satisfiability as a collection (understood as a conjunction)
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of clauses. An r-SAT instance is a set of clauses having the same number
of literals (called length) equal to . The problem of satisfiability or SAT
for short is the pioneer of the NP-completeness theory in the sense that it
is the first known NP-complete problem.

Local search has been used to solve the maximum satisfiability or MAX-
SAT, an NP-hard optimization problem of finding a valuation of variables
that satisfies the maximum number of clauses. Such local search has been
successful at finding satisfying assignments for even hard SAT instances.
But the major problem with this approach is that it is usually unable
to search beyond the local optima [16, 19, 24]. Some of these methods
have been enhanced by adding mechanisms for escaping from local optima
in order to scan the most important part of the whole search space for
attaining global optima [25, 26, 27]. GSAT, the most interesting procedure
for local search for MAX-SAT, generates a random assignment and repeats
for a number of steps flipping the variable that produces the largest number
of satisfied clauses. The process is iterated until an optimal solution is found
or a maximum number of iterations is reached.

Genetic algorithms or GA have been applied to complex optimization
problems with remarkable success in some cases. Their behavior mimics
the process of natural evolution. A population initially made of candidate
solutions representing individuals improves towards another population of
individuals with higher quality along a process repeating a finite number of
time, sequentially reproduction between individuals, mutation of chromo-
somes and selection of better individuals. The goal is to create an individ-
ual which is very fit, in our case an asmgnment that satisfies the maximum
number of clauses.

Tabu search or TS is another metaheuristic used for solving difficult
problems. Unlike the GA approach, the TS considers one candidate solution
at a time. It is a history sensitive heuristic, it performs a local search
enriched with a scheme used to pursue the search beyond local optima. The
information gathered along the process at some point makes the history at
this stage and is exploited to reach territories not yet explored. Tabu search
has been investigated for MAX-SAT [2] and for SAT with a special interest
to random hard r-SAT instances [20].

In this paper, we describe four algorithms for MAX-SAT; GA-SAT based
on the GA approach, GA-SAT+ a hybrid genetic algorithm, RNSTS-SAT a
variant of TS called TS with random noise and RNSTS-SAT+, a variant of
the last algorithm with an intensification search strategy. We then present
the extensive experimental tests performed for these algorithms and for the
procedure GSAT with the random walk strategy called RWS-GSAT [27].
At the end, we discuss the results obtained and conclude with a comparison
between all these algorithms.
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2 A genetic algorithm for MAX-SAT

The modelization of the problem MAX-SAT by means of a genetic algo-
rithm necessitates the definition of the following components; the encoding
of solutions, the initial population, the evaluation function measuring the
quality of individuals and the genetic operators.

Unlike for many combinatorial optimization problems where the encoding
sets a real problem, for MAX-SAT this operation is trivial since a solution
is a binary valuation of variables. An individual is represented by a binary
chain identifying such valuation and the measurement of solutious quality
is evaluated as the number of clauses satisfied by this assignment.

We propose to generate at random the initial population for a first batch
of experimental tests. A second way to create the initial population is to
spontaneously generate individuals using a local search method and inject
them among random individuals.

The selection phase favors the fittest individuals for participating at the
reproduction process. The probability for an individual to be chosen is
proportional to its evaluation function so that the individuals with the
highest value are likely to be selected.

The crossover of two individuals consists in exchanging parts of their
chromosomes creating in this way an offspring. The crossover operator
when applied must respect the constraints of the problem. As an example
of a constraint is to avoid revisiting a city in the traveling salesman problem.
In MAX-SAT, no such constraint exists, therefore this specific characteristic
help us to make a choice between the one-point, the two-points or the
uniform crossover. The type of crossover considered is a combination of
the three and a special uniform crossover with a mask determined by the
experiments.

The mutation viewed usually as a background operator consists in mod-
ifying one or many chromosomes chosen at random with a probability of
mutation called mutation rate. For MAX-SAT, this operator is merely the
flipping of a bit drawn randomly. In order to palliate the problem of prema-
ture convergence due to the similarity of individuals in the population, we
apply an adaptive mutation; we decrease the mutation rate during the first
iterations of the algorithm where the individuals are likely to be different,
so as to speed the process and we increase the mutation rate at the last
iterations so as to promote diversification of individuals and escape from
local optima.

The final step of the GA is the replacement of the bad individuals of the
population by the fittest ones of the offsprings generating this way a new
population. The whole process is iterated until finding an optimal solution
or reaching a maximum number of iterations imposed by the computational
limits.
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2.1 A Hybrid genctic algorithm for MAX-SAT

We propose to hybridize the simple GA with a heuristic method called
G-bit in order to improve the solutions. The latter consists in modifying
the bits of the solutions that enhance their quality. G-bit is applied to
good solutions, each of them is scanned bit by bit and the current bit is
complemented with another one drawn at random. The solution obtained is
saved if it is better than the old one otherwise it is rejected. The procedure
G-bit is written as:

Procedure G-bit()
For each solution do
begin
For i =1 to indiv-size do
begin
flip the ith variable;
choose at random a variable and flip it;
evaluate the new individual;
if the new individual is better
then substitute this individual to the old one
else reject the new individual;
end -
end

indiv-size expresses the number of chromosomes of an individual. The
hybrid genetic algorithm called GA-SAT is as:
Algorithm GA-SAT+
input: an instance of satisfiability

output: an assignment of variables and the maximum number of satisfied
clauses

Begin
generate at random the initial population;
while (the maximum number of generations is not reached
and the optimal solution is not found) do
begin
repeat
select two individuals;
generate at random a number Rc from [0,100];
if Rc < crossover rate then apply the crossover;
generate at random Rm from [0,100];
while Rm < mutation rate do
begin
choose at random a chromosome from the individual
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obtained by the crossover and flip it;
generate at random Rm from [0,100];
end;
evaluate the new individual,;
endrepeat;
replace the bad individuals of the population by the fittest new ones;
G-bit(); -
end;
end;

When the call to the procedure G-bit is suppressed, we obtain the simple
genetic algorithm for MAX-SAT called GA-SAT.

8 Tabu search for MAX-SAT

Three Tabu search algorithms have been designed for MAX-SAT; a simple
TS introducing the basic components of the short term memory, a TS with
a random noise strategy and a TS with an intensification search strategy.

3.1 A simple Tabu Search

The simple TS algorithm uses the basic elements of the short term memory.
An elementary move consists in flipping one of the variables of the solution.
The neighborhood of a solution is constituted by all the solutions obtained
by applying an elementary move on this solution. A variable has the tabu
state if it has been modified during the current move and it keeps it during a
certain number of iterations called tabu tenure. A move is considered tabu
if the variable that is flipped in this move is tabu. The tabu state of a move
is removed if the occurring in the instance of the variable that.is flipped
in this move is greater than a given threshold (the aspiration criterion).
The search stops when the quality of the solution is not improved during a
maximum number of iterations or when we reach the optimum. With these
parameters we state our simple algorithm as:

Algorithm TS-SAT

input: an instance of SAT

oultput: an assignment of variables and the maximum number of satisfied
clauses

begin
Let z be an initial solution;
zx ==z, f+= f(z); (f computes the number of satisfied clauses by z)
‘While the stop criterion is not satisfied do
begin
compute N the neighborhood of z by ignoring the tabu moves
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not removed by the aspiration criterion;
z = best solution of N, f = f(z);
if f > f+ then fx = f, z* = z endif;
end;
output (z*, f*);
end

3.2 A Tabu Search with a random noise strategy

From the experimental point of view, GSAT with walk or RWS-GSAT for
short, outperforms the simple TS and shows its robustness for the quality
of solutions. For this reason, the ‘random noise’ strategy was introduced
in TS-SAT to yield the algorithm RNSTS-SAT. The noise disturbs the
search and turns it away from its usual rules that choose the best non tabu
neighbor and generates at random a neighbor. This strategy presents the
advantages of applying some diversification and speeding the search. The
noise injected is a probability p with which a solution is built according to
the classical rules. A solution is chosen at random with a probability equal
to (1 -p).

Algorithm RNSTS-SAT

input: an instance of SAT

output: an assignment of variables and the maximum number of satisfied
clauses

begin
Let z be an initial solution;
zx =z, fx+= f(x); (f computes the number of satisfied clauses by z)
while the stop criterion is not satisfied do
begin
compute N the neighborhood of z by ignoring the tabu moves
not removed by the aspiration criterion;
if (RandomNumber() < p)
then z = best solution of N
else z = a random neighbor of z endif;
f=f=z)
if f > fx then fx = f, zx = z endif;
end;
output (z*, f*);
end

RandomNumber() generates a random number between 0 and 1. The
value attributed to p is critical. When p increases, the search is speeded up
but it loses parts of its performance. On the contrary, when p decreases,
the search is slowed down and a gain in efficiency is recorded.
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3.3 A tabu search with an intensification search strategy

RNSTS-SAT presents yet very good results under experimentations, nev-
ertheless an improvement has been brought to it in order to increase more
its efficiency. This is done by adding an intensification strategy for search-
ing more promising territories in terms of solutions quality. RNSTS-SAT
with intensification called RNSTS-SAT+ starts by building at random or
by means of a heuristic, m good solutions considered as candidates to be
enhanced. RNSTS-SAT is then applied for each candidate. If the lat-
ter is improved, it is inserted in a list called the candidates list otherwise
it is thrown away. This process is iterated until the list becomes empty.
RNSTS-SAT with intensification is written as:

Algorithm RNSTS-SAT+

input. an instance of SAT

output: an assignment of variables and the maximum number of satisfied
clauses

begin

1- build a candidate list with m solutions by applying m times
an algorithm for selecting the best solutions from a randomly
generated set of solutions;

2- if the list is empty then stop else choose a solution from the list

3- Execute RNSTS-SAT for this solution

4- if the solution is improved then replace it by the new one in the list
else remove it from the list

5- goto 2

4 Experimental results

In order to give a sense to the results obtained by our algorithms, we have
implemented some existing procedures like GSAT and RWS-GSAT for a
comparison goal. All these algorithms have been developed with the C++4
language under Linux for Pentium. Two kinds of experimental tests have
been undertaken. The goal of the first ones is the setting of the different
parameters of the GA algorithm like the mutation rate, the crossover rate,
the type of crossover, the number of iterations, the population size and
the interaction between these parameters and those of the TS like the stop
criterion and the random noise. The second kind of experiments concerns
the maximum satisfiability of the MAX-2SAT, MAX-3SAT and MAX-4SAT
instances. For each (n, k) representing respectively the number of variables
and the number of clauses, 50 instances have been generated at random.
On each instance all these algorithms have been executed 10 times in order
to compute the average of the maximum number of satisfied clauses. The
comparative tables below show the results obtained by RWS-GSAT, GA-
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SAT, GA-SAT+, RNSTS-SAT and RNSTS-SAT+. These columns contain
the rate of satisfied clauses. The occuring of the symbol ‘-’ means that the
running time is extremely large. Note that GA-SAT competes with RWS-
GSAT with a more reasonable running time. For MAX-2SAT, GA-SAT is
less efficient and GA-SAT+ is more interesting but slower. On the other
hand RWS-GSAT outperforms the simple TS with a non optimal tabu list.
This is the reason why RNSTS-SAT was tested. In fact the latter yields
almost the same performance as RWS-GSAT. And in general observe the
superiority of the genetic algorithm in comparison with the others from the
performance and the running time point of view.

5 Discussion and Conclusion

Note first that all of the experimented algorithms use the same elementary
move, which is the flipping of one variable of a solution (TS and GSAT
share more common features). The most ‘probabilistic’ way to undertake
this operator is used in GA-SAT, GSAT and even more in their respective
variants GA-SAT+ and RWS-GSAT. This may be the reason why these al-
gorithms are more efficient than tabu search in its simplest form with a non
optimal tabu list. It may be explained by the fact that the diversification
in the search space is very high. When the random noise is introduced in
TS, we supply more ‘randomness’ to the procedure thus more diversifica-
tion in the search and the result is better. In the same sense, when G-bit
is incorporated in GA-SAT, the solutions space is better searched.

This observation leads us to conclude that randomness in heuristics meth-
ods play an important role as for the technique performance. The setting
of optimal parameters for meta-heuristics by experiments indeed increases
their efficiency but in default of optimality, randomness may be introduced.
This result follows the same direction as the recommendation expressed by
Cook (5] for exploring stochastic methods in solving complex problems.
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MAX-2SAT

n___ k| GA-SAT+ | RWS-GSAT | GA-SAT | RNSTS-SAT | RNSTS-SAT+ |
10 30 9% 95.50 95.20 05.67 05.67
50 92.50 91.40 o1 01.40 91.40

80 88.50 88.00 87.33 88 88

30 50 08 98.50 96 98.77 99.20
100 94 93.60 93 94 94.20

150 91.33 91.07 90.66 92 92

50 100 97 96.66 96 95.60 97.40
200 93.50 90.50 92.50 90.83 91.67

250 91.59 91.20 90.40 90.00 91.73

100 150 98.66 96.37 98 95.20 97.20
300 04.33 92.33 04 90.56 93.56

450 92.22 80.30 91.55 87.80 90.20
200400 96.52 05.75 96 93.25 96.5
600 94.33 92.50 9333 91.33 93.83

800 ~92.40 00.25 92.40 89.55 92.21 |

500 800 68.75 04.40 98.37 92.38 96.63
1200 ~05.83 95.20 04.66 93.80 96.40
1500 04.33 92.40 93.80 80.87 92.93

1000 1500 N - 98 N -
2500 - - 94.80 - -
3500 - - 92.59 - -
1500 2500 Z - 97.50 - -
3500 - - 95.31 - -
4000 - - 9427 N -
2000 2500 - - 98.23 - -
3500 - - 96.35 - -
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MAX-3SAT

n k | RWS-GSAT | GA-SAT | RNSTS-SAT | RNSTS-SAT+
10 30 100 100 100 100
50 99.98 99.77 100 100
80 98.46 99.33 98.5 98.5
30 50 100 100 100 100
100 99.90 99 99.85 100
150 98.69 99.33 99.05 99.31
50 | 100 100 99 100 100
200 99.35 99 99.25 99.45
250 98.72 98.8 98.56 99.20
100 | 150 98 100 99.60 100
300 99.67 99.66 98.73 99.93
450 98.22 98.22 98.24 99.56
200 | 400 99.75 99.66 98.75 99.93
600 99.67 99.83 98.23 99.83
800 98.50 99.22 97.38 99.25
500 | 800 99.80 99.87 99.38 100
1200 99.50 99.58 98.50 99.90
1500 98.80 99.46 97.33 99.13
1000 | 1500 - 99.86 - -
2500 - 99.59 - -
3500 - 99.11 - -
1500 | 2500 - 99.60 - -
3500 - 99.48 - -
4000 - 99.34 - -
2000 | 2500 - 99.87 - -
3500 - 99.77 - -
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MAX-4SAT

RNSTS-SAT

n k | RWS-GSAT | GA-SAT RNSTS-SAT+
10 30 100 100 160 100
50 100 100 100 100
80 100 100 100 100
30 50 100 100 100 100
100 100 100 100 100
150 100 99.33 100 100
50| 100 100 100 100 100
200 100 99.50 100 100
250 100 99.60 99.97 100
100 | 150 100 100 100 100
300 100 99.33 100 100
450 100 99.55 99.90 100
200 | 400 100 99.66 100 100
600 100 99.83 99.90 100
800 100 99.33 99.42 99.87
500 | 800 100 99.87 100 100
1200 100 99.91 99.85 100
1500 100 99.93 99.67 100
1000 | 1500 - 99.93 - -
2500 - 99.92 - -
3500 - 99.80 - -
1500 | 2500 - 99.96 - -
3500 - 99.82 - -
4000 - 99.80 - -
2000 | 2500 - 99.96 - -
3500 - 99.85 - -
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