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ABSTRACT. In a packer-spoiler game on a graph, two players jointly
construct a maximal partial F-packing of the graph according to
some rules, where F is some given graph. The packer wins if all
the edges are used up and the spoiler wins otherwise. The question
of which graphs are wins for which player generalizes the questions
of which graphs are F-packable and which are randomly F-packable.
While in general such games are NP-hard to solve, we provide partial
results for F' = P3 and solutions for F' = 2K,.

1 Introduction

A packing of a graph G with graph F is a decomposition of the edge set of
G into copies isomorphic to F. If such a packing exists we say that G is
F-packable. We are interested in the case where F is fixed; this concept is
much studied.

Ruiz [8] introduced the concept of randomly packable graphs. A partial
F-packing of G is a packing of a subgraph of G. Then the graph G is
randomly F-packable if any partial F-packing of G can be extended to
a (full) packing of G. We prefer the term arbitrarily packable. Thus, a
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packable graph is one where if one is careful a packing can be found. An
arbitrarily packable graph is one where one can be carefree when packing.

For the two simplest choices for the graph F, the characterizations are
as follows. Here A(G) denotes the maximum degree of G and ¢(G) the size
(number of edges) of G:

Theorem 1 [2, 4] A graph G is
(a) Ps-packable iff every component has even size.
(b) 2K »-packable iff A(G) < ¢(G)/2 and G # K2 U K3.

Theorem 2 [8] A graph G is

(a) arbitrarily Ps-packable iff every component is the 4-cycle Cy or an even
star K(1,2s).

(b) arbitrarily 2K, -packable iff G is an even number of disjoint edges 25K,

or the disjoint union of two isomorphic stars 2K (1,s), or some small graph
(04, Ky, 2K35 or K3 U K(1,3)).

These theorems show that it is very easy to find a packable graph,
but very hard to find one that is arbitrarily packable. Further work on
arbitrarily packable graphs can be found in [1, 3, 5] inter alia.

In the case of F = P3 and 2K there is also a link between packing and
matching. Since a P; in G corresponds to an edge in the line graph L(G)
of G, a graph has a P3-packing if and only if its line graph has a perfect
matching. A graph has a 2K»-packing if and only if the complement of
the line graph has a perfect matching. A characterization of which graphs
are arbitrarily matchable (that is, every partial matching is extendable to
a perfect matching), is due to Sumner [9]. This says that each component
must be either a complete graph or a balanced complete bipartite graph.

Now, the concepts of packable and arbitrarily packable graphs may also
be thought of as solitaire games. In one game the player P tries to find
a maximal packing that uses all the edges. The games where P wins are
the packable ones. In another game, one player S tries to find a maximal
packing that does not use all the edges. The graphs where S loses are the
arbitrarily packable ones.

In this paper we introduce a generalization of these games. We consider
two players called P and S. They are supplied graphs F' and G. According
to some rules, discussed below, a maximal partial F-packing of G is con-
structed. The player P wins if and only if all the edges of G are used up,
i.e., if and only if the partial packing is a packing. We think of P as the
packer and S as the spoiler.

The natural game is the one where P and S alternate. This game is
hard to analyse, even for F the path on three vertices. In fact, that game
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is a special case of the “alternating maximum weighted matching” problem
(Problem [GP8] in the book [7]), which is PSPACE-complete, but it is
unclear whether this special case remains PSPACE-complete.

Rather, we are interested in games which measure how close to not pack-
able or to arbitrarily packable the graph is. For this purpose we consider
three types of games: hand-over games, intervention games, and comple-
tion games. These are described in Section 2. Then in Section 3 we discuss
these games for FF = P; and in Section 4 we discuss them for F = 2K,.
This discussion makes extensive use of Theorems 1 and 2. In Section 5 we
discuss the complexity of these games for general F, noting that in general
finding optimal strategies is NP-complete.

2 Six Packer—Spoiler Games

Hand-over games. In these, one player makes all his moves and then
hands over to the other player.

Game 1: P chooses and removes as many copies as desired,
paying $1 each time, and then hands over to S.

Game 2: S chooses and removes as many copies as desired,
paying $1 each time, and then hands over to P.

Obviously, in Game 1 the player P makes enough moves to leave an
arbitrarily packable graph, and in Game 2 the player S makes enough moves
to leave an unpackable graph. How much P or S spends is a measure of
how close to arbitrarily packable or to non-packable the graph is.

Note that the solution to Game 1 is not simply to leave the largest sub-
graph that is arbitrarily packable, but rather the largest arbitrarily packable
subgraph which is obtainable by removing copies of F. For example, on
the graph G = K4 with F = P;, the largest arbitrarily packable subgraph
is Cy4, but P cannot leave this subgraph.

Intervention games. In these, one player has the power to intervene
whenever she desires.

Game 3: At each stage P has the option of choosing the next

copy. Exercising that option costs $1. Otherwise S chooses the
next copy.
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Game 4: At each stage S has the option of choosing the next
copy. Exercising that option costs $§1. Otherwise P chooses the
next copy.

It should be noted that for Games 1 and 3, P wins by paying $0 if
and only if the graph is arbitrarily packable; and P loses no matter what
the payment is if and only if the graph is not packable. The amount of
money that P pays in Game 3 is at most that paid in Game 1. Analogous
statements hold for Games 2 and 4.

Completion games. In these, the players cooperate to choose a copy.

Game 5: P chooses an edge in the graph and S chooses a copy
of F' containing the chosen edge.

Game 6: S chooses an edge in the graph and P chooses a copy
of F containing the chosen edge.

However, Game 6 is simply a win for P if and only if the original graph
was packable.

3 The Path with Two Edges

Despite the simplicity of F' = P;, several of the games seem hard to analyse.

3.1 Games 1 & 3: P hands over or intervenes

In Game 1 P must leave an arbitrarily Ps;-packable graph. The densest
arbitrarily packable graph is the union of 4-cycles. So, if such a spanning
subgraph exists, P must leave it if possible. This is the case for dense
graphs such as the complete graph K, for n > §, the cubes Q, for n > 4
and the balanced complete bipartite graphs. We omit the details. At the
other extreme, there is a linear-time algorithm for P for trees.

Observation 3 For Game ! and F = Ps, there is a linear-time algorithm
for P in trees.

Proof: A leaf is an edge incident to an end-vertex. A penultimate vertex

is one which is not an end-vertex but at most one of its neighbors is not
an end-vertex. If the penultimate vertex v has a neighbor that is not an
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end-vertex, then that neighbor is the interior neighbor of v and the edge
joining them is the interior edge of v.

Let T be a tree with even size. We orient each edge e = uv from u to
v such that the component of T — e containing v has odd size. Then every
vertex in the orientation has even in-degree. Also, in any P3-packing of T,
the edge uv lies in a P; centered at v.

A subgraph is arbitrarily packable if and only if it is the union of even
stars. So the packer must leave a subgraph of T where the vertices are of
two types: “even sinks” and “tails”. An even sink has even indegree and
zero outdegree; a tail has zero indegree and outdegree 1. Furthermore, if
H is any such subgraph, then T — E(H) is P packable: every vertex has
even indegree in T' and in H and hence in T — E(H), and the size of a
component is the sum of the indegrees.

Thus, we need to determine the subgraph of T' with maximum size where
every vertex is an even sink or a tail.

This can be done with a typical depth-first-search tree algorithm. For
a tree T, rooted at v define three functions:

e f(T,) is the maximum size of a subgraph in which every vertex is an even
sink or a tail;

e g(T,) is the maximum size of a subgraph in which every vertex is an even
sink or a tail and moreover v is isolated;

® h(Ty) is the maximum size of a subgraph in which every vertex except
the root is an even sink or a tail, and the root is an odd sink.

We want to know the value f(T').

Assume we know the values of f, g and h for the subtrees rooted at the
children of v and want to know the value for the tree rooted at v. Then to
calculate f(T,) we consider the two options for v. Suppose v is to be an
even sink. Then, if the arc from a child w is present w must be isolated
in T, and if the arc is absent w must be an even sink or tail in T,,. So,
if 9(Ty) = f(Tw) we want the arc, if 9(T\w) < f(Tw) — 2 we do not want
the arc, and if g(Ty) = f(Tw) — 1 it is immaterial. It is straightforward to
determine the optimal number of arcs subject to the restriction that there
is an even number of them. Suppose v is to be a tail; say adjacent to w.
Then w must be an odd sink in its subtree, and every other child is free.
So we find the child w with maximum value of A(T},) — f(Ty).

To calculate g(T,) one simply adds the values of f(T,) for the children.
The calculation of ~(T,) is similar to that of f(T}). O

In Game 3 the packer has the power to intervene. Since the packer must
make the next move if there exists a nonleaf bridge, it follows that, for trees,
P must make enough moves to leave an arbitrarily packable graph. Hence
the strategy for trees for P is the same as in Game 1, and the cost the same.
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For general graphs we have only a weak bound.

Observation 4 For Game 3 and F = P3, if P can win, then P can win by
paying at most 2n dollars (where n is the order of the graph).

Proof: One strategy for P is to let S choose the next copy unless there exists
a copy F of P; whose removal would create an odd-size component. When
such a copy exists, P chooses the next two Ps’s to use up the edges of ' and
leave a packable graph: this is possible since the graph is packable. This
action of P increases the number of components, so P needs to intervene at
most n times. O

It is unclear what the constant in front of n is in the worst case.

3.2 Games 2 & 4: S hands over or intervenes

In Game 2 the spoiler must leave a component of odd size. If the graph
contains a nonleaf bridge this is easy. Hence a tree that is not a star is
easily won by S.

For general graphs, the following result shows that the minimum is
related to the (vertex) connectivity «.

Observation 5 For Game 2 and F = P3, if G is P3-packable, then S has
to pay at least k — 1 dollars.

Proof: Let Z be a minimum collection of edge-disjoint Ps’s such that
G - E(Z) is not packable; |Z]| = 2. Let X denote the set of the centers
of the Py’s in Z. If G — X is disconnected, then & < z and we are done.
So suppose not. Since G — E(Z) has at least two nontrivial (odd-size)
components, there exists a nontrivial component A of G — E(Z) consisting
entirely of vertices of X. In particular, if a denotes the order of A then
2<a<z

The total degree sum of the vertices in A (as measured in G) is at most
the sum of twice the number of edges with both ends in A, added to the
number of edges with exactly one end in A. Hence the total degree sum of
A is at most 2(3) +2z. Thus the average degree of A is at most a—1+2z/a.
Since 2 < a < z, it follows by calculus that the average degree of A is at
most z+ 1. Hence k <d<z+1. 0O

Equality holds for example for 7-connected r-regular graphs of even size
for 7 odd. (The optimal strategy for S is to isolate one edge.)

Solving Game 2 for P; is equivalent to asking about extendable graphs.
In fact, the amount S must spend is 1 dollar more than the maximum i
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such that the line graph L(G) is i-extendable (i.e., every partial matching
of i edges can be extended to a perfect matching). The complexity of
determining for an arbitrary graph H the maximum ¢ such that H is i-
extendable remains unresolved. Even for our case where H is a line graph,
it has neither been shown to be polynomial-time solvable nor to be NP-
complete.

In Game 4 the spoiler has the power to intervene.

Observation 6 For Game 4 end F = P;, if S can win, then S can win by
paying at most 2 dollars.

Proof: The spoiler waits until there is a graph G’ in which there exists a
copy F of P; whose removal would leave an arbitrarily packable graph. S
then intervenes. We need to show that S can destroy the packability of G’
with at most 2 moves. This is easy if there is a component of G' — E(F)
that only one edge of F' touches (since then there is a non-leaf bridge).
Otherwise a bit more work is required. O

There are graphs where S pays $1 and must make the first move, and
ones where S pays $1 and must wait. Indeed, the exact characterization of
which graphs S pays $1 for is unclear.

3.3 Game 5: S completes

In this game P picks an edge and S picks an edge which completes the
P;. This game also seems hard; even who wins in the complete graph is
unclear. We discuss Game 5 only for trees. We say that a vertex is even or
odd depending on its degree.

Observation 7 For Geme 5 and F = P;, in forests, an optimal strategy
for P is always to choose any leaf incident with an even penultimate. If no
such leaf exists, then S can force a win.

Proof: We prove this by a sequence of claims. We assume we have a forest
where every component has even size (otherwise P has already lost).

1. To win, P may only choose a leaf. Suppose P chooses edge uv where
the component containing v is the one with odd size. Then S must be
forced to take the next edge in that component (otherwise there will
be a component with odd size left and P is lost). This means that
the component containing u is empty; that is, u is an end-vertex.
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2. To win, P may only choose a leaf whose interior end is even. Suppose
P chooses edge uv where u is an end-vertex. Let z be any other neigh-
bor of v. If S chooses the edge zv, then the component containing v
so created must have even size. Hence v has even degree.

3. If every penultimate vertez is odd than S wins. We will show that no
matter what P does, S can always ensure that there remains a com-
ponent without an even penultimate. A component cannot disappear
without going through the stage of there being only two edges left—at
which stage it has an even penultimate. Thus P cannot remove the
component entirely.

Consider P’s next move. We know that this must be a leaf uv where
v is even. Since v is not a penultimate it has at least two neighbors
which are not end-vertices. Since v has degree at least 4, it has another
neighbor, call it w. If S selects vw, then the component containing v
that remains is without an even penultimate.

4. If e is a leaf incident with a penultimate of even degree, and P can
win, then P can win by playing e next. This is clearly true for a star,
so suppose that e = wv with v the penultimate having z as a non-leaf
neighbor.

Follow P’s winning strategy until the first edge incident with v is
chosen by one of the players. This cannot be S choosing vz, since
then P has lost. So it must be P choosing some edge. If it is P taking
vz then (by the results above) z must be an end-vertex at that stage,
and so P could now choose e instead. Hence we may assume that the
next edge incident with v that is chosen is e and P does the choosing.
But then P could have chosen e at first move: it does not interfere
with P’s options in the winning strategy, and can only reduce S’s
choices. O

4 Two Disjoint Edges

The graph 2K, seems in general easier to analyze than P;. Note that a
maximal partial packing leaves a star. We denote the cardinality of the
largest matching in G by m(G) or simply m.

4.1 Games 1 & 3: P hands over or intervenes

In Game 1 the player P must remove some copies of 2K and leave either
92K (1, s) or 25K or some small graph (listed in Theorem 2).
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Theorem 8 For Game 1 and F = 2K, there is a polynomial-time algo-
rithm to determine the optimal strategy for P. ‘

Proof: Let G be a graph with A < ¢/2. It suffices to show that one can
compute the minimum number of moves to leave a matching, the minimum
number to leave two equal stars, and the minimum number to leave one of
the small graphs described in Theorem 2.

To leave a matching. We claim that the maximum matching one can
leave has size the minimum of 2|m /2| and ¢ — 2(A — 1). This quantity is
certainly an upper bound: any vertex of degree A has to have its degree
reduced to at most 1 and this takes at least A — 1 moves.

But the bound is attainable. If m < 1 this is trivial; so assume m > 2.
Let M be a matching of cardinality 2|m/2] incident to as many vertices
of degree A as possible. If G — M has a 2K, packing, then we are done
by Theorem 1. Otherwise G — M has a vertex v of degree at least A — 1.
(The case where the edges of G — M form K3 U K is easily dealt with,
50 we assume otherwise.) We may assume that v is incident with an edge
of M and that v has degree A in G. So A —1 > (¢ — m)/2 and thus
m > g — 2(A — 1); also v is the unique vertex of degree A in G. In this
case, P removes A — 1 copies of 2K, each using an edge incident with v, as
follows: the edges outside M are used up first, and then some edges in M
are used. When A — 1 copies of 2K, have been removed, we are left with
a matching.

To leave two stars. It suffices to calculate for each pair {z,y} of vertices
the size of the largest pair of stars centered at z and y that P can leave.
Define T,, as the largest subgraph consisting of two equal-sized disjoint
stars centered at = and y. Say z has a private neighbours in G, y has b
private neighbours and they have ¢ common neighbours, @ > b. Then a bit
of calculation shows that T, has stars each with size the minimum of b+c¢
and |(a+ b+ ¢)/2]. If G — E(T;y) has a 2K>-packing then we are done.

Otherwise, G — E(T;,) has a vertex v of large degree. Then to leave
a maximum star-pair centered at {z,y}, P must delete copies of 2K from
G — E(T,y) each using an edge incident with v. When there is only a star
centered at v left in G — E(T;,), P switches to removing copies with one
edge incident with v and the other edge alternately with = and with y.

So by considering each pair {z,y} of vertices in turn, we can determine
the largest star-pair that P can leave.

To leave a small graph. Whether or not a particular small graph can be
left by P is easily calculated. For example, one can simply try all possible
isomorphic subgraphs.
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Thus there is a polynomial-time algorithm for determining P’s optimal
choices. 0O

In Game 3 we believe that a near-optimal strategy for P is to intervene
only when S is threatening to leave an unpackable graph. While we have
partial results to support this, they are messy and we omit them.

4.2 Games 2 & 4: S hands over or intervenes

In Game 2 the player S must remove some copies of 2K5 and leave either
a graph with high maximum degree or K3 U K.

Theorem 9 For Game 2 and F = 2K,, for A > 3, if S can win then S
can win by paying q/2 — A + 1 dollars, and this is best possible.

Proof: Upper bound. To make ¢/2 — A + 1 moves, S considers any vertex
v of maximum degree A. S then removes edges noincident with v such that
the resultant graph has ¢’ edges, with ¢’ < 2A, but the maximum degree
is still A. This is achieved as follows.

The spoiler removes 2K, from G — v arbitrarily until there are A + 2
edges not incident with v. Now S must remove a copy to avoid leaving the
star on A edges. This is possible, since for A > 4 there is at most one
vertex with degree A outside v and S takes a copy of 2K incident with
this vertex (and the case A = 3 is easily argued). Since we have A edges
not incident with v and these do not induce a star, there is a copy of 2K
that can be removed. Hence S can leave overall a graph with ¢’ = 2A -2
edges and a vertex of degree A.

Lower bound. S must leave either a graph with too high maximum
degree or the graph K3 U K. To leave the former requires ¢’ < 2A’. Hence
if S makes r moves, we must have that ¢ — 2r = ¢’ < 2A’ < 2A, so that
r > g/2 — A. Hence S must make at least that number of moves. To leave
K3 U K, requires ¢/2 — 2 moves. O

The A = 2 case. It is easily checked that if S can win, S can leave
K3 U K, if G contains a triangle, and otherwise must leave Ps.

In Game 4 the player S must intervene so that the resultant graph is
not packable. We show that Game 4 costs the same as Game 2 if the graph
is sparse, and less if the graph is dense.

For a graph G with even size let

9(G) = min{|m/2|,q/2 - A +1}
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The importance of this function lies in the fact that: if G has no isolates
and is not K3 U K, then G is 2K,-packable if and only if g(G) > 0. Also,
if @' = G — E(2K3) then g(G") is g(G) or ¢(G) — 1.

Theorem 10 For Game 4 and F = 2K, the minimum number of moves
for S is at least g(G) — 1 and at most max{g(G), 2}.

Proof: We show first that S can spend at most g(G) dollars by waiting for
a graph G' that contains a copy F of 2K, whose removal would leave an
arbitrarily packable graph. There are three cases:

(a) G' — E(F) is a double star. Then it can be shown that one can
remove two copies of 2K, without reducing the maximum degree of the
graph. So by spending two dollars G’ can be converted into an unpackable
graph.

(b) G' — E(F) is one of the four small graphs. Then by considering each
possibility for G’ in turn it can be shown that that by spending two dollars
G’ can be converted into an unpackable graph.

(c) G’ - E(F) is a matching on m' edges. Then G’ has m' + 2 edges and
so, since it is not arbitrarily packable, by removing at most m’/2 pairs of
edges one can leave an unpackable graph. Thus, by spending at most m'/2
dollars S’ can leave an unpackable graph.

Clearly m’/2 < m/2 since m' < m. Furthermore, m' = q(G' — E(F)) <
q(G) — 2(A(G) — 1), since the vertex of maximum degree in G has to be
reduced at least A(G) — 1 times to get to G' — E(F). It follows that
m’' /2 < g(G), and the upper bound is established.

We next show that S must spend at least g(G) — 1 dollars. At some
stage an unpackable graph is reached: in this the value of g is at most 1.
If S intervenes, she can reduce g by at most 1 for one dollar. It therefore
suffices to show that the packer can always choose a copy of 2K, in a graph
H such that g(H — E(F)) = g(H).

There are three cases:

(a) m(H) < q(H) — 2A(H) + 2. Then we need to find a 2K, whose
removal does not decrease the matching number. Since g—m > 2A-2 > A,
the edges not in a maximum matching cannot all be adjacent. So P can
choose two edges not in a maximum matching.

(b) m(H) > q(H) — 2A(H) + 2. Then we need to find a 2K, whose
removal reduces the maximum degree and hence does not decrease the
difference g — 2A. Since ¢ < m + 2(A — 1), there cannot be two vertices of
degree A. So P can choose any copy of 2K containing an edge incident to
a vertex of maximum deree.
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(c) m(H) = q(H) — 2A(H) + 2. Then we need to find a 2K, whose
removal decreases neither the matching number m nor the difference g—2A.
If there is a unique vertex v of maximum degree, then take any edge which
is neither adjacent to v nor in a specific maximum matching, and pair with
an edge incident with v.

Otherwise, suppose there are two vertices of maximum degree. Then
the edges of H can be decomposed into 2K(1,A — 1) and a maximum
matching. Hence P can remove two edges incident with the large vertices
without decreasing the matching number, and the value of g is unchanged.
O

4.3 Game 5: S completes

This game has a simple solution.

Theorem 11 For Game 5 and F = 2K,, P wins iff the graph is 2K,-
packable.

Proof: Claim: P wins by playing the following strategy, except when g = 6
and three of the six edges form a triangle:

Choose any edge e incident with as many vertices of degree q/2
as possible.

(That is, if there is no vertex of degree ¢/2 then P can do what he likes.)

Proof of claim by induction. Assume we are not in the case where ¢ = 6
and there is a triangle. Suppose P chooses the edge e by the above rule
and then S chooses edge f. If the resultant graph G’ (after removal of the
two disjoint edges e and f) is 2K,-packable, then P can win by inductive
hypothesis. So suppose the resultant graph G’ is not 2K»-packable.

Then there must exist a vertex z in G’ which has degree more than
q(G'")/2. This means that z has degree ¢/2 in G and is not incident with
e or f. If only one end of e, say y, has degree g/2, then z and y are
nonadjacent (by the choice of ) and together the two vertices z and y are
incident with all g edges, which means that f must be incident with one of
them, a contradiction. If both ends of e have degree ¢/2, then since z is
not incident with f it can have degree at most 2. This means that ¢ < 4
and we can check by hand that P’s strategy works.

If ¢ = 6 and there is a triangle, then one rule that works is to take
an edge in the triangle that is incident to as many vertices of degree 3 as
possible. It is easily verified that, after S’s move, what remains in every
case is 2K-packable. O
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5 The General Game
A deep result is the following:

Theorem 12 [6] For a fized graph F containing a component of at least 3
edges, then determining whether graph G is F-packable is NP-hard.

Another result is the following:

Theorem 13 [3] For a fized graph F, there is a polynomial-time algorithm
for determining whether graph G is arbitrarily F-packable.

These results show that several of the games are hard. For example,
Game 1 is a win for P if and only if the graph is packable, and Game 2 is
a win for S for 0 dollars if and only if the graph is not packable. Similarly,
Game 3 is a win for P if and only if the graph is packable. Hence these
games are intractable.

Game 4 (spoiler intervention) is not always intractable. For example,
consider the game with Kj3-packing and spoiler intervention. Here the
spoiler must intervene at most once and we can give the optimal strat-
egy for S. The optimal strategy for P, on the other hand, involves ﬁndmg
a K3-packing, which is NP-hard.

The strategy for the spoiler is as follows. As P removes copies, the
spoiler repeatedly checks whether there exists a triangle whose removal
leaves an arbitrarily packable graph. By theorem of Beineke et al. [1], a
graph is arbitrarily Kj3-packable if and only if every edge is in exactly one
triangle.

Suppose that zyz is a triangle T such that the removal of the edges of
T leaves an arbitrarily packable graph, but with the edges of T' the graph is
not arbitrarily packable. Then by the characterization, there is an edge of
T that is in another triangle. Say this triangle is zym. Consider removing
the edges of T. Then by the characterization the edge zm is in a unique
triangle; say zmit.

Now the optimal strategy is for S to remove the edges of the triangle
zym. The triangle containing the edge mt is destroyed, but the edge re-
mains and the resultant graph is not packable. So S need only intervene
once. Whether P can force this intervention depends on whether the graph
is K3-packable or not.
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