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Abstract. We present necessary and sufficient conditions for the de-
composition of A times the complete directed digraph, D7, into each of
the orientations of a 4—cycle. In our constructions, we also give neces-
sary and sufficient conditions for such decompositions which admit cyclic
or rotational automorphisms.

1 Introduction

The area of graph (and directed graph) decompositions includes not only a
large body of theoretical studies, but applications in such areas as coding
theory, X-ray crystallography, radioastronomy, computer and communica-
tion networks, serology and genetics [2]. In particular, graph decomposi-
tions are intimately related to combinatorial designs. For example, a K3
decomposition of K, is equivalent to a Steiner triple system of order v [13].
A 3-circuit decomposition of the complete symmetric directed graph on v
vertices is equivalent to a Mendelsohn triple system of order v [11]. The
orientation of a 3-cycle that is not a 3-circuit is called a transitive triple. A
transitive triple decomposition of the complete symmetric directed graph
on v vertices is equivalent to a directed triple system of order v [10].

We denote the complete symmetric directed graph as D,, and the uni-
form complete directed multigraph of multiplicity A as D). For g a directed
graph, a g—decomposition of D) is a multiset v = {g1,92,...,9n} of iso-

n

morphic copies of g (called blocks) such that U A(g;) = A(D)) where A(G)
i=1

denotes the arc multiset of directed graph G (notice that we are using the
union notation between multisets to denote a union operation with multiple
copies counted multiply).

There are two orientations of a 3-cycle: the 3-circuit and the transi-
tive triple. This leads us to study two types of triple systems. 3-circuit
decompositions of D) are explored in [1):

Theorem 1.1 A 3-circuit decomposition of D} exists if and only if \v(v—
1) =0 (mod 3), except for the case v=6 and A = 1.
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Transitive triple decompositions of D are explored in [16]:

Theorem 1.2 A transitive triple decomposition of D) exists if and only if
Mv(v — 1) =0 (mod 3), except for the case v =2.

We concentrate on results analogous to Theorems 1.1 and 1.2 for orien-
tations of 4-cycles. There are four orientations of a 4—cycle: the 4—circuit
and the digraphs

b c b c b c

X Y Z

We denote these digraphs as [a, b, ¢, d]x, [a, b, ¢, d]y, and [a, b, ¢, d]z, respec-
tively, and we denote the 4—circuit with arcs (a,b), (b, ¢), (c,d) and (d,a)
as [a,b,¢,d]c. A 4—circuit decomposition of D, exists if and only if v =0
or 1 (mod 4), v # 4 [15]. An X —decomposition of D, exists if and only if
v=0or 1 (mod 4), v # 5, a Y —decomposition of D, exists if and only if
v=0or 1 (mod 4), v ¢ {4,5}, and a Z—decomposition of D, exists if and
only if v =1 (mod 4) [9].

An automorphism of a g—decomposition of D) is a permutation of
the vertex set of D) which fixes the multiset v. A collection of blocks
{91,92,-..,9m} in a g—decomposition admitting an automorphism « is a

m

collection of base blocks if v = U{or" (9:) | 7 € Z} and the collection is min-
i=1

imal (that is, no copy of g is repeated an unnecessary number of times).
The orbit of base block g; is the set {a?(g:) | 7 € Z} and the length of an
orbit is the cardinality of this set. An automorphism of a g—decomposition
of D} is cyclic if it consists of a single cycle of length v. An automorphism
is rotational if it consists of a fixed point and a cycle of length v — 1. A
number of graph (and directed graph) decompositions have been explored
which admit cyclic or rotational automorphisms. In particular, cyclic and
rotational automorphisms of Steiner triple systems are explored in [4, 13].
Cyclic and rotational automorphisms of transitive triple decompositions of
D;} are explored in (3, 5, 6, 8]. In this paper, we explore cyclic and rotational
decompositions of D) into each of the orientations of a 4—cycle. These re-
sults will lead us to necessary and sufficient conditions for the existence of
decompositions of D).

184



2 Cyclic Decompositions

Throughout this section, we let the vertex set of D) be Z, and suppose
that a cyclic decomposition admits the automorphism o = (0,1,2...,v —
1). With arc (z,y) we associate the difference y — =z (mod v). Notice
that the totality of differences associated with the arc multiset of D) is
Ax{1,2,...,v—-1}.

In a collection of base blocks for a cyclic 4—circuit decomposition of D},
the differences associated with a copy of the 4—circuit must satisfy one of
the following conditions:

A. There are four (not necessarily distinct) differences a;, b;, c;, d; such that
a; + b; + ¢; +d; = 0 (mod v) and the length of the orbit of the base
block is v.

B. v is even and there are two distinct differences a;, b; such that a; +b; =
v/2 (mod v) and the length of the orbit of the base block is v/2.

C. v =0 (mod 4) and there is the single difference v/4 or the single differ-
ence 3v/4 and the length of the orbit of the base block is v/4.

We have the following necessary conditions.

Lemma 2.1 If a cyclic 4— circuit decomposition of D) exzists, then
1. if v =0 or 3 (mod 4) then A =0 (mod 2), or

2. v=1 (mod 4), or

3. if v =2 (mod 4) then A =0 (mod 4).

Proof. First, we certainly need Av(v — 1) = 0 (mod 4).

Suppose there exists such a decomposition with v = 0 (mod 4) and
A =1 (mod 2). Then it is necessary to partition the difference multiset
A x {1,2,...,v — 1} into differences associated with base blocks in such a
way as to satisfy conditions A, B, and C. The total number of differences is
A(v ~ 1) which is odd. Since under conditions A and B an even number of
differences are associated with each base block, we must have an odd num-
ber of base blocks whose associated differences satisfy condition C. The sum
of the differences associated with a base block satisfying condition A or B is
a multiple of v/2 and the difference associated with a base block satisfying
condition C is congruent to v/4 modulo v/2. Therefore the total sum of dif-
ferences associated with base blocks for such a decomposition is congruent
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to v/4 modulo v/2. However, the total sum of differences is M 1)

=0
(mod v/2). This contradiction shows that no such decomposition exists.

Suppose there exists such a decomposition with v = 2 (mod 4) and
A = 2 (mod 4). Then it is necessary to partition the difference multiset
A x {1,2,...,v — 1} into differences associated with base blocks in such a
way as to satisfy conditions A and B. The total number of differences is
AMv —1) = 2 (mod 4). Therefore we must have an odd number of base
blocks whose associated differences satisfy condition B. Under condition B,
we see that each relevant block has associated with it one even difference
and one odd difference. In this way, an odd number of even differences are
used in base blocks whose associated differences satisfy condition B. The
remainder of base blocks have associated differences which satisfy condition
A, and therefore each such block has an even number of even differences
associated with it. We therefore must have an odd number of even dif-
ferences. However, since ) is even, the total number of even differences is
even. This contradiction shows that no such decomposition exists.

We now show that these necessary conditions are in fact sufficient.

Theorem 2.1 A cyclic 4—circuit decomposition of D) exists if and only if
1. v=0 or 3 (mod 4) and A =0 (mod 2), or

2. v =1 (mod 4), or

3. v =2 (mod 4) and A =0 (mod 4).

Proof. The necessary conditions follow from Lemma 2.1. We show suffi-
ciency in five cases.

Case 1. Suppose v =0 (mod 8) and A = 0 (mod 2), say v = 8t. Consider
the blocks:
[0,2t, 4, 6t]c, [0, 6, 4¢, 2t], [0, 4¢—1,8t~1,4t]c, [0, 2t—1, 4¢, 2t +1]c
[0,1 + 24,3+ 44,2+ 2i]¢ for i =0,1,2,...,2t — 2
[0,1+ 24,3 + 44,2 + 2i]¢ for i =0,1,2,...,t — 2, and
[0,4t —2 — 24,8t — 3 — 44,4t — 1 — 2i]¢ for i = 0,1,2,...,t - 2.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 2. For general A even, we take A/2
copies of these blocks.
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Case 2. Suppose v = 4 (mod 8) and A = 0 (mod 2), say v = 8t + 4.
Consider the blocks:

[0,2t + 1,4t + 2,6t + 3]c, (0,6t + 3,4t + 2,2t + 1]¢, (0,42 + 1,8t +
3,4t + 2lc,
(0,1 + 24,3 + 44,2 + 2i]¢ for i =0,1,2,...,2t — 1,
[0,1 + 24,3 + 44,2 + 2i]¢ for i =0,1,2,...,t -1, and
(0,42 — 2i,8t + 1 — 44,4t +1 — 2i]c for i =0,1,2,...,t — L.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 2. For general A even, we take \/2
copies of these blocks.

Case 3. Suppose v = 1 (mod 4). Micale and Pennisi [12] have shown that
a cyclic 4—circuit decomposition of D, exists. For general A even, we
take A copies of the blocks of such a decomposition.

Case 4. Suppose v = 2 (mod 4) and A = 0 (mod 4), say v = 4t + 2.
Consider the blocks:
[0,2t,4t + 1,2t + 1]¢, [0,2t — 1,4¢,2t + 1]¢,
3 x [0,1 + 2,4t + 1,4t —2i]c fori=0,1,2,...,t =1, and
[0,1+ 24,4t + 1,4t — 2i]¢ for i = 0,1,2,...,t - 2.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 4. For general A = 0 (mod 4), we
take A/4 copies of these blocks.

Case 5. Suppose v = 3 (mod 4) and A = 0 (mod 2), say v = 4t + 3.
Consider the blocks:
[0,1,2t + 2,2t + 1]¢, [0,2,2t + 3,2t + 1]¢,
[0,1+2z',4t+2,4t+1—2z']c fori=0,1,...,t -1,
[0,3+2i,4t+2,4t— 1 —2i]c fori=0,1,...,t—2.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 2. For general A even, we take \/2
copies of these blocks. l

In a cyclic X —decomposition of D, the length of the orbit of every
block is v. Therefore a necessary condition for the existence of such a
decomposition is that A(v — 1) =0 (mod 4).

Theorem 2.2 A cyclic X—decomposition of D) egists if and only if
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1. v=0 or 2 (mod 4) and A =0 (mod 4), or
2. v=1 (mod 4), except forv=>5 and A=1, or
3. v=3 (mod 4) and A =0 (mod 2).

Proof. Of course, no X —decomposition of Dj exists [9]. This combined
with the fact that A(v —1) = 0 (mod 4) gives the necessary conditions. We
show sufficiency in four cases.

Case 1. Suppose v =0 (mod 4) and A =0 (mod 4), say v = 4t. Consider
the blocks:

0,2t +1,2,1)x,

0,4t — 2 — 26,4t — 1,1 + 4i]x for i =0,1,2,...,t -1,
0,1+ 24,4t — 1,2 +4i|x fori=0,1,2,...,t—1,
0,2 +2i,1,4 + 4i]x for i =10,1,2,...,£— 2, and

0,2 + 2i,1,5 + 4i]x for i =0,1,2,...,t— 2.

This collection of blocks forms a collection of base blocks for the
desired decomposition when A = 4. For general A = 0 (mod 4), we
take A/4 copies of these blocks.

Case 2. Suppose v = 1 (mod 4), (v,A) # (5,1). For such v with v > 5,
there exists a cyclic X —decomposition of D, [9]. For general A, we
take A copies of the blocks of such a decomposition. For v = 5 and
A = 2, consider the blocks [0, 3,4,1]x and {0,2,1,4]x. For v = 5 and
A = 3, consider the blocks [0,1,2,4]x, [0,2,1,4]x, and [0,1,4,2]x. In
both cases, these blocks form a collection of base blocks for a cyclic
X —decomposition of D2. For general A > 2 even, we take A/2 copies
of the base blocks for the A = 2 case. For general A > 3 odd, we take
one copy of the base blocks for the v = 5, A = 3 decomposition and
(A—3)/2 copies of the base blocks for the v = 5, A = 2 decomposition.

Case 3. Suppose v = 2 (mod 4) and A = 0 (mod 4), say v = 4t + 2.
Consider the blocks:
(0,2t +1,2¢t,4t + 1] x,
2 X [0,1+2i,4t+1,4t-— 1—2i]x for:=10,1,2,...,t—1, and
2 x [0,4t+1 -24,1,2+ 2)x fori=0,1,2,...,t — 1.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 4. For general A = 0 (mod 4), we
take A/4 copies of these blocks.
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Case 4. Suppose v = 3 (mod 4) and A = 0 (mod 2), say v = 4t + 3.
Consider the blocks:
[0,1,3,6]x,[0,1,4t + 2,4]x,[0,2,1,2t + 2] x,
[0,3,4t + 2,4t + 1]x (omit if t = 1),
[0,4+2¢,1,4t — 2i]x for i=0,1,2,...,t -2,
[0,5+2i,4t + 2,2t + 1 — 2i]x fori=0,1,2,...,t - 3.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 2. For general A even, we take \/2
copies of these blocks.

As with X —decompositions, the orbit of every block in a cyclic Y —de-
composition of D} is of length v and we need A(v — 1) = 0 (mod 4).

Theorem 2.3 A cyclic Y —decomposition of D)) exists if and only if
1. v=0 or 2 (mod 4) and A =0 (mod 4), or

2. v =1 (mod 4), except for (v,A) = (5,1) and (v,A) = (5,3), or

3. v =3 (mod 4) and X =0 (mod 2).

Proof. Of course, no Y —decomposition of Ds exists [9). One can easily
verify by exhaustion that no cyclic Y —decomposition of D exists. The
remaining necessary conditions follow from the fact that A(v—1) = 0 (mod
4). We show sufficiency in four cases.

Case 1. Suppose v = 0 (mod 4) and A = 0 (mod 4), say v = 4¢. First,
with v = 4 consider [0, 1,3, 2]y, [0,1,2,3]y, and [0,2,1,3]y. Forv > 4
consider the blocks:

[07 1’ 43 3]Y7 [0’ 17 3’ 2]Y»

[0,4t—2—2i,4t—3—4i,4t—1 —2'i]y fori=0,1,2,...,2t -2, and

[0,4t -2 — 23,4t —3 — 44,4t — 1 — 23]y for i =0,1,2,...,2t — 3.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 4. For general A = 0 (mod 4), we
take A/4 copies of these blocks.
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Case 2. Suppose v = 1 (mod 4) and A ¢ {1,3} when v = 5. For such
v with v > 5, there exists a cyclic Y —~decomposition of D, [9). For
general A, we take A copies of the blocks of such a decomposition.
For v = 5 and A = 2, consider the blocks [0,1,3,2]y and [0,3,2,4]y.
For v = 5 and A =5, consider the blocks 2 x [0, 1, 3,4]y, [0,2,1, 3]y,
[0,1,4,3]y, and [0,1,4,2]y. For v=>5and A > 5 we take \/2 copies
of the relevant base blocks when A is even, and when ) is odd we take
one copy of the base blocks for the decomposition with A = 5 and
(A —5)/2 copies of the base blocks for the decomposition with A = 2.

Case 3. Suppose v = 2 (mod 4) and A = 0 (mod 4), say v = 4t + 2.
Consider the blocks:
[0,1,3,2]y, [0,1,4,3]y, [0,2,5,3]y, and
2 % [0,4t+1 - 25,4t -1 —4i,4t—2i]y fori=0,1,2,...,2t — 2.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 4. For general A = 0 (mod 4), we
take A/4 copies of these blocks.

Case 4. Suppose v = 3 (mod 4) and A = 0 (mod 2), say v = 4t + 3.
Consider the blocks:

[0,1,2t + 3,2t + 2]y,
0,2+ 2i,1,4t +2 — 2i]y fori =0,1,2,...,t — 1,
[0,3+2i,1,4t +1—2i]y fori=0,1,2,...,¢ — 1.

This collection of blocks forms a collection of base blocks for the
desired decomposition when A = 2. For general A even, we take A2
copies of these blocks. [ |

In a collection of base blocks for a cyclic Z—decomposition of D2, the
differences associated with a copy of Z must satisfy one of the following
conditions:

D. There are four (not necessarily distinct) differences a;, b;, ¢;, d; such that
a; +b; = ¢; +d; (mod v) and the length of the orbit of the block is v.

E. There are two distinct differences a;, b; such that a; +b; = 0 (mod v/2)
and the length of the orbit of the block is v/2.

We have the following necessary conditions.

Lemma 2.2 If a cyclic Z—decomposition of D) ezists, then
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1. v=0 or 3 (mod 4) and A =0 (mod 2), or
2. v=1 (mod 4), or
3. v=2 (mod 4) and A =0 (mod 4).

Proof. As with all of these decompositions, we need Av(v — 1) = 0 (mod
4).

First, consider a Z—decomposition of D} where » = 0 (mod 4) and
A =1 (mod 2) (regardless of the automorphism which it admits). The out-
degree of each vertex of D) is A(v — 1) = 1 (mod 2). Since the out-degree
of each vertex of Z is even, there exists no such decomposition.

Suppose there exists a cyclic Z—decomposition of D) with v = 2 (mod
4) and A = 2 (mod 4). Then it is necessary to partition the difference
multiset A x {1,2,...,v—1} into differences associated with base blocks in
such a way as to satisfy conditions D and E. The total number of differences
is A(v—1) = 2 (mod 4). Since there are four differences associated with each
base block which satisfies condition D, there must be an odd number of base
blocks satisfying condition E. A base block satisfying condition E must have
one odd associated difference and one even associated difference. Therefore
all base blocks satisfying condition E must have an odd number of even
differences associated with them. Now each base block satisfying condition
D has an even number of even differences associated with it. However, this
means that a collection of base blocks for such a decomposition must have
an associated collection of differences which consists of an odd number of
even differences. Since ) is even, though, the total collection of differences
has an even number of even differences. This contradiction implies that no
such decomposition exists.

We now show that these necessary conditions are in fact sufficient.

Theorem 2.4 A cyclic Z—decomposition of D)) exists if and only if
1. v=0 or 3 (mod 4) and A =0 (mod 2), or

2. v=1 (mod 4),

3. v =2 (mod 4) and A =0 (mod 4).

Proof. The necessary conditions follow from Lemma 2.2. We show suffi-
ciency in four cases.

Case 1. Suppose v =0 (mod 4) and A =0 (mod 2), say v = 4t. Consider
the following blocks:
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[0,1,2¢t,2t + 1]z,
[0,2+24,1,4t — 1 — 23}z for i =0,1,2,...,t — 1, and
[0,3+2'i,1,4t- 1 —21l]z fori=0,1,2,...,t—2.

This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 2. For general A even, we take \/2
copies of these blocks.

Case 2. Suppose v =1 (mod 4). A cyclic 4—circuit decomposition of D,
exists [7]. For general A\, we take A copies of the blocks of such a
decomposition.

Case 3. Suppose v = 2 (mod 4) and A = 0 (mod 4), say v = 4t + 2.
Consider the blocks:
[0,4t +1,2t,2t + 1]z,
2x[0,2+24,1,4t+1—2i]z fori =0,1,2,...,t -1,
[0,2+2¢,1,3 + 2i]z for i =0,1,2,...,t -1, and
(0,4t +1—24,1,4t — 2] for i = 0,1,2,...,t - 1.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 4. For general A = 0 (mod 4), we
take A/4 copies of these blocks.

Case 4. Suppose v = 3 (mod 4) and A = 0 (mod 2), say v = 4t + 3.
Consider the following blocks:
(0,2,1,2t + 2]z,
[0,2 +24,1,4t + 2 - 23]z for : =0,1,2,...,t — 1, and
[0,44+24,1,4t +2— 23]z fori=0,1,2,...,t — 1.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 2. For general A even, we take A/2
copies of these blocks.

Theorems 2.1 through 2.4 give necessary and sufficient conditions for
the existence of cyclic decompositions of D into each of the orientations
of a 4—cycle.
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3 Rotational Decompositions

Throughout this section, we let the vertex set of D) be {00} JZy-; and

suppose that a rotational decomposition admits the automorphism 8 =
(00)(0,1,2,...,v—2).

Theorem 3.1 A rotational 4—circuit decomposition of D} ezists if and
only if

1. v=0 (mod 4) and A > 1, ezcept v =4 and ) odd, or
2. v=1 (mod 4), or
3. v=2 or 3 (mod 4) and A =0 (mod 2).

Proof. First, it is necessary that Av(v — 1) = 0 (mod 4). Pennisi [14] has
shown that a rotational 4—circuit decomposition of D, exists if and only if
v =1 (mod 4). It is shown in the appendix that for v = 4, A must be even.
These facts establish the necessary conditions. We now establish sufficiency
in four cases.

Case 1. Suppose v =0 (mod 4), A > 1 and v # 4 if A is odd. Say v = 4¢.
Then consider the blocks:
[0,00,1,2t]c, [0, 00,4t - 2,2t — 1]¢, and
2x[0,1+24,3+44,2+2i)c fori=0,1,2,...,t —2.
This collection of blocks forms a collection of base blocks for the
desired decomposition when A = 2. Next, consider the blocks:
[0, 00,2t — 1,2t]c, [0, 00,2t + 1,2t]c, [0, 00,4t — 2,2t — 1]c,
2 x[0,1+ 2,3 +44,2 4+ 2i]¢ for i =0,1,2,...,t — 2, and
[0,2+ 26,4t — 2,4t — 4 — 2i]c for i = 0,1,2,...,t — 2.
This collection of blocks forms a collection of base blocks for the
desired decomposition when A = 3. For general A > 1 even, we
take A/2 copies of the base blocks from the A = 2 case. For general

A > 1 odd we take 1 copy of the base blocks from the A = 3 case and
(A — 3)/2 copies of the base blocks from the A = 2 case.

Case 2. Suppose v = 1 (mod 4). Then there exists a rotational 4—circuit
decomposition of D, [14]. For general A\, we take A copies of the
blocks of such a decomposition.
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Case 3. Suppose v = 2 (mod 4) and A = 0 (mod 2), say v = 4t + 2.
Consider the blocks:
[0,00,4t — 2,4t — 1]¢, [0,00,3,1]c,
[0,1+2z',3+4i,2+2i]c fori=0,1,2,...,t —1, and
[0,3+2i,7+4i,3 +2i]c for0,1,2,...,t - 2.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 2. For general A > 1 even, we take
A/2 copies of these base blocks.

Case 4. Suppose v = 3 (mod 4) and A = 0 (mod 2), say v = 4¢ + 3.
Consider the blocks:

[0,00,1,2t]c, [0,4t +1,00,2t — 1], [0,1,2t + 1,2t + 2]¢, [0, 2, 4¢ +
1,2t + 1]0,
[0,1+2i,3+4z',2+2i]c fori=0,1,2,...,t — 2, and
[0,2t —2 — 23,4t — 3 — 44,2t — 1 — 2i)¢ for i = 0,1,2,...,t — 2.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 2. For general A > 1 even, we take
A/2 copies of these base blocks.

In a rotational X —decomposition of D,’;, the length of the orbit of every
block is v — 1. Therefore a necessary condition for the existence of such a
decomposition is that Av = 0 (mod 4).

Theorem 3.2 A rotational X —decomposition of D) ezists if and only if
1. v=0 (mod 4),
2. v=1 or 3 (mod 4) and A =0 (mod 4), or

3. v=2 (mod 4) and A =0 (mod 2).

Proof. The necessary conditions follow from the fact that Av = 0 (mod
4). We establish sufficiency in four cases.

Case 1. Suppose v = 0 (mod 4). Then there exists a rotational X —de-
composition of D, [7]. For general A, we take A copies of the blocks
of such a decomposition.

Case 2. Suppose v = 1 (mod 4) and A = 0 (mod 4), say v = 4t + 1.
Consider the blocks:
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2x[0,2t +1,00,2t]x, 2 x [0,2t +1,00,2t — 1),
(0,4t — 2 — 24,4t — 1,1+ 2i]x for i =0,1,2,...,t -1,
(0,4t — 2 — 24,4t - 1,1 + 2i]x for i =0,1,2,...,t — 2, and
2x[0,2+24,1,4t — 1 —24]x for i =0,1,2,...,t — 2.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 4. For general A = 0 (mod 4), we
take A/4 copies of these base blocks.

Case 3. Suppose v = 2 (mod 4) and A = 0 (mod 2), say v = 4t + 2.
Consider the blocks: \

[0,2t, 00, 1]x, [0, 2t, 00, 4t] x,
[0,1+ 24,4¢,4t — 1 — 2i]x for i =0,1,2,...,t — 1, and
[0,2 +2i,5 + 44,2 + 2i]x for i =0,1,2,...,t - 2.

This collection of blocks forms a collection of base blocks for the
desired decomposition when A = 2. For general A even, we take A/2
copies of these base blocks.

Case 4. Suppose v = 3 (mod 4) and A = 0 (mod 4), say v = 4t + 3.
Consider the blocks:

2 x [0,2t + 3,00,2t + 1] x [0,2t,00,2¢ + 1]x, [0,2¢ + 2,00, 2t + 1]x,
2 x [0,4t — 25,4t + 1,14 2i]x fori=0,1,2,...,£—1,

[0,2 +24,1,4t +1 — 24]x for i=0,1,2,...,t— 1, and

[0,2 +24,1,4t + 1 - 24]x for i =0,1,2,...,t - 2.

This collection of blocks forms a collection of base blocks for the
desired decomposition when A = 4. For general A = 0 (mod 4), we
take A/4 copies of these base blocks.

As with X —decompositions, the orbit of every block in a rotational
Y —decomposition of D} is of length v — 1 and we need v = 0 (mod 4).
Theorem 3.3 A rotational Y —decomposition of D)) ezists if and only if
1. v=0 (mod 4), except v =4 and A odd, or
2. v=1 or 3 (mod 4) and A =0 (mod 4), or
3. v=2 (mod 4) and A\ =0 (mod 2).
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Proof. See the appendix for an argument that no Y —decomposition of D}
exists for A odd. This fact, combined with the condition Av = 0 (mod 4)

give the necessary conditions. We show these conditions are sufficient in
five cases.

Case 1. Suppose v = 4. Consider the blocks [0, 1,2, 00y and [0,2,1, ]y
This collection of blocks forms a collection of base blocks for the
desired decomposition when A = 2. For general X even, we take \/2
copies of these base blocks.

Case 2. Suppose v = 0 (mod 4), v # 4. Then there exists a rotational
Y —decomposition of D, [7]. For general )\, we take A copies of the
blocks of such a decomposition.

Case 3. Suppose v = 1 (mod 4) and A = 0 (mod 4), say v = 4t + 1.
Consider the blocks:
2 x[0,2t,1,00)y, 2 x [0,2t,4t — 1,00y, [0,1,2¢ + 2,2t + 1]y,
0,1+ 24,3 +44,2 + 24]y fori=0,1,2,...,t -2,
(0,2 + 24,5 + 44,3 + 2i]y for i =0,1,2,...,t — 2, and
2x (0,4t - 1-2i,4t -3 —43,4t —2-2i]y fori =0,1,2,...,t — 2.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 4. For general A = 0 (mod 4), we
take A/4 copies of these base blocks.

Case 4. Suppose v = 2 (mod 4) and A = 0 (mod 2), say v = 4t + 2.
Consider the blocks:

2 x [0,4¢t,4t — 2,00y, and
(0,1+ 24,3+ 44,2 + 2i]y for i =0,1,2,...,2t — 2.
This collection of blocks forms a collection of base blocks for the

desired decomposition when A = 2. For general A even, we take A/2
copies of these base blocks.

Case 5. Suppose v = 3 (mod 4) and A = 0 (mod 4), say v = 4t + 3.
Consider the blocks:
2x[0,2t +1,1,00]y, 2 x [0,2¢ + 1,2, 0]y,
2% [0,1+2i,3+4i,2+ 2]y fori=0,1,2,...,t—1,
[0,4t-—2i,4t—1—4i,4t+1—-22']y fori=0,1,2,...,t—1, and
[O,4t—2i,4t—l—4i,4t+1—2i]y fori=0,1,2,...,t—2.
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This collection of blocks forms a collection of base blocks for the
desired decomposition when A = 4. For general A = 0 (mod 4), we
take A/4 copies of these base blocks.

In a rotational Z—decomposition of D7, the arc (c0,0) occurs X times.
Now since each vertex of Z is of even out-degree, the arc (0o, 0) must occur
an even number of times in such a decomposition. Therefore, A must be
even. In fact, as we see in the following theorem, this condition is sufficient.

Theorem 3.4 A rotational Z—decomposition of D)) ezists if and only if A
s even.

Proof. We consider four cases.

Case 1. Suppose v =0 (mod 4) and A = 0 (mod 2), say v = 4¢. Consider
the blocks:
[0,2t,00,2¢t - 1]z, [0,2t,1,00]z,
2% [0,4t — 2 — 2,1,2 + 2|z for i =0,1,2,...,t — 2.
Case 2. Suppose v = 1 (mod 4) and A = 0 (mod 2), say v = 4t + 1.
Consider the blocks:
[0,2t, 0, 2t + 1]z, [0,2¢t,1,00]z, [0,1,2¢,2t + 1]z,
[0,4t —1—2i,1,2+2i]z for i =0,1,2,...,t— 2,
[0,4t —1—2i,1,3+2i]z fori=0,1,2,...,t — 2.
Case 3. Suppose v = 2 (mod 4) and A = 0 (mod 2), say v = 4t + 2.
Consider the blocks:
[0,2t - 1,00,4t]2, [0,2¢ + 1,2t + 2,002,
[0,4t —1-24,1,2+ 2i]z for i =0,1,2,...,t -1,
[0,42 —1—23,1,2 4 2]z for i =0,1,2,...,t — 2.
Case 4. Suppose v = 3 (mod 4) and A = 0 (mod 2), say v = 4t + 3.
Consider the blocks:
[0,2t,00,2¢ + 1)z, [0,2¢ +3,2,00]z, [0,1,2¢ +1,2t + 2|z,
[0,4t +1 - 2i,1,2 4 2]z for i =0,1,2,...,t — 1,
[0,4t+1—23,1,3+2i]z fori=0,1,2,...,t — 2.
In each case, the collection of blocks forms a collection of base blocks

for the desired decomposition when A = 2. For general A even, we
take A/2 copies of these base blocks.
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Theorems 3.1 through 3.4 give necessary and sufficient conditions for the
existence of rotational decompositions of D) into each of the orientations
of a 4—cycle.

4 Conclusion

We now use the results of sections 2 and 3 to establish the existence of
decompositions of D) into each of the orientations of a 4—cycle.

Theorem 4.1 A 4—circuit decomposition of D) ezists if and only if (v~
1) =0 (mod 4), ezcept v =4 and ) odd.

Proof. The condition Av(v — 1) = 0 (mod 4) is obvious. The proof that
no such decomposition exists for v = 4 and X odd is given in the appendix.
The constructions for A = 1 are given in [15]. The constructions for A > 1
are covered in Theorems 2.1 and 3.1. [ |

Theorem 4.2 An X —decomposition of D} ezists if and only if \v(v—1) = 0
(mod 4), except v="5 and X = 1.

Proof. The condition Av(v—1) =0 (mod 4) is obvious. The case of A = 1
is covered in [9]. The constructions for A > 1 are covered in Theorems 2.2
and 3.2. 1

Theorem 4.3 A Y —decomposition of D)) ezists if and only if \v(v—1) = 0
(mod 4), except (v =4 and A odd) and (v =75 and A = 1).

Proof. The condition Av(v — 1) = 0 (mod 4) is obvious. The fact that
no such decomposition exists for v = 4 and X odd is discussed in the ap-
pendix. The case of A =1 is covered in [9]. The constructions for A > 1
(except for ¥ = 5 and A = 3) are covered in Theorems 2.3 and 3.3. A
Y —decomposition of Df is given by: [0,1,3,2]y, [3,4,2,1]y, [3,2,4, Oly,
[1a 0: 3) 4]Y: [2, 1’ 4) O]Y’ [074, 3; 2]1’» [31 1) 2: 4]Y’ [3: 2: 1$ OIY) [47 03 3: 1]Y1
[2, 4: 1: O]Ys [4: 1) 37 2]}” [3) 0: 2’ I]Y: [3’ 2) 0’ 4]Yv [11 47 31 O]Y: [2! la 0’ 4]Y I

Theorem 4.4 A Z—decomposition of D) exists if and only if \v(v—1) =0
(mod 4), ezcept v =0 (mod 4) and )\ odd.

Proof. The condition Av(v — 1) = 0 (mod 4) is obvious. The proof that
no such decomposition for v = 0 (mod 4) and A odd is given in the proof of
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Lemma 2.2. The constructions for A = 1 are given in [9]. The constructions
for A > 1 are covered in Theorems 2.4 and 3.4. |

Theorems 4.1 through 4.4 give necessary and sufficient conditions for
decompositions of D2 into each of the orientations of a 4—cycle.
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Appendix

If we consider Cy—decompositions of D2, then there are six possible
blocks:

0 1 0 1 0 2
3 2 2 3 3 1
0 2 0 3 0 3
1 3 2 1 1 2

We denote the number of these blocks in such a decomposition as n;
for i = 1,2,...,6, respectively. Considering the number of arcs in this
decomposition, we get 12 equations in the 6 unknowns:
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arc

01: n + no + 0 + 0 + 0 4+ 0 = A
022 0 + 0 + ng + ng + 0 4+ 0 = A
03: 0 + 0 + 0 + 0 4+ mng + ng = A
100 0 + 0 4+ 0 + ng + 0 + mng = A
122 5 + 0 + 0 4+ 0 + ns + 0 = A
13: 0 + np + n3 + 0 4+ 0 + 0 = A
2. 0 4+ np + 0 + 0 4+ nms + 0 = A
2: 0 + 0 + ng + 0 + 0 + ng = A
23: ns + 0 + 0 4+ n4 + 0 + 0 = A
30: n + 0 + ng + 0 + 0 + 0 = A
3. 0 + 0 + 0 + ng + ng + 0 = A
32:. 0 + no + 0 + 0 4+ 0 4+ ng = A

Adding the equations for arcs (0,1) and (1, 3), we get the condition: n; +
2n3 + n3 = 2)\. Subtracting the equation for arc (3,0) from this equation,
gives: 2ns = A. Therefore, a necessary condition for such a decomposition
to exist is that X is even.

A similar analysis of Y —decompositions of D} reveals that A must be
even in that case as well. This time, however, we must deal with 12 equa-
tions in 12 unknowns.
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