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Abstract. Let ADK, denote the complete directed multigraph
with v vertices, where any two distinct vertices £ and y are joined
by A arcs (z,y) and X arcs (y,z). By a k-circuit we mean a
directed cycle of length k. In this paper, we consider the problem
of constructing maximal packings and minimal coverings of ADK,
with k-circuits. Using the leave-arcs graph of packing and the
repeat-arcs graph of covering, we give a unified method for finding
packings and coverings. Also, we completely solve the existence
of optimal packings and coverings for 5 < k < 14 and any A.

1 Introduction

A complete directed multigraph of order v and index A, denoted by ADK,,
is a directed graph with v vertices where any two distinct vertices « and y
are joined by X arcs (z,y) and X arcs (y,z).

A decomposition of ADK, into arc-disjoint k-circuits (directed cycles
of length k) is a (v, k,A)-Mendelsohn design, denoted by k-MD,(v). A
packing (covering) of ADK, by k-circuits is a collection D of k-circuits of
ADK, such that any two distinct vertices z and y of ADK, are linked by
an arc from z to y in at most (at least) A-circuits of D. If no other such
packing (covering) has more (fewer) circuits, the packing (covering) is said
to be mazimum (minimum) and is denoted by k-PMy(v) (k-CM\(v)).
The number of circuits in a k-PM)(v)(k-CM,(v)) is called the packing
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(covering) number and is denoted by Pj(v, k) (Cx(v,k)). Let
Sa(v, k) = |28=1 | and Ty (v, k) = [245=1),
where v > k and |z] ([z]) denotes the greatest (least) integer y such that
y <z (y > z). It is easy to see that
Py(v,k) < Sx(v,k) < 2= < T\ (v, k) < Ca(v, k).

The leave-arcs graph LG\(D) of a packing D (of ADK, by k-circuits)
is a subgraph of ADK,, its arcs are the supplement of D in ADK,. The
number of arcs in LG, (D) is denoted by |LG»(D)|. When D is maximum
(i-e., a k-PMy(v)), |LGA(D)] is called the leave-arcs number and is denoted
by Ix(v,k). Similarly, the repeat-arcs graph RG (D) of a covering D (of
ADK, by k-cricuits) is a subgraph of ADK,, its arcs are the supplement of
ADK, in D. When D is minimum (i.e., a k-C M), (v)), |RGA(D)| is called
the repeat-arcs number and is denoted by 7x(v, k). In some papers, the
repeat-arcs graph was called the excess graph. It is not difficult to show
the following proposition.

Proposition 1.

(1) In a LG»(D) or a RG»(D), the in-degree and the out-degree of each
vertex are same. Thus, |[LG,(D)| # 1 and |RGA(D)| # 1 for any D.

(2) If there exists a k-M D (v), then Py (v, k) = Cx(v,k) = 22¢=1) (and
Ix(v, k) = ra(v, k) = 0), otherwise

{ Iz(v, k) = lw(v—1) — kP\(v,k) > 1,
ra(v,k) = kCa(v, k) — dv(v = 1) > 1.

@)
(v —1) =(mod k) | Pa(v,k) < | (v,k) > | Ca(w,k) > | ma(v,k) 2
1 Si(v,k) -1 kE+1 T (v, k) k-1
2<i<k—2 Sx(v, k) i Th(v, k) k—i
k—1 Sa(v, k) k-1 | Tk +1]| k+1

In the last four columns of the table, the equality holds for most cases. For
the case in which equality holds, we call the corresponding k-PM)(v) (or
k-C My (v)) optimal. For an optimal k-PMj(v) (or k-C M)y (v)), the leave-
arcs (or repeat-arcs) number (v, k) (or ra(v, k)) will be briefly denoted by
L (or Ry). Note that, if k even, L and R, are all even for any A. Thus,
for given k,v and any A, we have

k (kodd,and Ly =k —-lork+1
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In researching packings and coverings, the main problem is to show whether
there exists an optimal k-PM)(v) (k-C M) (v)) for given k, A and all v > k.
Also, determine the value of Py (v, k) (Cx(v,k)) if there is no optimal one.

In this paper, we will provide a method to solve the existence prob-
lem for optimal packings and optimal coverings with any A. The method
will deal with the packings and coverings together, in which the leave-arcs
graph, the repeat-arcs graph and their structure will play an important
role. For these (leave-arcs and repeat-arcs) graphs, we will use the nota-
tions C; (directed cycle with length ¢, (z1,z2,...,2:)) and DK, (complete
directed graph of order t). Since the existence problems for k-PM)(v) and
k-CMy(v) for k = 3 and 4 have been complete solved for any A [1], we
focus on k > 5, and particularly 5 < k£ < 14.

2 General construction for A =1

Denote by DKy, n,,....n, the complete symmetric multipartite directed
graph with vertex set X = X; X2 U...UU X», where X;, Xs, ..., X are
pairwise disjoint sets with |X;| = n;,1 < ¢ < h, and where two ver-
tices z and y from distinct sets X; and X, respectively, are linked by
exactly two arcs (z,y) and (y,z). A holey Mendelsohn design, briefly de-
noted by k-HM D(ny,na,...,ny), is a trio (X, {X;;1 < i < h}, A) where
X=X 'U .UXp is a v-set, each X; isan;set,1 <i< h,and A isa
collection of k-circuits from X, which form an arc-disjoint decomposition of
DK, ... n.- Each X; is called a hole (or group) of this design and the multi-
set {ni,...,ns} can be described by its “exponential form” 1?273%..., which
denotes i occurrences of 1,j occurrences of 2, etc. A k-HMD(1*"*u!)
can be renamed as incomplete Mendelsohn design and is denoted by k-
IMD(v,u).

Lemma 1. For even k, there exists a k-HMD(r's') if and only if r,s > &
and 2rs =0 (mod k). (Refer to [2])
Lemma 2. There exists a k-M D(k+1) for any integer & > 2. There exists
a k-M D(k) for any positive integer k # 4,6. (refer to [3, 4])
Lemma 3. Let k be even and n > k.

1. If a k-M D(n) exists then a k-MD(n + k) exists too.
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2. If an optimal k-PM (n) (k-C M (n)) exists then an optimal k-PM (n+
k) (k-CM(n + k)) exists too.
Proof. Let X |JY |J{oo} be a (n + k)-set, where | X| =n—1and |Y| =
From Lemma 1, there exists a k-HMD((n - 1)'k!) = (XY, {X,Y}, A)
sincen—1,k > £ and 2k(n—1) = 0 (mod k). And, there exists a k-M D(k+

= (Y U{o0}, B) by Lemma 2. Let the known k-M D(n) (or optimal k-
PM(n),k-CM(n)) be (X |J{co},C), then (X JY U{oo}, AUBUC) is a
k-MD(n+k) (or optimal k-PM(n + k), or optimal k-CM (n+k)). For the
last conclusion, we have

2k(n—-1 E+1)k nn-1 +k)n+k-1
A1+ 1Bl +jo = 20D B2 DR 1))t Btk 1),
where the notation [z] represents z (for M D), |z] (for PM) or [z] (for
CM). o

From this Lemma, using induction, it is easy to obtain the following
theorem.

Theorem 1. Let k& > 4 be an even integer. If there exist optimal k-PM (v)
and k-CM (v) for each v € [k +2, 2k —1], then there exist optimal k-PM (v)
and k-CM (v) for any v > k + 2.

Lemma 4. For each positive integer m > 3 and each odd k > 3, there
exists a k-HMD(k™). (refer to [5])

Lemma 5. There exists a k-IMD(k+u,u) for 1 <u < k-1and k = p™,
pq, p’q, p°q, where p and q are distinct odd primes, and m is any positive
integer. (refer to [5])

Lemma 6. Let k be as described in Lemma 5.

1. If there exists a k-M D(n) for each admissible n € [k,3k — 1] then
there exists a k-M D(v) for each admissible v > k (For k-M D(v), v is called
admissible if v > k and k|v(v — 1)) .

2. If there exists an optimal k-PM(n) (k-CM(n)) for each n € [k +
2, 3k—1] then there exists an optimal k-PM (v) (k-CM (v)) for any v > k+2.
Proof. Let v=mk+ u, wherem >0and 0<u<k-1.

When m = 1 or 2, the conclusion is obviously true. When m > 3,
let the vertex set be X | J( U ({t} x Zi)), where X is a u-set. There

€2,
exists a k-HM D(k™) = (Zp, X Z, {{i} x Zi;i € Zp}, A) from Lemma
4. For each i € Z,,\{0}, there exists a k-IMD(k + u,u) = (X J({¢} x
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Zp) X, {(5,0)}, {1}, ..., {(G, k — 1)}},B:), from Lemma 5 . Let the
known k-M D(k + u) (or optimal k-PM (k+u), or optunal k-CM (k+u))

be (X U({0} x Z),C), then (X U( U ({i} x Z¢)), AU U B:)UC) is a
k-M D(v) (or optimal k-PM (v), or optlma.l k-CM (v)), by the equation

m—1
4] + Z |Bi| + IC|

—m(m— Dk + (m — 1)(k + 2u — 1) 4 [(Eru)tu-1))
= [Mrkil]
0

From Theorem 1 and Lemma 6, we can obtain the following theorem,
especially for 5 < k < 14, the range discussed in this paper.
Theorem 2. Let k£ > 3 and, if k is odd, let k be as described in Lemma 5.
If there exists an optimal k-PM(v) (k-CM(v)) for each v € [k + 2,2k — 1]
when k even or for each v € [k + 2,3k — 1] when k odd, then there exist an
optimal k-PM (v) (k-CM (v)) for any v > k.
Corollary 1. Let 5 < k < 14. If there exist optimal k-PM(v) and k-
CM(v) fork+2<v<2k—1(keven)ork+2<wv <3k—1 (k odd),
then there exist optimal k-PM(v) and k-CM(v) for any v > k with the
exception of (v, k) = (6,6). '
Proof. The odd %, 5 < k < 14, satisfy Lemma 5. Form [10], there exist
k-MD(v) for 5 < k < 14 and v = 0,1(mod k), except for (v,k) = (6,6).
The result then follows from Theorem 2 and the fact that the existence
of k-M D(v) implies the existence of both optimal k-PM (v) and k-C M (v).
Lastly, let us give a maximum 6-P M (6) with four 6-circuits and a minimum
6-C M (6) with six 6-circuits as follows.

6-PM(6): 123456, 132654, 152463, 143625 with LG = (1, 6,4, 2) |J(3, 5);

6-C M (6): 123456, 132654, 152463, 145362, 164352, 136425 with RG =
(1,3,6,4,5,2). o

3 Discussion for any A

For a given integer k& > 3, all integers are partitioned into k residue classes
modulo k. Choose an integer from each class as the representative of this
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class and denote the representative of the class containing the integer z by
{z} (or simply {z}). Define all k representatives to be 0,1, ...,k — 1 when
kiseven;or0,2,...,k—1,k+1 when k is odd. From Proposition 1, equality
(*) and definition, if the leave-arcs number of an optimal k-PM (v) is L,
then for any positive integer A
the leave-arcs number of an optimal k-PM)(v) is Ly = {\L; }&;
the repeat-arcs number of an optimal k-C M) (v) is Ry = {—AL1 }«.
Let X = kg, then Ly = {(ALi}x = 0. Ry = {-Ma}x =0and A=}
is the minimum positive integer satisfying Ly = R) = 0. It is easy to see
that
LX=LX—1 —R1 =0andR;=Rx_l —L1 =0;
Ly =Ly and Ry = Ry for A = X' (mod ).
Proposition 2. Take positive integers k > 3and v > k. Let A = W(%W’
then,for1<A<Adand 1<i< ),
(1) when k even
{ Ly=Li+ Ly-i <= L; < Ry,
Ly=L;- R\ <= L; > R\
Ry=R;+Ry_i = R; <Ly,
Ry=R;—Ly_i <= R; > L.
(2) when k odd
Ly=L;+Ly_ <= 2<L;<Ry_;j—1<k-3or
{ 3<L;i=Ry_;j+1<k-1lor (L;Ry-i)=(2,k +1),
Ly=Li—Ry_i+= Li>Ry_;and L; # R\ + 1;
Ry=Ri+Ry_;i <= 2<R;<Ly_;—-1<Lk-3or
3<Ri=Ly_;+1<k-1lor (RiLy—;)=(2,k+1),
Ry=R;—Ly_i<= R;>Lyx_jand R; # Ly_; + 1;
Proof. Firstly, by the definition of {z}x, we have:
when k even, {z}; + {y}r = {z+y}x & {z}x + {v}+ <k, and
{z}x — {y}x = {z -y} = {zh 2 {whss
when k odd, {z}r + (v} = {z+yh <= {zhh +{v}r < k-1lor
{z}x +{y}x =k+1, and
{zhe—{y}s = {z—y}e & {z}e = {y}x and {2} # {y}r+1.
Since L; = {iL1},La—i = {(A—9)L1} and Ly = {AL1} = {iL1 +(A—9) L1},
the equivalent condition of the equality Ly = L; + Lx_; will be transform
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into
L; <k—Ly_; = Ry_; when k even;
L; < k—LA_i—1'=R)‘_i —1(3SR,\_,' < k—Z) or
e ) _J Ra_i+1 (2SRA—iSk—2) .
Li=k LA_,+1—{ 9 (Ros = k+1) when k odd;
Since L; = {iL1},Ry—i = {—(A—i)L1} and Ly = {AL,} = {iL; - (-(A —
i)L;)}, the equivalent condition of the equality Ly = L; — RA_, will be
transform into
L; > Ry_; when k even;
L; > Ry_;and L; # Ry_; +1 when k odd.

The proof of the equivalent conditions for R is similar. m]
Theorem 3.

(1) When k is even, for any X € [2, }], there is an i € [1, A — 1] such that
Ly=Li+Ly_jor Ly = L; — Ry—;. And there is an i € [1, A — 1] such that
Ry=R;+Ry_jor Ry =R; — Ly_;.

(2) When k is odd, for any X € [3, X], the same conclusion as (1) holds.

If A = 2, then the conclusion still holds except for the cases L; = k—1 (no
representation for L) and Ly = k& + 1 (no representation for Rj).
Proof. When % is even, by Proposition 2, the conclusion is obvious. In
fact, we have a stronger conclusion: “Ly = L; + Ly_;or Ly = L; — Ry_;
(and Ry = R; + Ra_; orRy = R; — Ly-;) holds for any X € [2,)] and
any ¢ € [1,A — 1}”, because L; < Ry_; and L; > Ry—; (R; < Ly_; and
R; > Ly_;) are incompatible.

When £ is odd, by Proposition 2, it is not difficult to verify that, for
any A and given ¢, both Ly = L; + Ly—; and Ly = L; — Ry—; do not hold
only if

“Lyei=k—-1,Ry_;=k+1,3
2

i <
“Lx<i=k+1,RB\_;=k-1, i <k-2 (x*)

[l

<
<

By the minimization of X, Li,Ls,...,Lx_, are mutually distinct, so the
statement (**) holds for at most two values of 7. Therefore, the conclusion
(for L)) holds when X > 4. Furthermore, it is impossible that {L;,L2} =
{k—1,k+1} when k > 3. Hence, the conclusion (for L) holds when A = 3.
For the remaining case A = 2, the statement (*x) holds only if “L; = k-1
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and R; =k + 1”. Similarly, we can prove the conclusion for R). ]
Remarks. The exceptional cases of Theorem 3 happen only for k& odd and
v(v — 1) = £1 (mod k). For 5 < k < 14 these values are:

k=5,v =3 (mod 5), L, = 6,R; = 4, no representation for Rs;

k=17,v=3,5 (mod 7), L; = 6,R; = 8, no representation for L,;

k=11,v = 4,8 (mod 11), L, = 12, R; = 10, no representation for Ry;

k=13,v = 4,10 (mod 13), L; = 12, R; = 14, no representation for L,.
Theorem 4. Take positive integers k,v and A, . Let X be a v-set.

1. Suppose there exist both a k-PM)(v) = (X,D) (with leave-arcs
graph LG (D)) and a k-PM,,(v) = (X,£) (with leave-arcs graph LG ,(£)).
If [LGA(D)| + |[LGL(E)| = Layu(v,k), then there exists an optimal k-
PM)+,(v) and its leave-arcs graph is just LG (D) |J LG,(E).

2. Suppose there exist both a k-CMy(v) = (X,D) (with repeat-arcs
graph RG (D)) and a k-C M, (v) = (X, £) (with repeat-arcs graph RG,(£)).
If |RGA(D)| + |RGL,(E)] = Ra4u(v,k), then there exists an optimal k-
C M), (v) and its repeat-arcs graph is just RG»(D)|J RG,(E).

3. Suppose there exist both a k-PM)(v) = (X,D) (with leave-arcs
graph LG (D)) and a k-C M, (v) = (X, £) (with repeat-arcs graph RG,(£)).
If RG,(€) C LGA(D) and |LGA(D)| — |RGL(E)| = Laypu(v, k), then there
exists an optimal k-PMj,;,(v) and its leave-arcs graph is just
LGA(D)\RG(£).

4. Suppose there exist both a k-CM)(v) = (X, D) (with repeat-arcs
graph RG (D)) and a k-PM,, (v) = (X, £) (with leave-arcs graph LG, (£)).
If LGu(€) C RGA(D) and |RGA(D)| = [LGL(E)| = Ratu(v, k), then there
exists an optimal k-CM);,(v) and its repeat-arcs graph is just
RGA(D\LGL(E).

Proof. Given k and v. Here, for brevity, we denote the graphs ADK, by
ADK, k-PMy(v) by PMy, k-CMx(v) by CMy, LGx(D) by LGy, RGA(D)
by RG,. Firstly, we have the following facts:

(*1) /\DK=PMAULG)\ =CM)\\RG)‘;

(*2) If there are a family A of k-circuits in ADK and a directed
subgraph G of ADK such that ADK = A|JG (or A\G) and |G| = Ly (or
R,), then A forms an optimal k-PM)(v) (or an optimal &-C M (v)) and G
is just its leare-arcs (or repeat-arcs) graph.
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Now, let us prove the conclusions 1 and 4 (2 and 3 are similar)

1. (A\+p)DK = (\DK) U(DK) = (PMALG») U(PM, ULG,) =
(PMx)PM,) U(LGAULG,) by (x1). Furthermore, by (x2) and
ILGAU LG,| = |LG,| + |LGy| = Latn, PM)\|JPM, forms an optimal
k-PM),,(v) and its leave-arcs graph is just LG |J LG,,.

4. (A +wDK = (ADK)U(uDK) = (CMA\RG») U(PM,ULG,) =
(CMU PM,) \(RG\ \LG,) by (x1). Furthermore, by (*2) and
|[RGA\LG,| = |RG)| — |LGy| = Rayyu, CMy|JPM, forms an optimal
k-CM),..(v) and its repeat-arcs graph is just RG)\\LG,. a

By Theorem 3, Theorem 4 and the statement before Proposition 2, in
order to obtain all optimal k-PM)(v) and k-C M) (v) for given k (5 < k <
14), v and any A, we only need to complete the following works:

(1) construct an optimal k-PM (v) with suitable LG;

(2) construct an optimal k-C M (v) with suitable RG;

(3) construct an optimal k-PMa(v) (or k-C Mz(v)) with suitable LG,
(or RG,) for those orders v pointed in the earlier Remarks following the
proof of Theorem 3.

Here, a suitable (leave-arcs or repeat-arcs) graph is important for our
method, especially when using Theorem 4(3)(4) (i.e., subtraction). For ex-
ample, let L; = 4,R5_; = 2and Ly = L; — Ry_; be used. If LG; =C,|JC>
then the subtraction can be completed, but if LG; = C4 then the subtrac-
tion can not be done since RGy—; = Ca. For this reason, even though
the construction of many packings and coverings have been known (e.g., in
[1,7,8,9]), but most of them can not used since their (leave-arcs or repeat-
arcs) graphs were unsuitable. Here, the symbol C; denotes a directed cycle
of length 2. Below, we will use the following symbols to denote the leave-
arcs graph LG and the repeat-arcs graph RG:

Cp or {(T1,%2,...,Zm) (2 directed cycle of length m),

DK,, (a complete directed graph of order m),

GUH (the union of the graphs G and H, being joint or disjoint
depends on the given structure),

mG (the union of m graphs which are isomorphic to G).
Furthermore, by Theorem 2, the works (1), (2), (3) above-mentioned
only need to do for v € [k + 2,2k — 1] if k even or v € [k + 2,3k — 1] if
k odd. In the next sections, we will complete these constructions listed in
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the table. The order v and the nonempty L;, R; in the table show our task.
For example, the second row for k¥ = 5 means that we need to construct
5-PM(v), 5-CM(v) and 5-C M, (v) for v = 8,13. The orders v, v(v—1) =0
(mod k), are omited from the table since there exists a k-M D(v) for these
orders(see [10]).

k v
(odd) | [k+2,3%k-1 | Ly | R | L. | R | 2
5 7 9 12 14 2 3 5
8 13 6 4 3 5
9 13 16 20 2 5 7
7 10 12 17 19 6 8 5 7
11 18 5 2 7
11 17 20 26 2 7 9
9 12 16 21 25 6 3 3
13 15 22 24 3 6 3
14 23 2 7 9
13 21 24 32 2 9 11
14 20 25 31 6 5 11
11 15 19 26 30 12 10 9 11
16 18 27 29 9 2 11
17 28 8 3 11
15 25 28 38 2 11 13
16 24 29 37 6 7 13
13 17 23 30 36 12 14 11 13
18 22 31 35 7 6 13
19 21 32 34 4 9 13
20 33 3 10 13
k v
(even) | [k+2,2k—1] | Ly | R, )
6 8 11 2 4 3
10 15 2 6 4
8 11 14 6 2 4
12 13 4 4 2
12 19 2 8 5
10 13 18 6 4 5
14 17 2 8 5
14 23 2 10 6
12 15 22 6 6 2
17 20 8 4 3
18 19 6 6 2
16 27 2 12 7
17 26 6 8 7
14 18 25 12 2 7
19 24 6 8 7
20 23 2 12 7
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Below, for brevity, we will use some notations about differences, which
were firstly introduced in [6]. Consider the construction of k-circuits from
the points Z, |J{oo1,...,00:}, where n > k. Regard the numbers z,, zs, ...
in Z, and 00;,009,... as points, and regard the non-zero numbers d;,ds,

in Z; = Z,\{0} as differences. Call the ordered tuple [dy,...,d;] a
difference-path (briefly, DP), if the corresponding point-tuple (z,z+d;, z+
dy +dy,...,z +dy + ... + d;) consists of distinct points from Z,, where
z € Z, and the addition is module n. If d; + ... + d; = 0 (mod n),
then the DP, [d,,...,d;] is called difference-cycle (briefly, DC). A DC
[d1, ..., dx] represents a family of k-circuits {(z,z +dy, ...,z +dy + ... + dg_1)
with z € Z, if dy,...,d; are distinct. A DC [d,,...,d;], where d; = d;y,
(1 <4< k- s) for some s, slk and ds,...,d; are distinct, can be denoted
by [d;, ...,d3]§ . It is not difficult to see that [d), ..,ds]§ forms a DC if and
only if ged(d; + ... + ds,n) = B¢, fln and d;,d; +ds,...,d; +da2 + ... + d;
are not congruent module 5¢. A DC [dy,...,d;]« represents B8 k-circuits:
(@, 2 +dy,5+di +ds, .,z +dy + . +dy,..),0 < T < B¢ — 1. Especially,
when s = 1, [d]; represents % k-circuits: (z,z+d,z+2d,...,z+ (k—1)d),
0<z < % -1 And, when s = 1 and n = 2k, the two k-circuits represented
by [d]x can be denoted by [d]S (for z = 0) and [d]} (for z = 1). Let
D = (di,...,ds) and 0 < d; < ... < dg < §. Define

A(D) = [dl, —ds,d3, —dy,..., (—l)s_ldsl,

—A(D) = [~dy, dz, ~ds, ds, ., (~1)°dy)]

A~YD) = [(-1)*"d,, ..., —d4, d3, —d2, d1],

—-A~YD) = [(-1)%d,, ..., ds, —d3,d2, —d].
It is easy to verify that these ordered tuples are all DP. And, if D =
(di,...,ds), D' = (d},...,d;),0<d; < ... < d; £ 3,0<d] <..<d; < 2
and d, # dj then

[A(D), (-1)***A™Y(D")] = [d1, —d2, ..., (—1)*"1ds, (=1)*"1d, ..., (—=1)°Fid}]

is DP too. If D is a interval [m,m +s] = (m,m + 1,..m + s), m >
0,m + s < %, then the DP, A(D) = A([m,m + s]), can be denoted by
A[m, m+s]. The symbols 00y, 003, ..., 00¢ and numbers in a k-circuit (brack-
eted by ( )) represent points. And the symbols (except 001, ..., 00; and *)
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in a difference-cycle (bracketed by [ ]) represent differences. When a DC is
[001, -y 002, c11y oery 008, .. ] (£ 2 2), the following statement is appended after
the DC: “with starters (a,,as,...,a;)”. The statement means that the cor-
responding original k-circuit is (001,@a1,...,002,a2, ..., ..., 00¢, @4, ...). When
a symbol * appears between 0o; and oo; in a DC, it means that there is only
one point (no difference) between co; and co; and the point is just the corre-
sponding *. For example, when n = 13, the DC [o01, A[1, 4], 002, A71[2, 4],
003, #] with starters (0,3, —3) corresponds a family of k-circuits {00y,0, 1,

-1,2,-2,002,3,—6,4,6,003,—3) developed modulo 13.

4 Constructions for L; =2

Lemma 7. Given integers k > 5 and v > [3—’°—2‘—3], v(v—1) =2 (mod k). If
there exists an optimal k-PM (v) = (X {J{o01, 002}, B) with the leave-arcs
graph LG = (001,002) and a k-circuit C' € B such that C contains

none of co0; and 002 (k> 6)
001, but not ooy (k=35)

then there exist optimal k-PM) (v) and k-C My (v) for any X € [1, A], where
X= st

Proof. Let C = (¢, ¢z, ...,Ck) € B, where ¢1,...,cx € X,|X|=v - 2.

Case k even (k > 6): Taking z1,z2, - Tk _g from X\C (byk>6andv>
8£-2 = [3£=31) and replacing the k-circuit C from B by the k-circuits A =
(61,62,...,c§+1,001,002,$1,$2,...,3:52;_3) and B = (c%+1,...,ck,cl,x%_3,
vy Tz, T1, 002,001 ), We can obtain a k-CM (v) = (X [J{oo1, 002}, (B\C)
U{A, B}) with the repeat-arcs graph

E_4
RG = (001, ¢4 41) Uloo, 21) Uler, 74 5) U U (s, e0a)).
Furthermore, since X = £, Ly = 2X, Ry = k — 2A(1 £ A < £), we have
Ly=Ly1+L; and Ry=R\_1—-L; 2<A<¥).

By Theorem 4 and the structure of LG and RG, all optimal k-P M) (v) and
k-C M) (v) can be obtained.

Case k odd (k> 7): Taking L1, T2,y Tht from X\C (by £k > 7 and
v > #) and replacing the k-circuit C from B by the k-circuits A =

(61,02,...,Ci-i‘_l,ool,OOz,Ck,xl,.'L'z,...,:l:&;_'l) and B = (CLP,...,Ck,C],xii_T,
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-+, T2, T1, 002,001 ), We can obtain a k-CM(v) = (X |J{o01, 002}, (B\C)
U{A, B}) with the repeat-arcs graph
k-9
koo
RG = (002’ck!zl) U(oola C#) U(chx%) U( U (zi’mi+l))‘
i=1
Case k = 5: Without loss generality, let C' = (c0;,¢;,¢2,¢3,¢4) € B and
C1,C2,¢3,¢4 € X. Taking z from X\{ei,c2} and replacing the C from B
by (001, ¢1,¢2,2,002) and (e, c3,cs,001,002), we can get a 5-C' M (v) with
the repeat-arcs graph RG = {00y, ¢2, Z).
Furthermore, for odd k > 5, since XA = k and
R (1<a< i
ATl -k (B2 <A<k’
_[E-2 1Ak
R*‘{ 2k~22 (Bl<a<k-1)
we have

In=Ly1+1L; (25,\§k—1,)\7&]c-2"—3), Lugs = Lups — Ry,

Ra=Ryi-L @<A<k-12#°21) Ry = Rus + R

By Theorem 4 and the structure of LG and RG, all optimal k-PM, (v) and
k-CM) (v) can be obtained, where the structure of the leave-arcs graph of
k-PM e} (v) need to be taken as the form

k-1
=
(@1, 23) | J( (@i 2i41))

i=1
in order to get k-PM kga (v). Of course, this can be done. ]
Corollary 2. For v(v — 1) = k — 2 (mod k), if there exists an optimal
k-CM(v) with RG = C, and there exists an optimal k-PM (v) with LG =
U(as, b;) if k even or LG = (z,y, z) U(U(as, b)) if k odd, then there exist
i i

optimal k-PM) (v) and k-C M) (v) for any X € [1, ] where X = g_c7dk2_.l=7‘
Proof. By the discussion in the proof of Lemma 7 and the duality of Ly
and R). : a
Lemma 8. For k > 5, there exist optimal k-PM(k+2) and k-PM (2k—1).
For odd k > 5, there exist optimal k-PM (2k + 2) aud £-PM(3k — 1).
Proof.
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(1) k-PM(k+2), k> 7.
Points: {001,002} Z;-
k-circuits (k odd):

{ [—llka[k I]kr[__ll
[001, A[2, —],002,A‘1[1 £231] with starters (0, a),

"—’P, =1 (mod 4)
where a = .

—kl k=3 (mod 4)

k-circuits (k even): There is d € Z;\{+1} such that gcd(d, k) = 1, since
o(k) > 2.

{ [I]ks [—I]ka [d]’h
[001,A[2 2]1 2 —-A~ 1[2 ]]

where the last sequence “...,z,z+d,..." is replaced by “...,z, 002,z +d,...".
(2) k-PM(2k—1), k> 7.
Points: {001,002} |J Zak-3, k-circuits are listed below.

when k = 3 (mod 4):

(AL k- 2],'° 2, —(k=2),

[o01, —A[L, £ ],002,—A[’°’ k — 3]} with starters (0, £52);
when k=1 (mod 4):

[A[1,k - 3], —(k 2),k - 3, 51,

{001, —A[1, 53], 000, —A[EEL, k 4], k — 2] with starters (0, £1);
when k=0 (mod 4):

(AL k - 2], -

[001, A[2, £ ] 002,—A[—+— k — 2]]with starters (0, &+4);
when k=2 (mod 4):

[A[L, = 3k = 2,~(k =), 4],

[oo1, —A[1, £52], ooz,A[—“"— k- 4], —(k — 2)] with starters (0, —=3%

(3) k-PM(2k + 2), k odd, k > 5.

Points: {001,002} J Z2k, k-circuits are listed below.

[_2]k: [4]ka [_4]k) [001, A([lr k]\{27 4})]7 [°°2s —A([ly k- 1]\{3a 4})7 3]
(4) k-PM(3k — 1), k odd, k > 5.
Points: {001,002} |J Z3k—3, k-circuits are listed below.
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[A[1,k - 1], £32)

[oor, ~A([L, #78\(E52, k- 2))] k=1 (mod 4);
[0z, — A([EE, 2521\ {k — 1})]

[4[2, K], 53]

[oor, A((L, 8N\ [E5L k- 1), 1] § k=3 (mod 4).
[ooz, —A((42, =21\ (k)]

(5)
5-PM(5 + 2) : (00,4, 002,0,1) develop 5, [~1]s, [2]5, [-2]s.
5-PM(2 x 5 —1) : {003,0,1,6,2) and (002,0,6,1,5) develop 7.
6-PM(6+2) : (001,0,2,009,3,1) develop 6, (0,1,2,5,4,3) +2i, 0<i<2.
6-PM(2 x 6 — 1) : (001,0,1,8,2,7) and (005,0,8,1,7,2) develop 9. O
Theorem 5. There exist all optimal k-PMjy(v) and k-C M) (v) for 5 <
k <14, v(v —1) =2 (mod k) and any A.

Proof. By Theorem 2, we only need to consider the range v € [k+2,2k—1]
if k is even or v € [k + 2,3k — 1] if k is odd. And, in the range, all possible
(v, k) satisfying v(v — 1) = 2 (mod k) are classified into three classes:

(1) v> 2k3 and v =2, -1 (mod k), k > 5.

By Lemma 7 and Lemma 8, the conclusion holds. Note that the spe-
cial k-circuit C for Lemma 7 can be found in the corresponding k-PM (v)
given by Lemma 8 except for the 5-PM(7). But, replacing the blocks
(001,4,002,0,1) and (1,4,2,0,3) € [-2]5 from the 5-PM (5+2) by (c01,4,2,
0,1) and (1,4, 002,0,3), we can get a new 5-PM(7) with the required spe-
cial 5-circuit C = (001, 4, 2,0, 1).

(2) v> 3£3 and v # 2, -1 (mod k).

For 5 < k < 14, these orders are (k,v) = (9, 14), (9, 23), (10, 14), (10, 17),
(14,20) and (14,23). By Lemma 7, we only need to construct a k-PM (v)
with a special k-circuit C for these orders. In the following constructions,
the points are {001,002} |J Zy—2 and the leave-arcs graph LG = (001, 002).

9—PM(14) [001 s 4, —5, 6, 02, —4, 5]

with starters (0, 1), [1, -2, -3]3,[-1,2, 3]5.

9-PM(23): (001, A([1,10]\[4,6])], [002, —A([1, 10]\[4, 6])],
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[4,-5,—6]3,[—4,5,6]3.
10-PM(14): [001,—1,2,4, 002, ~4,5,6]
with starters (0, 2), [1, -2, 3, -5, —3],.
10-PM(17): [o01,3,—6,7,002,—3,6,—7]
with starters (0, —1), (1, —4]s,[—1,4]s, [2, —5]5, [—2, 5]5.
14-PM(20): [00y,-1,3,-6,7,8,002,9, 8,7, —6,—5]
with starters (0,7), [1,-2,3,-4,5,2,4)],.
14-PM(23): [00y,3,-6,—8,-9,10, 002, —3,6,—7,9, —10] with starters
(0, _1)’ [11 —4]7) ["1’ 4]7’ [2’ —5]77 [_2’ 5]7: [7» 8]7-
B)v< %T-s
These orders are (k,v) = (k, k + 2), £ > 8. By Lemma 8, there exists a
k-PM (v) for these orders. But, since v < 323, it is impossible to obtain a
k-CM (v) immediately from Lemma 7. Now, let us give these k-C M (k+2).
8-CM(10):
(0,7,1,8,5,6,2,4) +1i, i € Zg,
(0,4,8,3,7,2,6,5), (0, 7,1,0,5,6,2,4),
(0,4,3,2,1,8,5,0),(c0,0,8,7,6,1,5,4).
RG = (5,0) |J(0, 00} (o0, 4).
9-CM(11):
(00,5,6,4,0,2,9,3,8) +1i, i € Z},,
{0,3,6,9,2,5,8,1,7), (0, 1,4,0,2,9,3,8,7),
{,7,6,5,4,3,2,1,9), (0, 5,6,4,7,1,0,9, 8).
RG = (00, 7) U(1,7) U(c0, 1,9).
10-CM(12):
(0,2,4,7,0,5,3,10,9,6) + ¢, i € Z7,,
{0,0,1,2,3,4,5,6,7,8),(x, 2,4,8,9,10,0,6,1,7),
(0,7,2,8,3,9,4,10,5,0), (0, 8,4,7,0,5,3,10,9, 6).
RG = (00,0) (o0, 7) (o0, 8) {4, 8).
11-CM(13):
(001,0,02,8,1,9,7,6,2,5,10) +1i, i € Z},,
(001,002,0,1,2,3,4,5,6,7,8), (002,001,8,9,10,0,6,1,7,2,3),
(001,0,002,8,3,9,7,6,2,5,10), (c02,3,7,2,8,1,9,4, 10, 5,0),[2)11 -
RG = (001, 8) J(o02,0) U{o02,3) U(2,3,7).
12-C M (14):
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(00,4,3,1,11,6,12,8,0,2,5,9) + i, i € Z{;\{6},
{00,0,1,2,3,4,12,5,6,8,9,10), (0, 4,3,10,11,12,0,7,1,8,2,9),
(0,10,3,1,11,6,12,8,0,2,5,9), (0,9, 3,10,4,11,5,12,6,7,8,0),
(00,10,9,7,4,5,1,6,0,8,11,2).
RG = (0, 0) (o0, 9) U{co, 10) |J(0, 8) U(3, 10).
13-CM(15):
(001,6,002,9,2,10,1,11,7,5,8,0,12) + i, i € Z}3,
(001,002,0,1,2,3,4,5,6,7,8,9, 10),
(002,001, 10,11,12,0,7,1,8,2,9,3,4),
(001,6,002,9,3,10,4,11,7,5,8,0,12),
(002,4,3,001,9,2,10,1,11,5,12,6,0),[2]13.
RG = (004, 10) U<°°2) 0) U<°°2’4) U, 4 U(001,9,3).
14-CM(16):
(0,11,9,12,8,13,7,14,1,0,4,10,5,2) +1, i € Z§\{1, -2},
(00,0,1,2,3,4,5,6,7,8,9,10,11,12),
(00,12,13,14,0,8,1,9,2,10,3,6,4,7),
(0,9,7,4,6,11,5,12,14,13,2,8,3,0),
(00,11,9,12,8,13,6,14,7,0,4,10,5,2),
(00,12,10,13,7,14,8,0,2,1,5,11,6,3),
(00,7,10,6,3,11,4,12,5,13,9,14,1,0),
RG = (0,0) U(eo,12) Uoo, 7) U(7,4) U(4,6) U(6, 3). o

5 Constructions for L; =6

Lemma 9. There exist optimal k-PM (k+3) and k-PM (2k —2) for k > 5.
And, there exist optimal k-PM(2k + 3) and k-PM(3k — 2) for odd k > 5.
The leave-arcs graph of each of these packing designs is DKj.
Proof.

(1) k-PM(k+3),kodd, k> 7.

Points: {oc01, 002,003} J Zk-

k-circuits: [1k, [~ 1k, [~ 2k, (5521, [- 552 ]k,

[001, %, 003, A[2, £53], 003, A71[3, £53]] with starters (0, —1,a),

where a = ££2 (k=1 mod 4) or — &} (k=3 mod 4).

(2) k-PM(k + 3), k even, k > 14.
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Points: {c01,002,003} |J Zk.
It is easy to see that ged(+1,k) = 1 and
ged(£%52,k) = 1if k =0 (mod 4),
ged(£55%,k) = 1 if k = 2 (mod 4).
Since ¢(k) > 5 when k > 14, there is d € Z;\{£1} (and d # +%52 or
+%34) such that ged(d, k) = 1. Define the difference sequence
M = (My,d, My)
{ (Al2,%-2),%5,-412,£ - 2)) if k=0 (mod 4)

(Al2,%5-3),-452,5 k22 _A-112,£ _3)) if k=2 (mod4)
Then a k-PM (k + 3) consists of these k-circuits:

{ [001, My, 002, M3, 003, %] with starters (0, a, b),

[1]’:: [_I]ki [djk’ [c]kv [_c]ka

where @ depends on d (the starter of M; is 0, so the ordered pair corre-
sponding to the difference d in M = (M, d, M3) is (@ — d,a)) and

) {k—# k =0 (mod 4) {kz;? k=0 (mod 4)
= c=

6 k=2 (mod 4) k4 k=2 (mod 4)

For example,
14-PM(17): Taking d = 3, M = (2,-3,4,-6,7,6,—4,3,—2) corre-
sponds to a number-tuple (0, 2, -1, 3, -3, 4, —4, 6, =5, 7). Thus, the
14-circuits are:
(001,0,2,-1,3,-3,4,-4,6,002, -5, 7,003,5) develop 14,
(114, [-1)14, [314, [5]14, [~ 5)14-
16-PM(19): Taking d = -5, M = (2,-3,4,-5,6,8,—6,5,—4,3,-2)
corresponds a number-tuple (0,2, -1,3, -2,4,—4,6,-5,7, —6,8). Thus the
16-circuits are:
(c01,0,2,-1,3,002,-2,4,-4,6,—5,7, —6, 8, 003, 5) develop 16,
[1}16, [—1]16, [~5]165 [7]16: [~ 7]16-
(3) k-PM(2k — 2), k > 5.
Points: {001,002,003} U Z2x—5
k-circuits: [001, A[1, k — 3], (=1)*(k — 4)],
[ooz, —A[1, k — 5], 003, (—1)*~!(k — 3)] with starters (0, a),
where a = 554 (k even) or — £33 (k odd).
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(4) k-PM(2k + 3), k odd, k£ > 9.
Points: {001, 002,003} | Zak
k-circuits: [coz, —A([1, 7]\{2,4}), 003, —A[9, k — 1]] with starters (0,4),
[oo1, A([1, K]\ {2, 41); 2]z, (-2, [4]k, [—4]x, [8]«-
(5) k-PM(3k - 2), k odd, k > 5.
Points: {001 , 002, 003} U Z3k—5-
k-circuits: [0oy, A[1, k — 2]], [00s, —A[1, k — 2]],
[o03, Ak - 1, g%'_], @’ —A7 k-1, 35T
(6) 5-PM (5 + 3): [002, —2, 003, ¥] with starters (2, 1), [001,1,2, —1].
8-PM(8 + 3): [001,—3,4, 002, ¥, 003, ¥] with starters (0,2, 3),
[1: -2,3, 2]2’ [-1]8-
10-PM (10 + 3): [001, —1,2, 002, 4, 003, 5] with starters (0, 2, 3),
[1,-2,3,-4,3),.
12-PM (12 + 3): [001,2, —3, 002, —2,4, 003, —4, 6] with starters
(0,3, —-4), 112, [Sh2, [-5]12, [-1, 3.
5-PM(10 + 3): [001,1,-2,3], [002,~1,2, 3], [003,4,5, —4].
7-PM(14 + 3): [002, -1, 3, —5, 003, *¥] with starters (0, 1),
[001, 1,-3,5,-6, 7]7 [2]7, [_2]7’ [4]7a [_4]7’ [6]7 o
Theorem 6. There exists all optimal k-PM)(v) and k-CM)y(v) for 5 <
k < 14,v(v — 1) =6 (mod &) and any A.
Proof. For each k we list a table giving Ly and Ry for 1 < A< XA = m,
and give the necessary designs.
Note that, from Lemma 9, the leave-arcs graph of k-PM(v) is LG =
DK for all v.
(1) k=5 (v=_8,13),X = 5.

A1l 2 3 4
6 2 3 4
Ly Ly-Ry Li—-Ry; Ly+1L,
4 3 2 6
Ry Ri—-L; Ry+R;

It is easy to see that in order to get all designs listed in the table we need
only a 5-CM(v) with RG = (z,y) U(y,2) and a 5-CM,(v) with RG =
(u,v,w).

Replacing 5-circuits A = (001, a1, 82,03,04) and B = (003, by, bz, b3, by)
from the 5-PM (v) in Lemma 9 by four 5-circuits (e;,b; € Z,-5,1 < i < 4):
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(002,001, a1, 02, a3), (001,003, 002, @3, a4),
(002, 003, b1, b2, b3), {003, 001, 002, b3, bs),
we can obtain an optimal 5-CM(v) with RG = (a3, 002) | J{002,b3). The
existence of A and B is obvious for v = 13. As for v = 8, we can replace two
5-circuits {00,,0,1,3,2) and (002, 2,0, 003,1) from the original 5-PM(8) by
{001,0, 1, c02,2) and {003,1,3,2,0), we can get a new 5-PM(8) with A and
B.
Let the 5-PM(v) and 5-CM(v) obtained above are A and B. Trans-
- forming B to B’ under the mapping 00; « a3, 003 + b3, and replacing a
5-circuit {00y, ¢1, €2, €3, ¢4) from A|J B' by two 5-circuits (001,003,d, ¢3,c4)
and (o03,001,€1,C2,¢3) (€1,C2,¢3,¢4 € Zy_s and d € Z,_5\{c3,¢4}), we
obtain an optimal 5-C M,(v) with RG = (003, d, c3).
2 k=7 (v=10,12,17,19), X =7.

Al1l 2 3 4 5 6
6 5 4 3 2 8
Ly Li~-Ry Li-Rs L3—Ry, Li+1Ls
8 2 3 4 5 6
R, Ry-Ly Ri-L, Ry+Ry Ry+R; R3+R;

It is easy to see that we only need to construct a 7-CM(v) with RG =
DK;3|JC, and a 7-PM,(v) with LG = C3|J C2. Below, let us give these
constructions.
v = 10, Points : X = Z7 |J{o01,002,003}.
7-PM(10) = (X, A) from Lemma 9, where its LG = DKj3 is on the set
{002, 5, 6}.
7-CM(10) = (X, B, U Bz), where
B, : (002,001,003,3,4,6,1), (003,2,6,3,0,4, 1),
<002,4, 03,001, 1, 3, 5), (001, oA, 6, 5,0, 2, 4);
By: ({001,0,002,1,003,2,3) +1,i € ZX\{1,3,4},
(001,003,002,1,5, 2,3), (001,3,002,5,003,6, 0),
{002, 2, 003, 001, 0, 5, 6), (002, 003, 5, 6,4, 2, 0),
(001,4, 009, 5,3, 1, 6), ['—1]7, [3]7
RG = {001, 003) |J{02, 5, 6) | J{c02, 6, 5).
7-PM5(10) = (X, A|J B U B2), where
B!: (c01,1,002,6,3,0,4), (002,4,1,003,2,6,5), (0,2,4,6,1,3,5).
LG3 = (001,002) (003, 3,4).
v = 12, Points : X = Zg | J{001, 002,003}.
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7-PM(12) = (X, A) from Lemma 9, where its LG = DKj is on the set
{002, 1, 7}
7-CM(12) = (X,B1 U B2 U Bs)

By = {B +1i;i € Z§\{*1}}, where B = {003,8,02,7,3,6,4);

Bz : (002,001, 1,2,6,003, 7), (002,003,6,2,5, 7, 1);

Bs : (001,1,2,6,3,5,4) +i,i € Z3\{~1,£2},
(001,003,002,6,3,2,4), (002,0,002,1,5,4,3),
(003,001,002,7,3,6,4), (002,8,5,003,0, 1, 7),
{002,7,6,001,3,4,8), (001,8,4,1,3,5,2), (c03,8,0,4,7,5,3).

RG = (002,1,7) {02, 7, 1) U{cos, 6).

7-PM>(12) = (X, AU B; U B3 U B3), where

B} = {B +1;i € Zg\{£1, -4}};

B : (002,001, 1,2,0, 003, 4), (002,3,8,2,5,7,1).

LG2 = (002, 003, 7) U(2, 6).

v =17,Points : X = Z;4 U{001,002,003}.

7-PM(17) = (X, A) from Lemma 9, where its LG = DK is on the set
{003,0, 7}

7—CM(17) = (X, Bl UBZ)

By : {003,001, 003,11,0,7,8), (003, 001,8,13,4,9,0),
(003,7,0,9,4,3,1),(0,7,12,3,8,5,9), (0,8,2,10, 4,12, 6);

By: {00,8,5,9,4,3,1) + 4 and (002,1,003,11,0,7,8) + i, € Z7y,
(001, 002, 003, 0, 5, 10, 1), (003, 002, 1, 6, 11, 2, 7),
(1,9,3,11,5,13,7), 2], [—4]7, [6]7-

RG = (003,0, 7) J{c0s, 7,0) J(0,9).
7-PM,(17) = (X, AU B; U Bz), where
Bl : {o0g,001,003,7,12,3,8), (c03,001,8,13,4,3, 1),
(0,7,8,2,10,4,9),(0,8,5,9,4, 12, 6).
LG, = (003, 11,0) U(O, .
v = 19, Points : X = Z;4 (J{001,002,003}.
7-PM(19) = (X, A) from Lemma 9, where its LG = DKj3 is on the set
{003, 0, 8}
7-CM(19) = (X, B UB: U Bs)
B, = {B +i;i € Z}g\{—1}, where B = (00,,0,11,1,10, 14, 13);
B, : {003,8,0,11,1, 10, 14), {001, 0, 8, 003, 14, 13, 12);
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B;:(0,14,1,13,2,12,3) + % and (002,13, 003,14,6,8,9) +1,i € Z3;,
(001, 002, 003, 0, 14, 1, 13), (003, 001, 15, 10, 0, 9, 13),
{002, 001, 003, 14, 6, 8, 9), (003, 002,13,2,12, 3,0).
RG = (003,0, 8) U(o03, 8,0) J(oos, 14).
7-PM,(19) = (X, AU B; U B | B3), where
By ={B+i,i€ Z{\{-1,-5}}
! @ (001,11, 1,10, 14,13,12), (0,11, 6,12,5,9, 8).
LGz = (001,0,8) U(003,8).
(3) k=8 (v=11,14), X =4. By Corollary 2 and Lemma 9, we only
need to construct an 8-CM(v) with RG = Cs.
8-CM(11): (00,0,6,1,9,3,5,2) +1, i € Zyp, and (0,1,2,3,4,5,6,7),
(7,8,9,0,3,6,5,4), (4,3,2,1,0,9,8,7),(6,9,2,5,8,1,4, 7).
RG = (4,7).
8-CM(14): (001,9,002,0,1,6,2,5) +1, i € Z;;\{1},
{003,0,10,1,9,2,8,6) + 1, i € Z},\{2},
{001, 02,003, 0,1,6,2,5), {003,001, 10,1,9,2,8,6),
{001, 003,002,1,2,7,3,6),(c02,001,9,1,3,0,4,10),
(002,0,10,8,003,2,1,9). RG =(1,9).
4) k=9 (v=12,16,21,25), X =3.
Obviously, L; = Ry = 6,L, = Ry =3 and L3 = L, — R =0,R; =
Ry — Ly = 0. Thus, we only need to construct a 9-CM(v) with RG = Cj.
9-CM(12) = (Zy2,B), B: (0,11,1,10,2,9,3,6,4) + %, i € Z;2, and
{0,1,6,11,4,9,2,3,8),(0,4,5,6,7,8,9,10,11), (0,5,10,3,4,8,1,2,7).
RG = (0,4,8).
9-CM(16) = (Z16,B), B:
(0,15,1,14,2,13,3,12,4) + 1, i € Zyg,
(0,10,15,6,4,7,14,12,13) +1, 0 <7 <6,
(1,6,11,14,5,3,8,2,7),(3,4,5,6,13,11,12,15,9),
(4,9,14,8,13,7,12,5,10),(5,13,12,6,7,8,9,10,11). RG = (5,13,12).
9-CM(21) = (Z18 J{o01, 002,03}, B), B:
(001, 5,002,0,15,16,3,10,4) +1i, i € Z55\{1},
(03,0,17,2,15,3,14,4,13) + 1, i € Z1\{7},
{001, 002, 003, 0,15,16, 3,10, 4), {03,001, 6,9,4, 10, 3,11, 2),
(001,003,002, 1,16,17,4,11,5), (002,001, 3, 14,4, 13, 003, 7, 6),
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(003, 00, 5, 002, 0, 17, 2, 15, 3), [2]9, [—2]9, [4]9, [—4]9, [—8]9.

RG = (003,001,3). .

9—CM(25) = (Z22 U{OO], 0032, 003}, B), B:
(0,21,1,20,2,19,3,18,4) + i, i € Zss,
(001,5,002,21,12,10,11,14,2) + 4,3 € Z3,\{1}
(003,21, 4,20,5,19,6,18,7) +i,i € Z3,\{1},
(001, 002, 003, 21,12, 10, 11, 14, 2), (003, 001, 5, 21, 6,20, 7, 19, 8),
(002,01, 19,6, 18,7, 003,0,5), {001, 003,002,0,13,11,12,15,3),
(003, 001,6, 002, 21,4, 20, 5, 19). RG = (003,00], 19).

(5) k=10 (v=13,18), X=5.

A1l 2 3 4
6 2 8 4
Ly Ly~-Ry Li+L; Ly+ 1Ly
4 8 2 6
Ry Ri+Ry Ri-L, R, +R3

We only need to construct a 10-CM (v) with RG = 2C; = (z,y) U(y, 2)-

10-CM(13) = (Z12 | J{o0}, B), B:
(00,9,0,11,3,1,6,2,8,5) + 1, i € Z},, and
(0,1,2,3,4,5,6,7,8,10), (8,9,10,11,0,7,2,4,6,1),
(8,3,10,5,0,2,9,11,1,4),(1,3,5,7,9,0,11,6,8,4),
(00,9,4,11,3,1,6,2,8,5) . RG = (1,4) U4, 8).

10-CM(18) = (Z10 U{a, b, c,d}, B), B:
(a,2,b,9,¢,0,d,13,12,5) + 1, i € Z},,
(0,4,6,2,7,1,13,8,5,11) + 1, i € Zy4,
(a,b,d,¢,0,1,2,3,4,5), (d, a,c,b,9,10,11,12,13,0),
(c,d,b,a,2,3,6,7,8,9), {bc,a,d,13,12,5,6,3,2).
RG = (2,3) J(3,6).

(6) k=11 (v=14,20,25,31), X =11.

A 1 2 3 4 5
6 12 7 2 8
Ly Ly+Ly, Ly—Ry Ly—-Rz3 L,+1L,4
5 10 4 9 3
Ry Ri+R, R;-L; Ri+R; R, -L,
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A 6 7 8 9 10

3 9 4 10 5
Ly|Li-Rs Li+L¢ Lsy+Lsy Ly+Lg Ls+ Lg
8 2 7 12 6

Ry, | Ri+Rs R;—L¢ R)+Ry Ry +Rg Rs+ Rs

It is not difficult to see that we only need to construct an 11-CM(v) with
RG = Cs5|JCs.
11-CM(14) = (Zu U{001,002,003},B), B:
(001,2, 002,9, 003, 3,10,4,8,5,7) +i,i € Z},, and
(001, 002,003,3,6,9, 10,0, 1,4, 7), (001,003,4, 8,5,7, 10, 2,_ 002,9, 1),
(003, 002, 01,2, 5,8,0,3,10,4, 1),{003, %01, 1,2, 3,4,5,6,7,8,9),
[=1)11,[~2)11, [-58}11- RG = (003,4,1) J{001,1).

11-CM(20) = (Z17 U{OO], 002, 003},3), B:
{001,10,11,2,1,3,0,4,16,5,15) +¢ and
(002,6,003,2,0,3,16,4,15,5,14) + i € Z5\{1},

(001, 002, 003, 2, 1, 3, 0, 4, 16, 5, 15), (003,001, 11, 12, 3, 2,4, 1, 5,0, 6),
(002, 001,003, 3,1,4,0,5, 16,6, 15), (003, 003, 6, 16, 001,10, 11, 2,0, 1,3),
(002,7,003,1,0,3,16,4,15,5,14). RG = (003, 1,3) J(0, 1).

11-CM(25) = (Z22 U{001,002,003},B), B:
(001,20,5,2,16,3,15,14,17,0,1) +i,i € Z3,\{2}, and
(002,1,003,2,19,3,18,4,17,5,16) + i,i € Z3;\{1}.

(00, 002, 003,2, 16, 3,15,14,17,0,1), (00,0, 7,4, 18,5, 17,16, 003, 2, 3),

(002,001,003, 3,20, 4,19, 5, 18,6, 17), (003, 02,0, 3, 18,4, 17,5, 16, 19, 2),
(002,1,003,001,20,5,2,19,3,0,4), 2111, (211, [4)11, [~ 411, [~6]11-
RG = (002,0,4) J(0, 3).

11-C M (31) = (25 | J{o01,002,003},B), B:
(0,26,1,25,2,24,3,23,4,22,5) +i,i € Z23, and
(001,,11,24,2,16,17,21,23,22,10,7) + i,i € Z35\{3}.

(002, 26,003, 2, 23,3,22,4,21,5,20) +4,i € Z35\{1},

(00, 002,003,2,16,17, 21,23, 22,10, 7),

{003,002,0, 3,22, 4,21, 5,20, 24, 26),

(002, 001, 003, 3,24, 4,23, 5,22,6,21),

(001, 14,27,5, 19, 20, 002, 26, 25, 13,10),

(002,27, 003, 001,11,24,2,23,3,0,4). RG = (002,0,4) J(0,3).
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(7) k = 12(v = 15,22 and 18, 19), X = 2.
Obviously, L; = R; = 6 and Ly = R; = 0. We need to construct
a 12-CM(v) with RG = DKj3 for v = 15,22. And, for v = 18,19, we
need to construct a 12-PM(v) (with LG) and a 12-CM (v) (with RG) such
that the LG and the RG are isomorphic. From [8], an optimal 12-PM(v)
with LG = Cg for v = 18,19 can be found. And, from [7], an optimal
12-CM(19) with RG = Cs can be found. Here, we give an optimal 12-
CM(18) = (Zlg,B) with RG = Cs, where B:
(0,15,3,17,6,1,9,10,2,13,7,16) develop 18,
{0,17,3,1,6,5,9,7,12,11,15,13) +7 mod 18,1 <7 <5,
{0,3,6,9,12,11,15,13,16,1,4,7), (0,1,3,4,14,17,2,5,9,7,12,15),
{0,17,3,1,6,5,8,11,14,7,10,13). RG =(0,1,3,4,14,7).
(8) k=13 (v=16, 24, 29, 37), A=13.

A1 2 3 4 5 6
6 12 5 11 4 10
Ly Liy+L, Ly—-R Ly+L3y Li—-Ry L3+1L3
7 14 8 2 9 3
Ry, Ry+R, Ry-Ly Ri—-L3y Ri+Ry R3—1Lj
A 7 8 9 10 11 12
3 9 2 8 14 7
Ly | Li-Rs Li+L; Ls—Rs Ls+Ls Li+Liw Ls+Ly
10 4 11 5 12 6
Ry|Ri+Rs Lsy+Ly R +Rs Ry+Rs Ri+Rio Re+ Rs

It is easy to verify that, from Lemma 9 (v = k + 3,2k — 2,2k + 3,3k — 2),
we only need to construct a 13-CM (v) with RG = (z, y, 2) U(u, v) U{v, w).
13-CM(16) = ({001, 002,003} U le, B), B:
(001,0,002,12,1,11,2, 10, 003,4,9,5,8) + 1, i € 273,
{001,002, 003,4,9,5,3,1,12,10, 8,7, 6),
(001,003, 002, 3,6,4,2,0,11,9,7,5,8),
(003, 002,001, 6,5,4,3,2,1,0,12,11,10),
(003, 001,0,002,12,1,11,2,10,9,8,6,3),
[1}13,[6]13,[—6)1s. RG = {003,002, 3) (3,6} (6, c01).
13-CM(29) = ({o01, 002,003} U Z2s, B), B:
(001,0,1,24,3,23,4,22,5,21,6,20,7) +1i, i € Zag,
(002, 0, 25,22, 17, 23, 16, 003, 4, 21, 5,20, 6) +, i € Z3¢,
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(o001, 002, 003, 4,21, 5,20, 18, 16, 14,12, 10, 8),
(002,001,9,7,5,3,1,25, 10, 24, 22, 20, 6),
(001,003, 002,0,25,23,21,19,17,15,13,11,9),
(003,001,8,6,4,2,0,24,25,22,17, 23, 16).
(2113, [4h13, [~4]13,[8l1s- RG = (10,24,25) [ J(9, 001) (001, 8)-

13-CM(24) = ({001, 002, 003} U Zzl,B), B:
(002,2,1,3,0,4,20,5,19,6,003,18,7) +1, i € Z3,,
(001,0,1,20,2,19,3,18,4,17,5,16,7) +1i, i € Z3,\{10},
(o002, 003,001,10,11,9,12,8,13,7,14,6,1),
(002,00,,0,1,20,5,19, 3,4, 6, 003,18, 7),
(001, 003,002,2,1,6,3,18,4,17,5,16,7),
{001,00,1,3,0,4,20,2,19,6,15,5,17).
RG = (002,1) (1, 6) (6,3, 4).

13-0M(37) = ({001, OQ2a, 003} U Z34, B), B:
(001,0,1,33,2,32,3,31,4,30,5,29,6) +1, i € Z34,
(002,17,16,18,15,19, 14, 20,13,21,12,22,11) + 4, i € Z34,
(003,0,12, 33,13, 32,14, 31, 15, 30, 16,29,17) + 14, i € Z3y4,
(001, 002, 003,0,12, 33,21, 31, 4, 30, 5, 29, 6),
(002,001,0,1,33,2,32,3,31,21,12,22,11),
(001, 003,002,17,16, 18, 15, 19, 14, 20, 13, 21, 33),
(003,001,0, 33,13, 32, 14, 31, 15, 30, 16, 29, 17).
RG = (001,0,33) |J(21,33) J(21, 31).

(9) k=14 (v=17,26 and 19,24), X =7.

A1l 2 3 4 5 6
6 12 4 10 2 8
Ly Li+Ly, Li-R, Li+1Ls L3y —R; L3+ L3
8 2 10 4 12 6
Ry Ri-L, Ri+R;, R;-1L3 Ri+Ry Ry+ R,

. Case v=17,26 By Lemma 9 (v =k + 3 and 2k — 2), it is not difficult to
see that we only need to construct a 14-CM (v) with RG = DK; |J C,.
14-CM(17) = (ZM U{001,002, 003},3), B:
(001,0,2,13,3,11,4,10,6,005,9,7,003,5) +3, i € Z},\{3,8},
(003,001,002,9,12,1,4,7,10,13,2,5,8,11),
(002, 003,5,00,,9,7,8,10,11,0,1,2,3,6),
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(003, 002,01, 8,9,0,2,13,3,11,4,10,6,7),
(004, 003,11,12,13,0, 002, 3,4,5,2,6,9,8),
{001,0,5,10,1,6,11,2,7,12, 3, 8,13,9),
(001,3,5,6,0,7,13,4,9, 002, 12, 10, 003, 8),
(001, 8,9,10,7,11,5,12,4,0,3,1,003,13), [~1]14,[—5)14.
RG = (003, 11) U(ool, 8, 9) U(ool, 9, 8)
14—CM(26) = (Zzs U{001,002,003},B), B:
(001,1,2,0,3,22,4,21,5,20,6,19,7,17) + 1,i € Z33\{5},
(009,0,22,1,21,2,20,3,19, 4,18, 003, 5,17) + 1,4 € Z33\{—1,3,7},
{00y, 002, 003, 5, 8, 4,9, 3,10,2,11,1, 12, 22),
{001, 003, 002,0,3,22,4,21,5,20,6,19,7,17),
{003, 001, 6,16,0,22,1, 21, 2,20, 3,19, 4, 18),
{002,001, 1,2,003,4,16,12,0,6,22,7,5,17),
(002,7,6,8,5,9,4,10,3,11,2,0,12, 1),
(02,3,2,4,1,5,0,16,6,7,21, 003,8, 20),
{002,22,21,0,20,1,19,2,18, 3,17, 003, 12, 16).
RG = (6,16) |J(0, 12, 16) | J(0, 16, 12).
Case v = 19,24 We can verify that, from the table above, it is enough
to construct a 14-PM(v) (with LG = (a, b} |J(b,c) U(c,d)) and 14-CM (v)
(with RG = (z,y) Uy, 2) U(z, u) U(u, w)).
v = 19, Points :{c0} |J Zis.

A = {{c0,14,17,13,0,12,1,11,2,10,3,9,4,8) + i,i € A},

B = {{00,14,17,13,0,12,1,11,10,3,5,7,9,8),
(0,2,4,6,8,9,10,11,12,13, 14,15, 16, 17),
(0,17,16,14,13,12,11,9,4,8,7,6,5,2),

(0,16,13, 10, .8,5,4,2,17,15,12,9, 6, 3),
(0,15,13,11,2,10,9,7,4,3,1,17,14,16),
(1,3,4,5,6,7,8,10,12,14,11,13,15,17),
(1,16,15,14,12,10,7,5,3,9,11, 8,6,4)}.

14-PM(19) : A(A = Z}3) and B. LG = (0,1) U(1,2) U(2, 3).

14-CM(19) : A(A = Z3\{—4,—6}),B and
(0,8,11,9,12,6,13, 5, 14,4, 15, 3, 16, 2),
(0,10,13,9,14,8,11,7,12,3,2,1,0,4),
(0,1,2,3,12,9,11, 8,15,7,16,6,17, 5).
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RG = (3,12) J(12,9) (9, 11) (11, 8).
v = 24, Points :{00,, 002, 003, 004,005 } | J Z19.
A = {(001,0, 002,17, 003, 3, 005, 4,11, 5,10,6,9,7) + i;i € A},
B = {(004,10,0,18,1,17,2,16,3,15,4,14,6,7) + i,i € B},
C = {(001, 004, 007, 005,003, 3,17,4,11,5,10,6,9, 7),
(004, 001, 003, 005, 002, 17, 2, 18, 3, 15,4, 14,6, 7),
(003,001, 005,4, 16, 5, 15, 7, 8, 004, 11, 1, 002, 0),
(002, 004, 005, 9,12,6,11,7,10, 8,001, 1,3, 0),
(005,001,2,16, 8,9, 004,10,0,18, 1,17, 003, 4),
(005,004,12,2,1,0,4, 18, 003, 5,17, 6, 16, 3),
(001,0,2, 002,18, 5, 005,6,13,7,12,8,11,9) }.
14-PM(24) : A(A = Z$\{1,2}),B(B = Z}4\{1,2}) and C.
LG = (001,002} |J(002, 003) {003, 004).
14-CM(24) : A(A = Z3,\{1,2}), B(B = Z3,\{1,2,3}),C and
(001,002, 003,004,13,3,2,4,1,5,0, 14, 15, 16),
(004, 003, 002, 004, 16,15, 14,0, 6,18,7,17,9, 10).
RG = (c0y, 16) |J(16, 15) (15, 14) J(14, 0). n)

6 Constructions for L; =12

Lemma 10. There exist optimal k-PM(k + 4) and k-PM(2k — 3) for
k > 11. And, there exists optimal k-PM(2k + 4) and k-PM(3k — 3) for
odd k > 11. The leave-arcs graph of each of these packing designs is DKj.
Proof.

(1) k-PM(k+4),k > 11 and k # 12.

Let the points be {00;, 002,003,004} |J Z- Since ¢(k) > 8 when k > 11
and k # 12,14, 18, there are seven distinct numbers from Z;; as follows:

(k even)

1
+d;,+d,, +d3 and { (_1)%’“7'1- (¢ odd) ’

such that ged(d;, k) = 1 for 1 < i < 3. Then, the following k-circuits form
an optimal k-PM (k + 4) with LG = DKj:
when % is even:

[001, -A([z’ %]\{dla d2:d3})) —A—l([lr % - 1]\{d1v d2v d3}), 0032, ¥, 003, *, 004, *]1
[k, [da)e, [—dk, [d2]k, [—d2]x, [ds]k, [—ds]s;
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when k is odd:
[oo1, A([1, 272\ {d1, d2, da}), — A~ ([1, 5521\ {d1, d2, d3}), 002, %, 003, *, 004, #],
[("1)L;_l L, [da)e, [—dalk, [da)k, [—da2]k, [da)k, [—ds]e.
where the first starter (following 0o, ) is 0, and the other three starters (i.e.
number *) may be easily chosen from the remaining numbers of Z;.
The 12-PM(12 + 4), in fact, is a 12-MD(16). As for 14-PM(14 + 4)
and 18-PM (18 + 4), these can be constructed as follows.
14-PM(18): [1,2,3,5,—6,4, —2)2,
[001, —3, 6,7, 002, —1, 003, —4, 004, 5] with starters (0,2, —6, —2).
18-PM(22): [5)1s,[1, ~2,3, -4, -1, 3]s,
[001,2, —A[5,9]), —A1[4, 8], 002, ¥, 003, *, 004, *] With
starters (0,1,-1,-2).
(2) k-PM(2k - 3), k > 11.
Points: Za—7 |J{001,002,003,004}.
k-circuits: [001, A[1, k — 4], 002, #] with starters (0, k — 4),
(003, —A[1, k — 4], 004, #] with starters (0, k — 4).
(3) k-PM(2k + 4), k odd, k > 11.
Points: Zay |J{001,002,003,004}.
k-circuits: [oo1, A([1,k — 2]\{2,4,8}), k, 002, *] with starters (0, k),
[o03, —A([1, & — 1]\{2,4, 8}), 004, *¥] with starters (0, k),
[i)e for i = +2,+4, 48,k — 1.
(4) k-PM(3k — 3), k odd, k£ > 11.
Points: Z3_7 |J{oo1, 002, 003,004}
k-circuits: [oo1, A([1, k — 2]], [002, —A([1, k — 2]],
[00s, A[k — 1, 35T), ~ A~ [k — 1, 3£28], 004, #] with starters
(0,1). (]
Theorem 7. There exists all optimal k-PM),(v) ad k-CM)(v) for 11 <
k <14, v(v — 1) = 12 (mod k) and any A.

Proof.
(1) k=11 (v=15,19,26,30), A =11.
Al 2 3 4 5
12 2 3 4 5
L, Li-R, Li—Ry L2+L2-L2+L3
10 9 8 7 6
Ry Ri-L, Ri-Ls R —-L
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A 6 7 8 9 10

6 7 8 9 10
Ly | La+Ls Ly+Ls Lsy+ L4 L3y+L¢ Ls+Ls
5 4 3 2 12

Ry |Ri—Ls R;y-Lg Ri—-L; Ry—Ls Ry + Ry

Here the graph LG, is DK by Lemma 10. Therefore, if we give an
optimal 11-CM (v) with RGy = DK,4\C; and an optimal 11-C M, (v) with
RG; = DK4\C3, then, by Lemma 10 and the table, we can obtain all
optimal 11-PM)(v) and 11-C M, (v) for given v and any A.

v = 15,Points : X = Zy, U{001,002,003,004}.

11-PM(15) = (X, A) from Lemma 10, where its LG = DK} is on the
set {001,004,0,6}.

11-CM(15) = (X, B, UB2 U Bs)

B, = {B +1;i € 2},}, where B = {(00;,8,002,1,003,9,004,0,3,7,6);

B, : (00, 002,003,00,0,1,2,3,4,5,6), (004,00,0,2,8,10,1,3,9,7,6),

{002, 001, 004,0,6,7,5,3,1,10,8), (01, 004, 03,9,0,3,5,7,2,4,6);

B; : {00y, 002,003,004,6,1,7,8,9,10,0), (004,004,6,8,3,7,9,4,10,5,0),
(004,002,1,003,001,8,6,4,2,0,9),[—3]11,[—4]11,[5]11.

RG = (001, 004) U(001,0) {001, 6) U004, 0) U(c04, 6).

11-CM,(15) = (X, AU B} U B; U Bs), where

B, = {B+i;i € Z};\{2,3,-5,-6}};

Bh : {00, 002,003,004,0,1,2,7,4,5,6),(01,3,9,7,2,4,004,5,8,1,0),
{001,004,2,4,1,7,5,3,003,0,6), (co0z2,00;,004,0,6,7,2,3,1, 10, 8),
(004,001,0,2,8,10,1,3,5,7,6), (004, 003, 9, 8, 001, 10, 003, 3, 4, 6, 0),
(002,6, 003,4, 7, 1, 2, 5,9, 0, 3), (001, 2, 002,4, 03, 1, x4, 3,6, 10,9),
(001,0,002, 7, 003,3, 004, 6, 9, 2, 1).

RG, = (1,2,4) U1, 7Y U2, 7Y U{4,7).

v = 19, Points : X = Z5 [ J{001, 002,003,004}

11-PM(19) = (X, A), from Lemma 10, where its LG = DKy is on the
set {4,5,11,12}.

11-CM(19) = (X, B, U B2 U Bs)

B, = {B +1i;i € Z55\{1,2,6,9}} U{C + i;i € Z}5\{1,5,6}}, where
B = (003,11, 009,0,1,14,2,13,3,12,4),
C = {003,9,004,1,0,2,14,3,13,4,12);
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B, : (003,0,004,7,6,8,5,11,4, 10, 3),
(001, 11, 002, 6, 7, 5, 12,4, 9, 3, 10),
(001,002, 003,004, 1,0,2,13,5, 8, 4);
Bz : {003,001,004,2,1,3,0,4,12,5,13),
(001, 03, 009, 1, 2, 14, 3, 13, 4, 0, 5),
(001,5,002,9,4,8,11,7,12,6,13),
(003, 14, 004, 6,5,7,4,13,3,9,2),
(002, 04, 003, 9, 10, 8, 3, 12, 4, 14, 2),
{003, 10, 004, 002,001, 2, 3,14, 5,4, 12),
(004,001,12,009,0,1, 14,4,11,5,9),
{001,13,002,2,0,3,1,4, 5,14, 6).
RG = (4,5) | J(4,11) U(5, 11) U(4, 12) U(5, 12).
11-CM>(19) = (X, AU B; U B, U Bs) where
By ={B +1i;i€ Z{5\{1,2,6,7,9}}U{C +i;i € Z}5\{1,5,6,8} };
Bé H (001, 002, 003, 004, 1,0, 2, 3, 12, 8, 4),
(001,11, 002, 6,9,5,12,2,8,3,10),
(003,0,004,9,8,2,12,11,6,7,5),
(001,3,002,7,8,6,12,5,10,4,11),
(003, 2, 004, 7, 6, 8, 5, 11, 4, 10, 3),
(2,13,5,8,10,7,11,12,4,9, 3).
RG; = (3,12, 8) |J(2, 3) (2, 8) U(2,12).
v = 26, Points : X = Z35 | J{001, 002, 003, 004}.
11-PM(26) = (X, A) from Lemma 10, where its LG = DK} is on the
set {00;,002,0,16}.
11-CM(26) = (X, B1 |UB: U Bs)
By = {B +1;i € Z3,\{1}} U{C + ;i € Z3,}, where
B = (004,6,009,2,3,0,11,16,9,17,7),
C = (003,21,004,3,2,5,15,10,17, 8, 0);
B; : (002, 004, 003,21,19,17,15,13,11,9,7);
Bs : (001,003,002, 2,3,0,11,16,9,17,7),
{003, 001, 004, 3, 2,5,15, 10,17, 8,0),
(002,001,0,9,18,5,14,1,10, 19, 6),
(002, 003, 004, 00y, 6,15, 2,11, 20, 7, 16),
(001,002, 16,3,12,21,8,17,4,13,0),
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{00y, 16,0, 002, 3,1,12,17,10, 18, 8),
{004, 002,0, 16, 001,7,5,3,4,1,21),
(0, 20,18,16,14,12,10, 8,6,4,2),
(2]11, 4111, [~4]11, [6]11, [ 611
= (001, 0) {001, 16) {002, 0) U 002, 16) {J(0, 16).
11-CM»(26) = (X, AU B{ U B3 U Bs), where
= (B+ii € Zp\{L2AULC +ii € Z3\{-1,—10};
Bz H (001, 009, 004, 003, 21, 19, 17, 15, 5, 8, 9),
{002,001, 8,5,15,13,18,11,19,9,7),
(003,20, 004,2,1,4,5,9,16,7,21),
{003,11,004,15,14,9,5,0,7, 20, 12),
{002,4,14,17,5,2,13,11,9, 15, 8).
RG, = (5,8) |J(5,9) U(5, 15) LJ(8,9, 15).
v = 30, Points : X = Zyg U{001,002,003,004}.
11-PM(30) = (X, A) from Lemma 10, where its LG = DK} is on the
set {0,3,17,18}.
11-CM(30) = (X, B, B2 U B3)
= {A+14;i € Z3g\{-3}}U{B +1,C +i;i € Z35\{*1}}, where
A=(0,24,1,23,2,22,3,21,4,20,5),
B = (001,17, 002,22, 2, 21,3, 20,4, 19, 5,
C = (003,22, 004,2,4,17,16,13,1,5,6);
B, : (002, 004, 001, 18, 3, 21, 4,20, 5,0, 17),
{003,21,004,1,3,18,17,0,4,5,6),
{004, 003,22, 3,17, 16,13, 1, 20, 2, 23);
83 : (001, 0092, 003, 004, 2, 21, 3, 20, 4, 19, 5),
(001,003, 002, 23,3, 22, 4, 21, 5, 20, 6),
{003, 001, 004, 3, 5,18,17,14,2,6,7),
(004,002, 001,17,18,0, 24,1, 23,2, 22),
(003,22,2,4,17,3,16,15,12,0, 18),
(003,23, 21,24, 20,25, 19,0, 18, 1, 5),
(ool, 16, 002,21,1,17,2,19,3,18,4).
= (0,17, 18) |J(0, 18, 17) (3, 17) LU(3, 18).
11- CM2(30) (X, AUB; UB;JBs), where
= {A+14;i € Z3\{-3,13}}U{B +1i;i € Z3g\{£1}} U{C+z i€
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Z3s\{£1,-9}};

B, : {004, 003,22,3,17,16,13,1,18, 4, 23),
(002, 004, 00, 18, 23, 1, 4, 20, 5, 0, 17),
(004,1,20,2,23,4,18,17,0, 3, 21),
(003,13, 004,19,21,4,1, 3,18, 22, 23),
(13,11,14,10,15,9, 16,8, 7,4, 18),
(003,21,8,17,7,18,3,0,4, 5,6).

RG, = (1,4) |J(4,18) U(4, 23) (1, 18, 23).

(2) k=13 (v =17,23,30,36), X = 13.

A 1 2 3 4 ) 6
12 11 10 9 8 7
Ly Li-R, Li-R3 Li—Ry L, —Rs
14 2 3 4 5 6
Ry Ry-Li Ry —Ly Ry+R; Rs+Rz3 R3+R3
A 7 8 9 10 11 12
6 5 4 3 2 14
Ly |Li-Rg Li-R;y Li—Rs L;-Rs Lyg—Ry; Lg+ Lg
7 8 9 10 11 12
Ry | Ro+Ry Ry+Ry R4+ R; Rs+R; Ry+R;y Rg+ Rg

It is not difficult to see that all optimal 13-PM)(v) and 13-C M) (v) for
given v and any A can be obtained by the table and Theorem 4, if we give
13-PM (v) with LG = (z,y, 2} (=, z,y) U(z, u, v) U(z, v, u);
13-CM(v) with LG = (z,y, z) U(z, 2,9) U(z, v, v) U(z, v, u) U{v, w);
13-PM;(v) with LG, = (z,y, z) U(z, u,v) U(z, v, u) U (v, w),
where z,y, z,u, v, w are distinct.
v = 17, Points : X = Z;3 | J{a, b, ¢, d}.
A={(a,7,b,6,c,8,d,3,4,12,5,10,9) +i,i € A},
B = {{a,3,b,2,¢,11,4,d,12,0,1,6,5), [3l13, [-3]1s},
¢ = {(b,d,qa,4,6,8,10,12,1,3,5,7,9), {a,9, ¢, 4,b,5,6,7,d,2,10, 3, 11),
(a,6,b,12,¢,0,d,8,9,4,10,2,1), (a,0,b,8,¢,1,d,9,10,5,11,3,2),
[~2)13, [4]13, [-4]13},
D = {{a,b,c,5,3,10,4,1,7,2,8,0,12), (a,d, b, 11,¢,7,12,6,0,2,4, 3, 8),
(a,c,d,5,12,11,0,3,1,4,9,8,7), {(c,b,0,8,2,9,11,d,6,1,3,0,5)},
13-PM(17) = (X, ), where Q consists of A(A = {0,1,4,7,8}), B, C
and
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(a,12,b,11,¢,10,d,0,8,1,2,7,6), (a,d,b,3,¢c,7,12,11,0, 2,4,9,8),
(a,5,b,4,¢,6,d,1,9,2,3,8,7),(a,10,5,9,11,d,6,1,7,2,8,0,12),[—6}.3.
LG = {(a,b,¢) U{a,c,b) U{c, d,5) U(d, c, 5).
13-CM(17) : A(A ={0,4,7,8}),B,C,D and
(d,c,a,0,7,1,8,b,9,3,4,11,5), (a,5,b,3,c,10,d,0,8,1,2,7,6),
(a,10,b,4,c,6,d,1,9,2,3,5,0),(a,12,,7,¢,9,d,4,5,0,6,11, 10).
RG = (1,4,3) (1, 3,4) U(3,0,5) U(0,3,5) U(0, a).
13-PM,(17) = (X, UBUDUE), where ' is an isomorphic image
of Q under the mapping a =+ 1,b > 4,c =+ 3,d > 0and 5 = 5.
£ consists of the following 14 blocks:
(a,9,c,4,b,5,0,7,d,2,10,3,11),(a,0,b,6,¢,8,d, 3,4,12,5,7,9),
(a,1,b,8,¢c,12,d,9,10,5,11,3,2),(a,6,b,7,¢,0,d,8,9,4,10,2,1),
{a,7,3,12,¢,2,d,4,5,0,6,11,10),(a, 2,b,1,9,3,d,11,12,7,0,5,4),
(d,1,5,9,0,4,8,12,3,7,11,2,6), (b,4,¢,6,2,11,9,7,5,3, 1,12, 10),
(d,c,a,10,1,8,5,9,2,3,4,11,5), (e, 11,4, 3,¢,10,4d,0,8,1,2,7,6),
(a,12,b,10,¢,9,d,7,8,3,5,1,0), (b,0,¢,1,4,10,11,6,12,4, 3,9, 5),
{c,3,q,5,6,7,b,12,8,4,0,9,1), (b,d,a,4,2,0,11,7,1, 3, 5,10, 9).
RG, = (6,8,10) | J(6,10, 8) (1,10, 12) (4, 6).
v = 23, Points : X = Zy9 | J{a,b,c,d}.
A = {{a,11,b,0,1,18,2,17,3,16,4,15,5) + i;i € A},
B = {(c,1,4,0,10,18,11,17,12,16,13,15,14) + i;i € B},
¢ = {{c,2,d,0,10,18,11,17,12, 16,13, 15, 14),
(a,d,b,0,1,18,2,17,3,16,4,15,5),
(c,7,d,a,11,0,12,18,13,17, 14,16, 15) },
D = {{b,d,6,16,5,17,4,18,3,0,2,1,11)},
& ={{d,1,c4a,b4,5,3,6,2,7,11, 10),
(a,15,17,16,¢,d,10,11,7,1,8,0,9)}.
13-PM(23) = (X, ), where Q consists of A(A = Z}y),C, D and B(B =
Z$\{1,6}). LG =(a,b,c)U(a,c,b) {c,d,1) U{d,c, 1).
13-CM(23) : A(A = Z3,\{1,4}),B(B = Z;,)\{1,2,6}),C,D,& and
(a,12,b,¢,1,d,8,10,7,17,5,16,6), (d, ¢, b, 1,2,0,3,18,4,17,7,10, 8),
{b,a,¢,3,d,2,12,1,13,0, 14,18, 15).
RG = (7,11,10) |J(7, 10, 11) | J(10, d, 8) (<, 10, 8) | J(7, 17).
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13-PM,(23) = (X, UAUBUCUE U F), where & is an isomorphic

image of  under the mapping ¢ = 7,b = 11,¢ = 10,d + dand 1 = 8.
A(A = Z$p\{1,2,4}),B(B = Z},\{1,2,3,6,7,8,18}) and F consists of the
following 8 blocks: _

(b,¢,8,d,6,16,5,17,4,18,3,1,11), (a, 13,b,d,c, 1,4,0,5,18,6,17,7),

{c,9,d,7,10,16,6,18,5,0,4,1,3),(a, 12,14,13,¢,b, 1, d, 8,10, 7,17, 6},

(c,3,d,8,18,7,0,6,1,5,2,4,17), (b, a,c,4,d, 2,12, 1,13,0, 14, 18, 15),

{b,2,¢,0,d,18,9,17,5,16,11,15,12),

(4,3,13,2,14,1,15,0,16, 18,17, 10, 8).

RG, = (0,2,3) 1J(0,3,2) U(3,18,4) U(1,2).
v = 30, Points : X = Zp¢ | J{a, b,c,d}.

A= {{(a,6,b,0,1,24,3,23,4,21,5,20,7) +i,i € A},

B = {(c,7,d,0,25,2,23,3,22,5,21,6,20) +4;i € B},

C = {{c,20,d,4,6,9,4,10,3,12,2,13, 1), [8)13, [-8]13, [~ 12]13, [2]i3,
[—2]%& [4]%3’ ["4]%.3}’

D = {{c, 14,4d,0,25,2,23,3,22,5,21, 6, 20),
{a,d,b,0,1,24,3,23,4,21,5,20,7), :
(b,d,13,12,15,10, 16,9, 18,8,19,7,6),[2]%, [2]%, [4]1%5, [-41%},

&£ ={{d,c,b,3,4,1,6,0,7,24,20,25,12),
(b,a,c,8,d,1,0,3,24,4,23,6,22),

{d,7,¢,a,b,16,17,14,19, 13, 20, 8, 25),
(e,22,7,21,¢,d,25,8,20,11, 16, 10, 23},
{a,19,b,13,14,11,21,10,17, 8,18, 7,20} }.
13-PM(30) = (X, ), where § consists of A(4 = Z35),C,D and B(B =
Z3:\{7,13}). LG = {(a,b,c) U(a,c,b) U(c,d, 7y U(d, ¢, 7).
13-CM(30) : A(A = Z3\{3,13,16}),B(B = Z3,\{1,7,13}),C,D,€&
and (a,9,b,¢,7,d,12,25,20, 24, 8, 23, 10).
RG = (8,20,25) (8, 25, 20) (25, d, 12) U(d, 25, 12) LU(20, 24).
13-PM,(30) = (X, UAUBUCUEU F), where €' is an isomorphic
image of  under the mapping a — 8,b = 20,¢ — 25,d -+ d and 7 — 12.
A(A = Z34\{3,7,13,16}), B(B = Z3,\{1,4,7,13,21}) and F consists of
the following 10 blocks:
(0,25, 2, 24,22, 20,16,12,10,8,6,1,7),
(0,4,8,19,7,6,10, 14, 16, 18, 20, 22, 24),
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(e, 11,d,13,12,8,4,0,22, 18,14, 10, 24),
(c, 14,d,0,24,2,23,3,22, 5,21,6, 20),
(a,d,b,0,9,25,10,12, 14,18,16, 20, 7),
(c,2,d,4,3,23,18,22,0,16,14,12, 15),
(0,1,15,10, 16,9, 18, 8,12, 25,20, 24,17),
(b,c,7,d,12,16,1,24,8,5,10,a,9),
(a,13,b,d,21,20,23,4,11,2,12, 1, 14),
(b,7,8,23,10,4,21, 5,20,18,24, 3, 6).
RG, = (2,4,6) U(2,6,4) U(6,8,10) J(0,2).
v = 36, Points : X = Z3; |J{a, b, c,d}.
A = {{a, 25,b,0,1,31,2,30,3,10,20,9,21) + 4;i € A},
B = {{c,26,d,0,31,1,30,2,29,3,28,4,27) + i;i € B},
€ ={(0,24,1,23,2,22,3,21,4,20,5,19,6) +i;i € C},
D = {{c,20,d, a, 25,27, 24, 28, 23,29, 22, 30, 21),
{c,25,d,0,31,1,30,2,29, 3,28,4,27)},
£ = {(b,d, 31,30,0,29,1,28,2, 27, 3, 26, 25),
(a,d,b,0,1,31,2,30,3,10,20,9,21)},
F = {(d,26,¢,a,b,4,5,3,6,2,7,1,10),
(b,a,c,27,d,1,0,2,31,3,30,4,29)}.
13-PM (36) = (X, ), where Q consists of A(A = Z3,),C(C = Z33), D,
B(B = Z3,\{26,31}) and €. LG = (a,b,¢) U(a, ¢, b} (e, d, 26) LU(d, c, 26).
13-CM(36) : A(A = Z3,\{2,4}), B(B = Z},\{1,26,31}),C(C = Zs),D,
&, F and
(,27,b,¢,26,d,6,10,7,12,22,11,23), (d, ¢, b,2,3,1,4,0,5, 12, 7, 10, 6),
(a,29,5,28,¢,d,10,1,7,14, 24,13, 25).
RG = (1,7,10) (1, 10, 7) LU(10,d, 6) U(d, 10, 6) (7, 12).
13-PM,(36) = (X, UAUBUCUDUFUG), where §¥ is an iso-
morphic image of 0 under the mapping a = 1,b = 7,¢ = 10,d = d
and 26 — 6. A(A = Z3$\{3,4}),B(B = Z,\{1,3,4,5,26,31}),C(C =
Z3,\{16}) and G consists of the following 9 blocks:
{a,28,b,¢,26,d,10,1,7,18,6,0, 24), (¢, 30,d,4, 2,5,1,6,10, 7,0, 8, 31),
{c,31,d,5,19,6,3,7,2,4,1,9,0),(a,29,5,28,c,d,6,1,7,14, 24, 13, 25),
(d,b,c,3,5,2,22,16,8,17,7,10,6), {a,d, },0,6,31,2,8,1,5,20,9,21),
(b,d,31,30,0,29,1,23,2,27,3,26,25), (c, 29,d,3,2,6,19,5,0,1, 31, 7, 30),
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(2, 30,3,10,20,4,6,13,23,12,24,1,28).
RG; = (3,4,21) (4, 3, 21) |J(4, 20, 5) (3, 22).
3 k=14 (v=18,25), A="T.
An optimal 14-C M (v), v = 18 and 25, can be found from Lemma 3 and
Theorem 1 in (7). For 14-PM(v), by Lemma 10 and Corollary 2. (u]

7 Construction for other I,

1° Case L, =3
(1) k=9 (v=13,15,22,24)
Since X = 3 and R; = 6, we need to construct a 9-PM(v) with leave-
arcs graph C3 and a 9-C M (v) with repeat-arcs graph DKj.
v = 13, Points : Z;3.
A={(0,12,1,11,2,10, 3,6,4) + ;i € A}
9-PM(13): A(A = Zy3) and
0,7,1,8,2,9,10,11,12),(0,1,2,3,4,11,5,12,6),
(0,5,10,4,9,1,6,7,8),{(2,7,12,4,5,6,11,3,10). LG = (3,8,9).
9-CM(13): A(A = Z};) and
(0,1,2,3,4,5,6,7,8),(0,5,10,2,7,12,4,9, 1),
(0,7,1,8,9,10,11,5,12),(0,1,9,3,10,4,11,12,6).
RG = (0,1,9)J(0,9,1).
v = 15, Points : Z;5.
A={(0,4,14,5,8,6,2,1,3) +i;i € A}
B ={(1,10,4,11,3,8,9,14,7) + i;1 < i < 3}.
9-PM(15): A(A = Z;5),B and
(1,10,3,4,12,5,14,7,8), (0,1,8,13,3,10,2,9,14),
{0,5,13,6,14,8,9,2,7),(0,7,12,13, 14, 4, 11, 3,8),
0,9,1,2,3,11,4,5,6). LG =(1,6,7).
9-CM(15): A (A= 2Z}),B and
(0,5,10,3,4,12,13,6,14), (0,1,10,5, 14,4, 11,3, 8),
{0,4,5,13,14,8,1,2,7), (0,7,8,13,3,11,4, 5, 6),
(0,9,14,5,8,6,2,1,3),(1,6,7,12,5,4, 10,2,9),
(1,8,9,2,3,10,4,14,7). RG = (4,5,10) |J(4, 10, 5).
v = 22, Points :Z;4 | J{00y, 002, ..., 006}
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A = {(00:,3,13,4,12,005,1,14,2) + %;i € A}
B = {{003,3,4,6,9,004,1,12,2) + ;i € B}
C = {(00s,3,12,11,9,00¢,1,13,2) + %;i € Zg}
D= {(001, 005, 00g, 003, 004, 002, 1, 14, 2),
{05002, 001, 004, 003, 006, 1,13,2),
(003, 00g, 001, 002, 00g, 004, 1, 12, 2)}
9-PM(22): A(A = Z3g\{4}), B(B = Z{\{-5}),C,D and
(001,7,13,4,12, 009, 5,2, 6),{004, 01 , 00g, 005, 003, 3,4, 6, 9),
(002, 003,001, 3, 12, 7, 1, 8, 0),(004, 005,3, 13, 003, 14, 15, 1, 4),
(00g, 001, 003, 002, 005, 004,12,11,9). LG = (002,004, 006).
9-CM(22): A(A = Z3g), B(B = Z{s\{4}), C,D and
(002,004, 5,0,13, 005, 3,4, 12), (004, 00, 00¢, 005, 003, 3,12, 11, 9),
{o0g, 001, 003, 002, 005, 13, 4,6,9), (004,005, 0, 6,003,7,8,10,13),
(005, 004, 00g, 002, 003, 001, 3, 13, 0)
RG = (00s,0,13) {J(o0s,13,0).
v = 24, Points : Zyg | J{001, 002, 003,004}.
A = {{001,0,19,1,18,2,17,3,16) + ;¢ € 23},
B = {{00,,16,3,17,2,18,1,19,0) + i;¢ € B},
C = {(o03,1,004,16,4,15,5,14,6) + i;i € C}.
9-PM(24): A, B(B = Z2\{3}), C(C = Z3y\{1}) and
(003, 001, 004, 16, 4, 15, 5, 4,6),(003, 002, 004, 17, 5, 16, 6, 15, 7),
(002, 01, 0, 19, 1, 004, 003, 2,3), (004, 02, 19, 6, 0, 5, 1, 4, 2),
{001,002, 003,1,18,2,17,3,16). LG = {00, 003,004).
9-CM(24): A, B(B = Z3;), C(C = Z35\{1,3}) and
(002, 001, 003,004, 17, 5,1, 19, 0), {003, 001, 004, 16,4, 15, 5, 14, 6),
{004, 002,003, 2,17, 3, 16, 001, 1), (001,002, 16,3,17,2,18,1,5),
(004, 003, 1, 001, 0, 19,7, 18, 2),{c03,4, 004,19, 1,18,8,17,9),
(003, 002, 004, 001, 5, 16,6,15,7). RG = {o01,1,5) | J{c01,5,1).
(2) £ =13 (v = 20,33).

A 1 2 3 4 ) 6
3 6 9 12 2 5

L Ly+L, Li+Ly Lo+Ls Ly—Rs; Li+Ls
10 7 4 14 11 8

Ry Ri-L, R;-L, Ri+R3 R;+R3 R3+Rj
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A 7 8 9 10 11 12

8 11 14 4 7 10

Ly | Li+L¢ Li+L; L1+Lsg Lg+Ls Ly+Ly Li+Lyn

5 2 12 9 6 3

Ry|Rs—L, R;—L, Ri+Rs Ry+Rs Ry+Rs Ru-1IL

It is not difficult to see that we only need to construct a 13-PM(v) with

LG = C3 and a 13-CM (v) with RG = DK3 | J(z,y) U(y, 2)-
v = 20, Points :Z2.
A= {(0,19,1,18,2,15,10,16,4,7,3,8,6) +i;i € A},
B = {(0,10,11,3,4,16,7,17,6,15,5,12,19) +i;¢ € B},
¢ = {(0,11,1,10,2,13,4,7,3, 14,5, 16, 8),
(0,7,18,5,15,4,14,3,12, 1,8, 19, 11),
{0,12,3,10,1,13,2,14,4,15,16,17,9),
(1,12,2, 11,18, 19,6, 16,3, 15,7,8,9),
(1,16,2,10,13,9,14,15,6,5,7,4, 8),
(2,15,10,19,9, 16,5, 14,12, 6,17, 4,11)}.
13-PM(20) : A(A = Z3,\{6}),B(B ={0,1,2,3}),C and
(0,19,1,18,2,9,10,16,4,13,3,8,6). LG = (10,17, 18).
13-CM(20) : A(A = Z3\{1,2,6,—4}), B(B = {0,1,3}),C and
(0,2,19,3,16,11,17,12, 18,6, 13, 14, 1),
(0,4,17,14,18,9,19, 8,2, 16,15,1, 3},
(0,19,1,2,9,5,10,16,4,13,3,8,6),
(1,15,14,13,6,18,10,17,5,8,4,9,7),
(1,18,2,12,13,5,6,9,10,8,17,7,14),
(0,3,19,4,2,1,14,15,17,18,11,6,12).
RG = (6,13) (13, 14) (1, 14, 15) (1, 15, 14).
v = 33, Points :Z3; | J{c0}.
A= {(10,9,11,8,12,7,13,6,14,5,15,4,16) + ;i € A},
B = {{c0,5,10,17,9,18,6,19,4,20,2,21,7) + ;i € B},
¢ ={{0,1,31,2,17,18, 16, 19,9, 20, 3, 25,4) + 4;0 < 7 < 13},
D = {{00,5,10,9, 18,6, 19,4, 20, 16, 14,17, 7),
(00,30,26,22,18, 1,23, 19,2, 24,3, 31,0),
(0,28,24,20,2,21,7,18,8,19, 15,16, 17),
(0,30,3,10,17,9,11, 31,12,29, 13, 27, 14),
(1,29,25,21,17,15,13, 16, 31, 27, 23, 2, 30) }.
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13-PM(33) : A(A = Z3,),B(B = Z3,\{-7}),C,D and
(2,11,8,12,7,13,6,14,5,15,4,16,10). LG = (14,15,18).

13-CM(33) : A(A = Z3,\{~10}), B(B = Z},\{-7,10}),C,D and
{00, 15,20, 27,19, 28, 16, 29, 14, 30, 18, 31, 17),
(0,18,14,5,15,4,16,10, 2,11, 30, 12, 31),
(0,31,1,30,11,8,12,7,13, 6,14, 15, 18),
(0,31, 18, 30,2,29, 3,28,4, 27, 5, 26, 6).
RG = (0,18, 31) [ J(0, 31, 18) [ J(18, 30) |J(11, 30).

2° Case L, =4

(1) k=8 (v=12,13)

Since X = 2 and Ry = 4, we only need to construct an 8-PM(v) (with
leave-arcs graph LG) and an 8-CM(v) (with repeat-arcs graph RG) such
that LG and RG are isomorphic.

v = 12, Points : Z;; |J{oo}.

A= {{0,1,6,2,5,3,4,8) +i;i € A};

B = {(0,10,9,8,7,6,3,5),(0,2,4,6,8,10, 1, 3), (0,8, 5,2,10,7,4,1)}.

8PM(12): A(A=Z};),B and (0,6,1,7,2,8,3,9),(,1,9,6,2,5,4,8),

4,3,2,1,6,5,7,9).LG = (3,4,10, 5).
8CM(12): A(A=Zn),Band (6,1,7,2,8,3,9,4),(5,4,3,2,1,9,0,6),
(4,10,5,7,9,6,0,1).RG = (0,1,4,6).
v = 13, Points : Zg | J{oo1, 002,003,004}

A = {{001,0,002,1,5,2,4,3) +i;i € Zp\{1,4}},

B = {(003,0,004,3,4,2,5,1) + i;i € Z3},

C= {(002, 004, 003, 001,4, 2, 5, 1), (001, 004, 002, 2,6, 3, 5, 4),

(002,001,1,003,0, 004,3,4)}.
8-PM(13): A,B,C and (00;,003,002,5,0,6,8,7).
LG = (001,002,003, 004).

8CM(13): A, B,C and (004, 001,003,002, 5,0, 6, 8),

(001, 02, 003,004,2,4,8, 7)RG = (004, 2,4, 8)

(2) k=13 (v=19,21,32,34), X =13.
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Al 2 3 4 5 6

4 8 12 3 7 11
Ly Li+Ly Li+Ly Ly—Ry Li+Lsy L+ 1Lg
9 5 14 10 6 2
Ry Ri-L, Ri+R; R;+R; Ri—-Ly Rs—1I;
A 7 8 9 10 11 12
2 6 10 14 5 9
Ly |Ihyn-Rs Li+L;y Ly+Ls Li+Ly Ly+Ly L+ Ly
11 7 3 12 8 4
Ry |Ri+Rs Ry+R¢ Ry—Ly Rs+Rs Rs+Rs Rg+Rs

It is not difficult to see that we only need to construct a 13-PM (v) with
LG = (z,y) U(z,v) and a2 13-CM (v) with RG = (z,y, z) U(z, ¥, z) U(z, u,v),
where {y, 2z} N{u,v} = ¢.

v = 19, Points : Z1g.

A={(0,5,1,4,2,15,14,16,13,17,12,18,11) + i;i € A},

B ={{0,7,16,17,8,18,10,11,3,4,15,5,12) + i;1 <i < 5}.

13-PM(19) : A(A = Z},\{8,11,12}),B and

(0,7,16,17,8,18,10,11, 3,4,13,9,12),
(0,5,1,4,2,15,6,16,13,3,12,18,11),
(0,8,13,17,12,10,4,3,5,2,6,1,7),
(2,11,18,6,8,5,15,14,16,7,17,9,10),
(3,11,16,12,17,13,7,6,15,5,9,4,10),
(4,12,15,13,16,14,8,7,9,6,10,5,11). LG = (4,14) J(5,14).
13-CM(19) : A(A = Z3,),B and
(0,7,16,17,8,18,6,15,5,14,4,13,1),
(0,5,1,7,17,9,10,2,11,18,13,3,12),
(0,1,18,10,11,3,4,14,5,15,6, 16, 7),
{0,7,1,4,2,15,14,16,13,17,12,18,11).
RG =(0,1,7) (7, 1,0) U(1,18,13).
v = 21, Points :Z;5 J{a, b,¢,d, ¢, f}.

A= {{a,7,b,13,¢,2,0,3,14,4,11,5,6) + i;i € A},

B ={{d,5,¢,10, f,0,2,1,13,6,12,7,11) + ;i € B}.

C ={(d,a,e,b, f,c,2,1,13,6,12,7,11), (e, 14,d, b, e, ¢, f,0, 3,4,11,5,6),

{c,b,d,e, f,a,7,10,6,11,3,12,13), (5,13, f, 3, 5,¢,10,¢,9, 2, 8,11, 7),
(b,c,e,a,f,d,5,4,1,9,0,10,14), {a,5,b,11,¢,0,13,12,2,9,3, 14, 4),
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(a,d, f,b,5,c,10,8,3,7,12,4,13), (a,4,b, 10, f, e,d, c, 14, 12,0, 2, 3),
(a,0,11, f,1,12,9,7,d,8,¢,13,14), (b,6,c,d, 7, ¢, 12, f, 11,1,8,2, 0),
(2,12,b,3,¢,7,13,8,4,9,1,10,11), (d, 6, ¢, 11,13, 1,3,2,14,7,5,8,12)}.
13-PM(21) : A(A = Z5\{5,7,8,12,13}),B(B = Z3\{1,2,3,11}),C
and (d, 1,e,6, f,2,4,3,0,8,14,9,13). LG = (a,b) Ula,c).
13-CM(21) : A(A = Z3\{5,7,8,12,13,14}), B(B = Z3\{1,2,3,4,11,
14}),C and
(b,d,9,e,14, f,4,5,11,6,10,1,7), (b, a, ¢, 1,14, 2,13, 3, 10,d, 7, 4, 6),
(c,a,b,7,d,4,e,9, f,14,1,0,12), (a, 6, f, 2,10,4,1,11,0,d, b, 12, 5),
(d,1,e,6,5,2,4,3,0,8,14,9,13). LG = (b,d,7)U(d, b,7) U(1,7,4).
v = 32, Points :Z56 | J{a, b,c,d, e, f}.
A={(a,2,0,9,¢,1,0,3,24,5,22,7,20) + i;i € A},
B ={(d,7,e,25,f,0,1,24,3,22,5,20,8) +4; 1 € Z3\{1, 23}}.
C = {{a,25,b,e,d, f,0,3,24,5,22,7, 20),
{c,b,d,e, f,a,2,25,4,23,6,21,9),
(d,a,e,b, f,c,1,24,3,22,5,20,8),
(b,c,e,a, f,d,8,11,6,13,4,15, 2),
(c,d,4,e,22, f,23,24,21,0,19,2,17),
(a,d,b,6,c, f,€,0,21,2,19,4,17),
(f,b,17,5,d,¢,9,8,¢e,25,24,1,0),
(a,10,b,9,d,7, e, ¢, 24,23,0,1,2),
[2]13, [~2)13, [4]13, [~4]13, [6]13, [—6)13, [8]13, [~813, [L0)13, [~ 1013}
13-PM(32) : A(A = Z3,\{8,23,24}), B,C and
(a,0,b,7,¢,25, f,1,22,3,20,5,18), [12h13. LG = (a,b) U(a,c).
13-CM(32) : A(A = Z35\{1,8,23,24)), B,C and
{c,a,b,10,22,3,20,6,18,4,16,2,15),
{b,a,c,2,14,0,12,24,15,19, 5,17, 3),
{c,15,1,13,25,11,23,9,21,7,19, 24, 10},
(a,0,b,7,¢,2,1,4, 25,6,23,8,21),
{a,3,15,2,¢,25, f, 1, 22, 8,20, 5,18).
RG = {c,2,15) U(c, 15,2) (15, 19, 24).
v = 34, Points :Z55 | J{a, b,¢c,d, e, f}.
A= {{a,1,b,26,c,0,13,14,12,15,11,16,2) +i;i € A},
B = {(d,12,e,4, f,13,0,7,27,8,26,9,25) + i;4 € B}}.
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¢ ={(0,27,1,26,2,25,3,24,4,23,5,22,6) + i,i € Z3},
D = {{c,b,d,e, f,a,1,8,0,9,27,10, 26), (d, a, e, b, f, ¢,0,7,27,8,26,9, 25),
(a,d,b,e,c, f,13,14,12,15,11,16,2),
{b,c,e,5, f,d,12,13,11, 14,10, 15,1},
{a,0,11,27,d,14,¢,6, f,15,2,9, 1),
{e,a,2,b,27,¢,4d, f,14,1,10,0,13),
(a, f,e,d,c,1,14,15,13,16,12,17, 3),
(f,b,26,5,25,6,24,7,23,d,10,¢,2)}.
13-PM(34) : A(A = Z33\{1,27}), B(B = Z33\{1,2,26}),C,D and
(b,25,¢,27,12,¢,4, f,11,26,d,13,0). LG = {(a,b) J(a,c).
13-CM(34) : A(A = Z3\{1,26,27}),B(B = Z33\{1,2,3,26}),C,D and
(b,a,¢,2,15,16,14,17,13, 18, 4, 26,0),
{a,3,b,0,d,15,¢,7, f,11,26,16,4),
{c,a,b,26,4,16,3,10,2,11,1,12,0),
(b,25,¢,27,12,¢,4, f, 16,26, d, 13, 0).
RG = (4,16, 26) | J(4, 26, 16) | J(b, 26, 0).
3°Case L; =5
k=7 (v=11,18), XA = 7. By Corollary 2, we only need to construct
an optimal 7-PM(v) with LG = C3|JC> and an optimal 7-C M (v) with
RG = Cg.
v = 11, Points : Z7 | J{00;, 002, 003,004}.
A= {(001,1,2,002,3,5,4) +142 € A},
B = {(003,0,4,004,1,6,2) + ;i € B},
C = {{o01, 004, 003,02, 3,5,4) }.
7-PM(11): A(A = 22),B(B = 22),C and
(003, 004, 002, 001, 1,6,2), (002, 003,0,4, x4, 1, 2).
LG = (001, 002,004) J{001,003).
7-CM(11): A(A = Z3\{-1}),B(B = Z;\{3}),C and
<002, 001, 03, 004, 0, 1, 2), (003, 001,003, 004,4, 2, 5),
<004, 001, 1, 003y, 003, 3, 0), (004, 002, 2,4,3,001,0).
RG = (004,0).
v = 18, Points : Z;4 [J{001, 002, 003, 004}.
A = {(003,0,13,1,12,2,11) + i35 € A}.
B = {{004,1,11,2,10,3,9) + ;i € B},
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C = {{001,10,8,009,12,1,2) +i;i € Z},},
D= {(001,002,003, 004, 1, 11,2), (004,003, 002, 003, 10, 3, 9),
(003,001,004, 002,12, 2,11} }.

7-PM(18): A(A = Z3,\{1,2}), B(B = Z;,\{1}), C, D and

{002,004, 001,003, 2, 10,8),{003,0, 4,13, 1,3, 12),
(003,1,2,12,3,0,13), {004, 2,13,3,11, 4, 10).

LG = (0,2,1) U(1,12).

7-CM(18): A(A = Z3,),B(B = 23,),C, D and {004, 001, 03,0, 13, 1,12),
<002,004, 12, 1,2, 10, 8) RG = (004, 12).

4° Case L, =7
k=13 (v=18,22,31,35), A = 13.
A1 2 -3 4 5 6
7 14 8 2 9 3
Ly Li+Ly Ly-Ry L3—-Ry Ly+Lsy L,- Rs
6 12 5 11 4 10
Ry Ry + R1 Ry, —-L, R+ R3 Ry —-L, R1 + Rs
A 7 8 9 10 11 12
10 4 11 5 12 6
Ly |Ly+L¢ Lsy+Ly Ly+Ls Ly+Lg Ls+Lg L¢ + Lg
3 9 2 8 14 7
Ry|\R3—Ly R3+R; Ry —-Lg Ry +Ry R;+ Ry R3 + Ry

It is not difficult to see that we only need to construct a 13-PM (v) with
LG = (z,y) Uy, 2) U(z, u,v) and a 13-CM (v) with RG = DK;.
v = 18, Points : Z3.

A={(0,4,17,5,16,6,15,7,12,8,11,9,3) + i;i € A},

B = {(0,2,4,6,8,9,10,12,13,14,7,15,17),
(0,17,6,13,2,9,16,5,12,1,8, 14, 3},
(0,7,9,11,13,12,8,15,6,16,3,17,2),
(0,6,7,14,15,4,11,9,3,10,17,1, 5),
(0,4,17,5,16,6,15,7,12,9,13, 8, 11),
(1,3,5,6,17,7,16,8,13,9,12,10,4)}.

13-PM(18) : A(A = 2Z5\{1,9}), B and

(0,1,2,3,4,5,7,8,10,11, 12, 14, 16),
{0,12,11,10,9,8,7,6,5,4,3,2,1).
LG = (13,15, 14) J(15,16) J(16, 17).
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13-CM(18) : A(A = 2%\{1,8,9,14}), B and
(0,12,11,10,9,8,7,6,17,4,3,2,1),

{0,1,12,2,11, 3,4,6,5,17,16,15, 14),
{0,13,1,2,3,8,12,7,5,4,17, 14, 16),
(1,17,11,8,4,7,13,6, 14,5, 15,2, 16),
(4,5,7,8,10,11,12, 14,13, 15,16,17,6).
RG = (4,6,17)U(4,17,6).

v = 22, Points : Z17 J{a, b, ¢, d,e}.

A= {{a,8,0,2,1,3,0,4,16,5,14,7,15) + i;i € A},

B = {{e,5,d,11,e,0,1,16,2,15,3,14,4) +i,i € B},

C = {{e,b,d,a,c,5,7,4,8,3,9,1,11),
(d,c,e,a,8,b,2,1,3,0,4, 16, 5),
(a,12,d,1,e,7,8,6,5,10,4,11,2),
(a,e,d,11,¢,12,b,6,9,5,14,7,15).

13-PM(22) : A(A = Z3;\{4}), B(B = Z%),C and
{¢,a,d,b,¢,0,1,16,2,15,3,14,4).LG = {(a, b) (b, c) U{c,d,€).

13-CM(22) : A(A = Z3\{4,10,15}), B(B = Z$;\{4,7,16}),C and
{(¢,b,a,d,e,0,1,16,2,15,3,14,4),
(e,¢,a,b,0,16,1,15,2,14,3,12,9),

(a,6,b,¢,d, 10,14,9,12, e,4,5,13),
{a,1,b,12,11,13,10,e,9,15,7,0, 8),
(c,4,d,b,e,16,0,15,1, 14, 2,13, 3),
{c,9,d,15,¢,12,5,3,6,2,7,1,8).
RG = (e,9,12) (e, 12,9).

v = 31, Points : Z, |J{a, b, c,d, e}.

A= {(c,24,d,7,¢,0,25,2,23,4,21,6,22) + i;i € A},

B ={(a,9,b,0,1,24,3,22,5,20,6,19,7) +1,i € Z3\{4}},

€ = {(c,a,d,b, ,0,25,2,23,4,21,6,22),
{e,b,d,qa,c,24,3,22,5,20,6,19,7),
{d,c,e,a,13,b,4,5,2,7,0,9, 24),
(a,e,d,7,6,9,b,0,1,24,10,23,11),
{c,5,d,14,e,7,a,9,4,11,2,13,3),

[2}13, [~ 213, (4113, [~4)13, [6]13, [8]13, [~6]i3. [8]13, [10]13}-
13-PM(31) : A(A = Z3,\{7}),B,C and
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(0,20, 14,8,2,22,16,10,4, 24,18,12,6). LG = (a,b) J(b,c) U(c,d,e).
13-CM(31) : A(A = Z36\{1,3,7}),B,C and
{c,25,d,8,2,22,16,10,4,24,9,7,23), (a,9,25,¢,1,d,10,¢,3,2,5,0,7),
(a,b,¢c,d,e,1,0,3,24,5,22,7,9), (e, ¢, b,a,7,24,18,12,6,0, 20, 14, 8).
RG = (a,7,9) J{a,9,7).
v = 35, Points : Z3g J{a, b, c,d,e}.

A = {{a,6,5,7,4,8,3,9,2,10,1,11,0) + %;¢ € A},

B = {{(c,5,d,4,e,0,12,29,13, 28, 14,27,15) + i,i € B},

¢ ={(b,1,2,0,3,29,4,28,5,27,6,26,7) +i,i € Z3,},

D = {{c,a,d, b,¢,0,12,29,13, 28, 14,27, 15),
(d,a,c,e,b,1,2,0,3,29,4,28,5),
(a,e,d,¢,5,27,22,28,21,29,20,0,19),
(b,d,4,e,a,25,24,26,23,27,6,5,7),
{a,6,26,7,4,8,3,9,2,10,1,11,0) }.

13-PM(35) : A(A = Z3,\{19}), B(B = Z3,),C and D.

LG = (a,b) J(b,c) Uc,d, e).

13-CM(35) : A(A = Z3,\{3,19,24}),B(B = Z3,\{1}),C,D and
{a,b,c,d, e, 13,27,3,26,4,25,5,24),

{c,6,d,5,e,27,13,0,14, 29, 1,28, 16),
(e, c,b,a,9,8,10,7,11,6,12,5,13),
{a,0,29,15,28,2,27,¢e,1,13,4,14, 3).
RG = (e, 13,27) (e, 27,13).
5° Case L; =8
(1) k=11 (v =17,28),A = 11.

Al 2 3 4 5
8 5 2 10 7
Ly Iyw-Ry L;—R;y Ly+L3 L2+ L3
3 6 9 12 4
Ry, Ri+Ry R;+Ry Ry+Ry Ry;—-1L3
A 6 7 8 9 10
4 12 9 6 3
Ly | Ls+Ls Li+L¢ Ly+Ls Lz+Lg Ly— Ry
7 10 2 5 8
Ry |Ri+Rs R;+Rs R:—Ls R +Rs Ri1+ Ry
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Obviously, if we construct an optimal 11-PM(v) with LG = DK;3|JC;
and an optimal 11-CM (v) with RG = Cj, then all optimal 11-PM),(v) and
11-C M) (v) can be obtained by Theorem 4.
v = 17,Points : Zn U{ool, ...,006}.
A = {(001,0,002,1,03,7,8,10,5,3,2) + i;i € A},
B = {{c04,6, 005, 7,006,8,1,9,3,10,2) + i;i € B},
C= {(001, 004, 002, 005, 003, 006, 8, 10, 5, 3, 2),
(001, OQg, 009, O0g, 003, 8, 9, 0, 6, 4, 3),
{003, 005, 004, 001, 008, 002, 1,9, 3,10, 2},

(004,006,005,001,3, 002,4, 003,10,0, 2)}

11-PM(17): A(A = Z},\{1,3,8}),B(B = Z};\{2}),C and
{008, 004, 005, 7,2, 0, 10, 001, 8, 002, 9},
(002,004,6, 005,9, 003,4, 5, 7,8, 1),
(005,001,0,002,2,8,6, 5,1,003,7),
<005,006,10,3,0,5,001,1,4, 004,8).
LG = (001,002,003) {001, 003, 002) U(003, 004).

11-CM(17) : A(A = Z};,)\{1,3,5}),B(B = Zz{;\{-1,3}),C and
{002, 004, 003, 001, 05,7, 8,1,6,2,5),
(005,001,003,002,2,9,1,004,5, 005,6),
{001, 002, 003, 7, 006, 004, 005, 2, 8, 6, 5),
(001,1,003,004,6,005,006,7,0,8, 2),
{002,001, 5, 004, 9, 005, 10, 00, 0, 4, 1),
{001,0,004,6,003,1,2,4,10,8,7).
RG = (001,005, 2).

v= 28, Points : Zzg U{OOI, ...,006}.

A= {(0,20,1,19,2,18,3,17,4,16,5) + ¢;i € A},

B = {{003,0, 00,1, 003,16,4,17,19,3,7) + i;i € B},

C = {{004, 5, 005, 10, 04,4, 1,0,8,9,2) + i;7 € C},

D = {(o0;, 004, 002, 005, 003, 0g, 4, 17,19, 3, 7},

(003,005,004,001,005,002,1,0,8,9, 2),
{001, 005, 002, 00g, 003,17, 5,18,20,4,8)}.
11-PM(28): A(A = Z3,),B(B = Z3,\{1,2,-7}),C(C = Z3,\{-1}),D
and
(002,004,006,005, 001, 2,18, 3, 17,4, 1),
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(004, 005, 006, 001, 1, 003, 16, 5, 0, 003, 2),

(006, 004, 4, 16, 003, 18, 6, 19, 21, 5, 9),

(001,15, 002, 3, 003, 9,19, 10,12,18,0),

(001 ) 0, 20, 1, 19, 2, 002, 16, 4, 05, 9),

(004, 5, 005, 10, 00g, 3,0,21, 7,8, 1.

LG = (001, 009, 003) U(OO;, o003, 002) U(OO3, 004).

11-CM(28): A(A = Z3,\{-2,10}),B(B = Z3,\{1}),C(C = Z3,),D
and

(002, 0Q4, 00g, 005, 001, 003, 16, 5, 0, 20, 1),

(o0g, 004, 003,002,001, 0, 5, 14,4, 15, 10),

(002, 003, 004, 5,005, 0g, 001, 1, 19, 2, 0),

{003,001, 002,2,18,3,17,0,16,4,1),

{004, 005, 10,8,11,7,12,6,13, 5, 2),

(1,15,2,14, 3,20, 18,21,17,4,16). RG =(0,5,2).

(2) k=12 (v=17,20)

An optimal 12-CM(17) with RG = C, has been obtained from Theorem
3in [7]. And, an optimal 12-PM(17) with LG = 2C, has been obtained in
[8]. Since X, (L1, R,) = (8,4) and (L2, R;) = (4,8), all optimal 12-P M, (17)
and 12-C M (17) for any A can be obtained.

An optimal 12-CM(20) with RG = 2C; can be found from Theorem 3
in (7). To obtain an optimal 12-PM;(20) by Theorem 4, we need construct
an optimal 12-PM(20) with LG = 4C5:

(0,19,2,18,3,17,4,16, 5,15, 6, 14) develop 20,

(1,5,7,4,17,10,8,12,13,14,11,6) + 2i (mod 20), 0<% < 5,

(1,19,16,9,10,7,2,17,15,13,6,3),(0,13,17,1,18,11,4,8,9,7, 5, 3),

(0,4,5,2,15,8,6,10, 12, 14, 16, 18), (0, 15,19, 3,18,13,11,9,2,6,8, 5),

(1,3,5,6,7,8,10,11,12,9,4,19). LG = (0,2) U(2,4) U(4, 6) U(17,19).
6° Case L; =9

k =11 (v = 16,18,27,29),X = 11. By Corollary 2, we only need to
construct an optimal 11-PM (v) with LG = DKj3|JC3; and an optimal 11-
CM(v) with RG = C.

v = 16, Points : Z5 | J{oo}.
A = {(00;,13,0,12,1,11,2,10,4,9, 5) + i;i € A},
B ={(1,8,7,5,6,9,10,13,12,4,3) + ;0 < i < 2},
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11-PM(16): A(A = Z35\{2}),B and
{0,0,2,14,3,13,1,4,12,11,7), {00, 13,0,12,6,11, 2,10, 4,9, 5),
{0,3,4,7,6,13,11,9,12,10, 2), (1, 14, 2, 5,12,13,4, 11, 10, 8, 9),
{0,13,14,12,1,11,3,6,4,5,8).
LG = (0,7,14) U(0, 1) U(1,2) (2, 3).
11-CM(16): A(A = Z15\{5}),B and
(,3,5,2,6,1,7,0,9,12,10),(0,1,2,3,6,4,11,110, 8,7, 14),
(0,3,4,7,6,13,11,9,1,14,2),(0,7, 8,9, 14, 10, 2, 5,12, 13, 1),
(0,13,14,12,11,3,2,1,4,5,8). RG = (17,8).
v = 18, Points : Z;3 | J{001, 002, 003,004,005 }.
A = {{004,7,002,5,003,2,6,11,8,3,10) + i;i € A},
B = {(004,0,005,1,12,2,11,10, 3,4, 6) + i;i € B},
C= {(001,003, 005, 002, 004, 3, 7, 12, 9, 4, 11),
{00y, 004, 002, 005, 003, 2, 6,11, 8, 3, 10},
{004, 005,001, 7,002, 5, 003, 3,9, 10, 12),
{004, 001,005,1,12,2,11,10, 3,4,6) }.
11-PM(18): A(A = Z}5\{1}),B(B = Z5\{3,6}),C and
(003, 001, 8,4, 3, 00s, 7, 5, 1, 0, 6), (002, 6, 7, 9, 004,0, 05, 4, 2, 5, 8)
LG = (005, 004, 6) U(001, 002) U(OOz, 003) U(OO3, 004).
11-CM(18): A(A = Z}5\{1,2}),B(B = Z}5\{1,3,6}),C and
(005, 004, 003, 002, 001,8, 4,2, 5, 1, 0),
(002, 003, 001, 6, 7, 9, 04, 0, 10, 5, 8),
(001, 0Q2g, 7, 003, 004, 1,005,4,8,0,6),
(001, 9, 002, 6, 003, 4, 3, 05, 7, 5, 12),
(004, 6,005,2,0,3,12,11,4,5,7). RG = (00,,6).
v = 27, Points : Zy |J{a,d,c,d,e, f, g}

A= {(0,18,1,17,2,16,3,15,4,14,5) +4;i € A},

B = {{(a,18,b,12,¢,2,10,11,13,17,3) +i;i € B},

C = {(d, 14,¢,13, f,12,¢,11,10,7,0) + 4;1 € C},

D = {{a,c,e,d, f, 9,b,12,14,18,4),(d,a,¢,b, f,c,4,11,10,7,0),
(d,b,e,c, f,a,9,12,11,8,1),(a, f,b,9,¢,2,10,11,13,17,3),
(9,e,a,d, 14, f,13,¢,3,11,12), (c,a, 19,b,d,15,¢,13, g, f,12) }.

11-PM(27): A(A = 23,), B(B = Z3\{1}),C(C = Z3,\{1,4}),D and

(d,9,a,18,b,13, f,e,14,11,4), (e, 9,d,18,1,17, f, 16, 3,15, 14},
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(e,17,2,16,9,15,4,14,5,0,18),
LG = (a,b) U(b, c) Ule,d) Uld,e, f)-
11-CMET): A(A = Zao\{-3}), B(B = Z3\{1,31),C(C = Z3p\{1}),
D and
{f,e,9,d,c,b,a,18,14,19,13), (e, f,d, 9,a,18,b,¢c, 5,13, 14),
{(c,d,e, 14,16,0,6,qa,1,b,15), {(a,b,13,0,12,1,11,2,17, 15, 18).
RG = (a,18).
v = 29, Points : Zp4 | J{a, b, ¢, d,e}.
A= {(a,2,b,17,5,18,4,19,3,20,0) +i;i € A},
B ={(0,22,1,21,2,20,3,19,4,18,5) + i;i € Z3,},
C = {{c,0,d,18,¢,17,16,13,19,20,22) + i;i € Z3,\{1}},
D = {{c,a,d,b,e,17,16,13,19, 20, 22), (a, c, ¢,b,d, 18, 4, 19, 3, 20, 0},
(d,a,e,18,17,14,20,21,23,c, 1), (e, c,0,22,1,21,2,b,17,5,18)},
11-PM(29): A(A = Z3,),B,C,D and
(d,e,0,2,20,3,19,4,18,5,0), LG = (a,b)J(b,c) U(c,d) Ule,d,19).
11-CM(29): A(A = Z3,\{4}),B,C,D and
{e,d,c,b,qa,2,20,3,19,4,18),(d, e, a,b,21,9,22,8,23,7,0),
(b,¢c,d,19,¢,18,5,0,4,a,6). RG = (e, 18). a

8 Conclusion

Theorem 8. For 5 < k < 14, v > k and any positive integer A, there ex-
ists an optimal k-PM) (v) and an optimal k-C M) (v), except for (v, k, A) =
(6,6,1).
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