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1 Introduction

An orthogonal design A, of order n, and type (si, s2, ..., sy), denoted
OD(n;s;,s2,...,84), on the commuting variables z1, 21, ..., &y, is a square
matrix of order n with entries from {0, £z, ..., 2z} where for each k, Lz,

occurs s times in each row and column and such that the distinct rows are
pairwise orthogonal.
In other words

AAT = (s122 + -+ sy 22) I,

where I, is the identity matrix.
Some small orthogonal designs are given in the following example, see

[6}.

Example 1 Some small orthogonal designs.

a =b —c —d a b b d a 0 —c O
z oy b a —-d ¢ b a d -b 0 a 0 ¢
y —z|’|c d a =b|'|[-b -d a b}’]c O a O
d —c b a —d b -b a 0 —c 0 a
0D(2;1,1) O0OD(4;1,1,1,1) 0D(4;1,1,2) OD(4;1,1)
0D(4;1,1,1,1) is the Williamson array. a

It is known that the maximum number of variables in an orthogonal design
is p(n), the Radon number, defined by p(n) = 8¢ + 24 where n = 2°b, b
odd, and e =4c+d,0<d < 4.

A weighing matrix W = W(n, k) is a square matrix with entries 0, %1
having k non-zero entries per row and column and inner product of distinct
rows zero. Hence W satisfies WWT = kI,, and W is equivalent to an
orthogonal design OD(n;k). The number & is called the weight of 4.
If k = n, that is, all the entries of W are 1 and WW7 = nl,, then
W is called an Hadamard matrix of order n. In this case n = 1,2 or
n = 0(mod 4).

Given a set A of £ sequences, the sequences A; = {a;1,aja,...,an}, j =
1,...,¢, of length n the non-periodic autocorrelation function (abbreviated
as NPAF) N4(s) is defined as

L n—s

NA(s)=ZZaj,-aj,,-+,, s=0,1,..,n—-1 (1)

Jj=1li=1
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If Aj(z) = ajy + ajaz+ ...+ aj,,z"'_l is the associated polynomial of the
sequence A;, then

{ n n £ n-1
A(Z)A(z'l)zzzz:aj;aj;,.." = N4(0) +ZZNA(S =+ 27
i=1i=1k=1 i=1s=1

(2)
Given Ag, as above, of length n the periodic autocorrelation function (ab-
breviated as PAF) Pa(s) is defined, reducing 7 + s modulo n, as

[4

n
=ZZa_,-;aj,,>+s, s=0,1,...,n— 1. (‘3)

i=li=1

The following theorem which uses four circulant matrices in the Gorthals-
Seidel array is very useful in our construction for orthogonal designs.

Theorem 1 (3, Theorem 4.49] Suppose there exist four circulant matrices
A, B, C, D of order n satisfying

AAT + BBT + cCT + DDT = fI,

Let R be the back diagonal matriz of ordern, i.e. R=(r;i;) wherer; n_i;1=1,
and r;;=0 if j # n—i+1. Then

A BR CR DR
—-BR A DTR -CTR
-CR -DTR A BTR
-DR CTR -BTR A

GS =

is a W(4n, f), i.e a weighing matriz of order 4n and weight f, when A, B,
C, D are (0,1, —1) matrices, and an orthogonal design

OD(4n; s1,82,...,54)

on xy,%a,...,&, when A, B, C, D have entries from {0,%x,,..., %2}
and f =370, (sj3). ]

Corollary 1 If there are four sequences A, B, C, D of length n with en-
tries from {0, a1, £z, g, £z4} with zero periodic or non-periodic auto-
correlation function, then these sequences can be used as the first rows of
circulant matrices which can be used in the Goethals-Seidel array to form
an OD(4n;s;, sa,s3,54). We note that if there are sequences of length n
with zero non-periodic autocorrelation function, then there are sequences of
length n 4+ m for all m > 0. o
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2 The results

We now give the new orthogonal designs of order 44 that were found by the
algorithm described in sections 3 and 4. For each design we give the four
sequences to which Corollary 1 may be applied.

Tuple Sequences
(2,2,4,36) | NPAF=0 a a a-a a a-a d a-a
a a a-a a-a a-d-a a
-a-a-a-c a a
-a-a-a a-a a a ¢ -a-a

oo oo
[}
)
1
)
1
»
»

(2,2,8,32) | NPAF=0

oo e p
|
[< T <
|
a o6 o0
|
R A A
1 |
R A R
|
[o T T o B
1 |
[o T < Ty o %
|
[+ T = =1
|
QA
1
Q [¢]
|
=5 .

-d -

(1,1,1,36) | PAF=0

(- - N - i

|

o
oo oo
o o o
o oo

|

o'

]

o

|

o
oo oUv

|

o

(1,1,2,32) | NPAF=0

»

a —-Cc —a

w
1

)

)

-a -a
-d -a a

pop PP

]

p o
OO O
pop
PP o

|

o
cop o

o

]

Y

(1,1,8,32) | PAF=0

»
o
)
»

-c -a a
-a 0-a a ¢ a a
-a -a -¢c a-a
-a-d a=-a ¢ -a -a

P p pp
|
)
o

p
w
]
o

a-a-a c-a-a d -a-a-d
-a a-a-a-c-a-a d
a-b-a-a-d a-a a-a d
a-a a-d-a-a-d-a a-d

(1,2,9,32) | PAF=0

PP
|
Y
]
o

b-c-b-c a-b b b-b-b
-b-b b b a ¢ -b
b-c b ¢c-d b-b b-b b
b b b bd c-b-c-b b

(2,2,8,32) | NPAF=0

oo oo
0
-3
|
o

Table 1: Four variable sequences of Length 11 which yield
0D(44; 51, 82,83, 54)-
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o
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Eel
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a 9 9 9-2
Q- - qQ a- q-
Q q-a-2-q
Q- q Q-9-9-®% q q 0=dvd | (sg'e'D)

Q0 0
oL 0
L o
|
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L 0 0 0
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o O 0 0 vV U LV O D O O O L O O O L O O O O O O O
] | 0000 | | ] i
g O L d S @ @ & ! 0 .00 0 0000 0000 0.0 00V
] | | I B | 0 .00 0 | ] 1 [ )
o d O 00 0.0 ! D000 £ 000 20000 00 v
| I N | 1 0000 | | 1 [} }
0O ® vadoLd ! L0 0 O 0000 L0000 80 00
] N ro 0000 I ] [ ] ] ]
Sle ¢ © o 8 @ @ O LOULVLUVL NHNOOO LOOO 0OV
m 1 ] ] 8 @ O O | ] 1 ]
Slo @ @ @ ¢ & @ ! o048 0w 8.0 00 0.0 00 0.0 00
q__ | | } 0000 | | I 1 ] | | !
%uaaaa o & © © 0.0 0 0 0 .00 O 0 .00 0 L .0 0 0
roa Foro ® @ OO I ] ] ] ]
6 d O @ ¢ @ @ o | o0.0.0.0 8.0 00 0.0 00 o0 .00
i ] 1 S @& o I ' ] ] ] ] ]
8 & & O o @ O o o 00 0.0 £ 0 O L 00 0.0 £ 0 0.0
[ R | | 8 @ O O } [ | ] || 1 | ] [ |
8.0 d & .0 d o U 0.0 .00 L0000 HO000 o .0.0.0
b P @& I ] ] ] (R
8 6 & @ ¢ ¢ & o @ 0.0 .0 & .0 0L g 0.0 .0 ¢ .0.0.0
o o ﬂ o o = o
I [ = [ [ 1l [
< Py < < = = =
< < o < < « «
=9 2 =z, ey y =9 2B
ol N ) F =) = <
Gl ™ — N 1, N N
S t~ 2 £ = oY =
ack e = = = = =

Table 2(cont.): Three variable sequences and Length 11 which yield

OD(44; 81,892, 83).
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3 The method

Notation 1 For the remainder of this paper we use the following notations.
1. N denotes the set of non negative integers.

2. N* denotes the space N* = N x N x -+ x N with elements

k times

veN* , vT =[v,va,...,0], ;i €N, i=1,2,..., k.

3. N*%t will be the matrix space with dimension & x £ and elements
from N. That is if M € N**¢ then

mpy; Mmya ... Mpe m’f
Mmay Ma2 ... Moy m'zr
M= . . =
m T
k1 M2 -. . Myy m,
with m;; € N, my ENi=1,2,...,k j=1,2,...,¢ 0

In this paper we are interested in the construction of orthogonal de-
signs using four circulant matrices in the Gorthals-Seidel array. Specifi-
cally, for positive integers s, ss,...,8, and odd n, the method searches
for four circulant matrices A;, A», Az, As or order n with entries from
{0, %2, x>, ..., £z} such that

u
ALAT + A2 AT + AsAT + A4AT = (st?) I, (4)
i=1

Definition 1 If A;, A2, A3, Ay are n x n circulant matrices with entries
from {0, +z;,%xs,...,+2,} and the first row of A; has m;; entries of the
kind %z;, then the u x 4 matrix M = (m;;) is called the entry matriz of
(A1, Aa, Az, Ag). m]

The elements of the entry matrices satisfy the following conditions.

4
(i) Zm,-j =s; for 1<i<u
i=1

(i) Y mij <n for 1<j<4

i=1
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Thus the rows of the entry matrices refer to the variables z; and the columns
to the circulant matrices A;, A2, Az, 45 which are constructed from four
sequences of length n as described in Corollary 1.

i=1
Then the u x 4 integral matrix P = (p;;) is called the sum matriz of
(Ay, Az, A3, As). The fill matriz of (A1, A2, A3, Ag) is M — abs(P), where
abs(P) denotes the matrix having as elements the absolute values of ele-
ments of P. The content of A; is determined by the i-th columns of the
sum and fill matrices. (=

The following theorem may be used to find the sum matrix of a solution

of (4).

Theorem 2 (Eades Sum Matrix Theorem) The sum matrix P of a
solution of (4) satisfies PPT = diag(sy, 2, .- -,54)- [m]

For more details about the construction of orthogonal designs which
uses entry matrices, see [3].

Let D be an OD(4n; uy, ua, ..., %) with entries from the set
{0, £y, +as,...,tx,} where zy,20,...,2, are commuting variables. Using
the terminology of [3], the symbols M; represent the non-isomorphic entry
matrices of the orthogonal design.

From the above construction of the sequences, we observe that we can
permute rows and/or columns of the sum matrix P and the entry matrix
M without obtaining an essentially different sum or entry matrix. It would
be as though we interchanged the variables and/or the sequences of the
orthogonal design. When we form the content of the sequences, we should
take into account that the row and column order of the sum and the entry
matrices must agree. That is to say that the same permutations of rows
and/or columns should be operated to both these matrices. In the same
way, we can multiply by —1 any rows and/or columns of the sum matrix P
without obtaining an essentially different sum matrix.

Herein (because we use many non-isomorphic entry matrices from dif-
ferent orthogonal designs) we will use the type of the orthogonal design in
the symbol of the entry matrices, so that seeing the entry matrix we can tell
from which orthogonal design it comes. For D we will write My, uz,...,u).i
for its non-isomorphic entry matrices. Then we can write the entry matrices
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using their rows as follows

Al(u,,ua,...,u,),i = . EN'X4, vj €N4, i=L2,...,1t
ve
Let Dy, ,ua,...,u,) be the set of all non isomorphic entry matrices of the or-

thogonal design OD(4n;uy, ua, ..., u). We will write Ilf(u,,um__w",)_;lp
'lk .IIJ‘

for the entry matrix My, us,....u, )i after we eliminate all rows except from
rows k and j. That is

T
Vi

M(tu,uz ..... “')’ilv"kv"j = [ . } eAfﬁX‘l'

Vi

In order to illustrate the above notations and definitions we give the
following example.

Example 2 Suppose we are searching for the OD(4n; u), us, uz, uy) =
0D(20;2,3,6,9). There is up to isomorphism only one sum matrix

1 100
1 -1 10
P=1_1 12
0 00 3

satisfying PPT = diag(2,3,6,9) as described in Theorem 2. From this
matrix P we obtain the following three non-isomorphic entry matrices.

1 100 1 100 I 1 00
1 11 0 1110 1 110
Mi=lg 1 a0 |'M=1 140 M=,
0 2 25 2 2 05 2 2 2 3
Using our terminology these are:
(1 1 0 0] 1100
1110 1110
Muyuz,u3,00),1= 31 2 0| Mws wa,us,ua) 2= L1 4 04y
| 0 2 2 5 | 2 2 05
[1 1 0 0]
1110
M(u;.u:.ua,"«o).3= 11 92 21"
(2 2 2 3
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With this terminology we can easily see that by setting the first vari-
able equal to zero (i.e. eliminating the first row v ) in the above entry
matrices, we obtain the following entry matrices of an orthogonal design

0D(20;3,6,9):

1110 1110
M(ﬂg,ug,u.‘),],: 3 120 ’M(“z,ua.u-x).2= 11 4 01,
[0 2 2 5 | 2.2 05
1 1 1 0]
Muausuas=| 1 1 2 2
|2 2 2 3|

Similarly the entry matrices of an orthogonal design OD(20;5,6,9) ob-
tained by setting first and second variable be the same symbol (i.e. replac-
ing rows vI,vJ by row v§ + vT) are

(2 2 1 0]
1140
My, tuzusug)a= | 3 1 20 ’M(ux+"=»"s’"4>'2=[2 2 0 5]’
[0 2 2 5
(2 2 1 0]
M(ul+u'-’1u37“4)13= 112 2
2 2 2 3

o

Now from [3] we have that from an orthogonal design over ¢ variables
we can obtain an orthogonal design over ¢ — 1 variables by “killing” one
variable (i.e. setting one variable equal to zero) or “equating” two variables
(i.e. setting two variables be the same symbol). If we do these many times
we obtain the following lemma:

Lemma 1 If an orthogonal design OD(4n; uy, us, . . ., uy) exist then the fol-
lowing orthogonal designs exist:

i) All orthogonal designs OD(4n; ui,, ti, . . Lug,) forallk =1,2,.. ¢,
over k variables and for all {iy,is,...,ix} C {1,2,...,1}.

i1) All orthogonal designs

ky k2 Kom
oD (4n; z uij, Z Uijyooos Z zt;j)

J=ko=1 i=k1+1 j=km-1+1
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over m variables where 1 < m <t, 1< k;
by ks <ok, wi; Fuy, Vi,0=1

km
Uu,'j C {u1,ua,..., us}.
=1

<t vi=12,...m,
2,

ok, oand i # L

Proof. By equating and killing variables we obtain the desirable result.
m]

From the above lemma it is obvious that

Corollary 2 If there exist k: 1 <k <t and {i1,ia,...,1} C {1,2,...,1}
such that an orthogonal design OD(4n; u;,, ui,, . . ., ui, ) does not exist then
an orthogonal design OD(4n;uy, ua, ..., u:) can not exist.

Our method relies on searching for OD{4n;u,u;), 1 < k,j < 1, in
two variables, which is much faster, rather than using the matrix based
algorithm, described in [3] for OD(4n;uy, ua, ..., u;), in ¢ variables, which
is much slower. Then we use the extension algorithm to construct the
orthogonal design we want.

Moreover we do not have to check all non-isomorphic entry matrices
My, ;)i but only a few of them. We also can select the k,j in such way
that we minimize the set of My, ;)i we have to search.

4 The algorithm

This algorithm relies on the two previously mentioned algorithms (the ma-
trix based algorithm and the extension algorithm) given in (1, 3, 5] and in
[2, 4] respectively.

Our new algorithm combines features of both algorithms with a new
result given here for the first time to obtain a new, much faster, algorithm.
It is an exhaustive search algorithm (i.e. if the orthogonal design exists it
will be found otherwise it does not exist constructed from four sequences).

Let D be the orthogonal design OD(4n;u, ua, . .., u,). The steps of our
algorithm are:

Step 0: Find all non-isomorphic entry matrices My, us,...,u),i for D as
it is described in [3].

Step1: For k,j € {1,2,...,t},k < j find all non-isomorphic entry ma-
trices My, u;), for the orthogonal design OD(4n; ux, u;).
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‘Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

For all the above (;) combinations check if M(,“,u:,w_,u,)';|z,( )
upug

is equal with any My, u;).¢ € D(u,,u;)- Ignore similar matri-
ces M(u..u:....,u:),i|p( ) produced after using the two rows of
Up,ug

Mu, ua,...uy),i @nd eliminate all others rows. These are the ma-
trices that can be extended to My, u,,...,u,),i and thus these
might product the orthogonal design D.

Select the k, j which give the smallest number of entry matrices
A/I(u"u2,..,,‘u(),flv(uk,uj).

Apply first algorithm (matrix based algorithm) to the selected
entry matrices specified in Step 3, and find all OD(4n; uy, u;j).

For each O D(4n;ux,u;) found in Step 4, apply the second algo-
rithm (extension algorithm), by replacing each zero by a unique
variable zp, p=1,2,...,4n — (ux + u;).

Exhaustively search all possibilities then if the solution exists, it
will be found, otherwise an OD(4n;u;, ua, ..., u;) does not exist
constructed by four sequences.

Example 3 We will apply our algorithm to search for an orthogonal design
D = 0OD(36; u1, us,u3) = 0D(36;6,7,21).

Step 0: The following ten matrices are all the non-isomorphic entry
matrices My, us,us),i for D as it is described in [3]:

1)

1 2 07 3 1 2 0] 31 20
11 29, 2913 12,3111 4],
6 7| | 4 4 7 | 4 6 6 5 |

1 2 0] 1 1 4 0] (1 1 4 0]
1 32|, 513 112|,6/(1132],
6 4 7 | 4 6 4 7| [ 6 6 2 7|
140} (1 1 27 [1 1 2 2
11 41, 8§13 11 2], 991 1 3 2],
6 4 5 | 4 6 6 5 | \_6645

(1 1 2}

1001 11 4 O
| 6 6 6 3




Step 1: We have that

ID(ul,us)l =10, |D(U1.ua)| = 353, ID(Uz,us)l =21

Step 2: By setting the first variable equal to zero (i.e. eliminating the first
row v]) we get only 5 non-isomorphic entry matrices M, upus),i |,D

{ua.uz)

from the 21 entry matrices of the orthogonal design OD(36;7,21). Those
come from the matrices My, u,u,),; Numbered i=1,2,3,8, and 10 above by
deleting the first row.

By setting the second variable equal to zero we get 10 non-isomorphic
entry matrices My, u,,us),i LD from the 53 entry matrices of the or-

thogonal design OD(36;6, 21) Those come from the matrices M(y, u;.u,).i
numbered ¢ = 1,2, ..., 10 above by deleting the second row.

By setting t’.he third variable equal to zero we get only 10 non-isomorphic
entry matrices My, usus) ,I,D - from the 10 entry matrices of the or-

thogonal design OD(36;6,7). Thi)se come from the matrices My, u,,us),i
numbered i = 1,2, ...,10 above by deleting the third row.

Step 3: Clearly in the case k = 2 and j = 3 we have fewer entry matrices
to check than in any of the other cases, i.e five.

Step 4: Now we get all the quadruples of sequences with PAF=0 or
NPAF=0, which can be used for the construction of OD(36;7,21), via the
Goethals-Seidel Array. This is applied to all five entry matrices described
in steps 2 and 3.

Step 5: TFor each OD(4n;uk, u;) = OD(36;7,21) found in Step 4, apply
the second algorithm (extension algorithm), by replacing the zero of the
sequences by the unique variables z,, p=1,2,...,8.

We want to make clear that if an OD(36;6,7,21) existed it would have
been found. We did not find any solutions by step 5 and thus, since our
search is exhaustive for the orthogonal design O.D(36;6,7,21), this design
does not exist using four sequences. . a

Example 4 Applying our algorithm we try to find the O D(36;6, 8, 19) and
the OD(36;7, 8,19). There are 22 non-isomorphic entry matrices Ms,8,10),i
corresponding to the orthogonal design O.D(36; uy, u2, uz)=0D(36;6, 8, 19)
and 22 for the second orthogonal design O D(36; 14, ua, u3)=0D(36;7, 8, 19).

By setting the first variable equal to zero we get only 17 non-isomorphic
entry matrices M(G‘gvlg)‘,‘lp(uz.us) for the OD(36;8, 19).
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We observe that the matrices M(6.8.19).i|73(..,,u , are exactly the same as
the matrices M(',"s,lg)','lp(uz_“a) for the second ort‘jlogonal design.

Thus by searching those 17 non-isomorphic entry matrices we can per-
form an exhaustive search for both orthogonal designs. Using the matrix
based algorithm we would have had to check 44 entry matrices using three
variables for both designs.

Applying our algorithm and following the same process as in the pre-
vious example we find, among others, the following solutions, which have
PAF=0:

0D(36;6,8,19)

-¢c 0 b b b a c-a
-b b ¢c~-a-b ¢ a
b-b-b~-a-b b-a 0
-b-b-¢c b-a b-a 0

oo oo
o

0D(36;7,8, 19)

-b-b-b ¢ -a-c -b -c
-a a b-c-b b-b-c
a a b b-b 0 -c
-b-b-b b a b 0 c

p oo W
|
o

(=]
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