On-line scheduling to maximize task
completions*

Sanjoy Baruah® Jayant Haritsa! Nitin Sharma

§ Department of Computer Science
The University of North Carolina at Chapel Hill
baruah@cs.unc.edu

t Supercomputer Education and Research Centre
Indian Institute of Science
haritsa@serc.iisc.ernet.in

t Department of Computer Science and Engineering
The University of Washington
nitin@cs.washington.edu

Abstract

In overloaded task systems, it is by definition not possible to com-
plete all tasks by their deadlines. However it may still be desirable to
maximize the number of in-time task completions. The performance
of on-line schedulers with respect to this metric is investigated here.
It is shown that in general, an on-line algorithm may perform arbi-
trarily poorly as compared to clairvoyant (off-line) schedulers. This
result holds for general task workloads where there are no constraints
on task characteristics. For a variety of constrained workloads that
are representative of many practical applications, however, on-line
schedulers that do provide a guaranteed level of performance are pre-
sented.

Keywords: Real-time systems, overload scheduling, completion count,
competitive ratio.

*An extended abstract of this paper was presented at the IEEE Real-Time Systems
Symposium, San Juan, Puerto Rico, Dec 1994.

JCMCC 39 (2001), pp. 65-78

A primary objective of safety-critical real-time systems is to meet all
task deadlines. To achieve this goal, system architects typically attempt to
anticipate every eventuality and design the system to handle all of these
situations. Such a system would, under ideal circumstances, never miss
deadlines and behave as expected by the system designers. In reality, how-
ever, unanticipated emergency conditions may occur wherein the processing
required to handle the emergency exceeds the system capacity, thereby re-
sulting in missed deadlines. The system is then said to be in overload. If
this happens, it is important that the performance of the system degrade
gracefully (if at all). A system that panics and suffers a drastic fall in per-
formance in an emergency is likely to contribute to the emergency, rather
than help solve it.

Scheduling algorithms that work well under normal (non-overloaded)
conditions often perform poorly upon overload. Consider, for example, the
classic Earliest Deadline scheduling algorithm [6], which is used extensively
in real-time systems. This algorithm, which preemptively processes tasks
in deadline order, is optimal for uniprocessor systems under non-overloaded
conditions in the sense that it meets all deadlines whenever it is feasible to
do so [3]; however, under conditions of overload, it has been experimentally
observed to perform worse than even random scheduling [4].

System Model: We address here the problem of scheduling a number
of tasks on a single processor. The processor is assumed to be fully pre-
emptable, in that no penalty is incurred if a task currently executing on
the processor is interrupted, and resumed at a later time. Each task T is
completely characterized by three attributes: a request time T.a, an ezecu-
tion requirement T.e , and a (relative) deadline T.d, with the interpretation
that task T, for successful completion, needs to be allocated a total of T.e
units of processor time during the interval [T.a,T.a + T.d). Only tasks
that fully complete execution by their deadlines are of any value to the
user application, and no credit is obtained for partial execution of tasks.
Given a set of such tasks to be scheduled on a single processor, and some
metric to be optimized, the scheduling problem is to determine a schedule
for the tasks on the processor such that the specified metric is optimized.
If all the parameters of all the tasks are known prior to schedule generation
time, then we have an off-line scheduling problem; otherwise, it is an on-
line scheduling problem. (Throughout this paper we will assume that, in
the on-line case, the system knows nothing about a task 7" until the instant
T.a, when task T makes its request; at that instant, all its parameters are
completely known. Furthermore, we assume that there is no a priori bound
on the number of tasks.)

66

Overload Performance Metrics: Two contending measures of the “good-
ness” of a scheduling algorithm under conditions of overload are effective
processor utilization (EPU) and completion count (CC). Informally,
EPU measures the amount of time during overload that the system spends
on executing tasks that complete by their deadlines, while CC measures
the number of tasks executed to completion during the overloaded interval.
That is, a scheduling algorithm obtains a value v(T") for each task T, where
v(T') depends upon the metric:

Effective Processor Utilization (EPU):

(T) & T.e, if T is successfully scheduled
o(T) = 0, otherwise

Completion Count (CC):

aer [1, if T is successfully scheduled
oT) = { 0, otherwise

Which measure is appropriate in a given situation depends, of course,
upon the application. For example, EPU may be a reasonable measure in
situations where tasks (“customers”) pay at a uniform rate for the use of
the processor, but are billed only if they manage to complete, and the aim
is to maximize the value obtained. By contrast, CC may make more sense
when a missed deadline corresponds to a disgruntled customer, and the
aim is to keep as many customers satisfied as possible. Of course, many
real-life applications are best modeled by modifications to these measures,
or perhaps even some combination of them.

The competitive ratio of an on-line algorithm compares the perfor-
mance of the on-line algorithm with that of an optimal off-line (equiva-
lently, clairvoyant on-line) algorithm for solving the same problem. An
on-line scheduling algorithm has a competitive ratio r, or is r-competitive,
r > 1, iff no off-line algorithm can achieve a cumulative value more than
r times that obtainable by the algorithm, over any finite set of tasks. An
on-line scheduling algorithm is competitive if it is r-competitive for some
finite . An on-line algorithm is optimal if it is 1-competitive.

The off-line scheduling problem with respect to EPU — given a set
of tasks, determine a schedule that maximizes the EPU — is easily seen
to be NP-hard (transformation from bin-packing). On-line scheduling to
maximize EPU is also quite well understood (see, for example, [2, 1]). It is
known that no on-line scheduling algorithm can be more than 4-competitive
with respect to this metric; furthermore, this bound is tight in that 4-
competitive scheduling algorithms for this problem have been designed.

67

Scheduling to maximize completion count has been rather less studied.
From a result of Lawler [5], it follows that off-line scheduling to maximize
CC is somewhat easier than with respect to the EPU metric, and can be
done in polynomial time (O(n®), where n is the number of tasks). Moore [7]
presented a more efficient algorithm for the special case when all the tasks
have equal request times (T.a = 0 for all T).

In this paper, we study the on-line scheduling problem with respect
to the completion-count metric. Despite the fact that off-line scheduling
for CC is easier than for EPU, it turns out that there are, in general,
no competitive on-line scheduling algorithms for this problem. While this
conclusion is rather disappointing from the perspective of developing good
on-line overload schedulers, it turns out that very general task workloads
where there are no constraints on task characteristics and in which tasks
of widely different attributes coexist, are necessary to prove such negative
performance bounds. In practice, most real-time applications generate task
workloads that are more “similar” to each other, and hence more restricted
in their characteristics. For a variety of such workloads, we obtain efficient
competitive on-line schedulers that have low competitive ratios.

1 General Task Systems

When no restrictions at all are placed upon the kinds of tasks that may
need to be scheduled, it turns out that on-line algorithms for maximizing
CC may perform arbitrarily poorly when compared to off-line ones:

Theorem 1 No on-line scheduling algorithm is competitive with respect
to the CC metric.

Proof: The proof process is best described as the interaction betweeen
any on-line scheduling algorithm and a malicious adversary. Initially, the
adversary generates a set of tasks and “observes” the behavior of the on-
line algorithm on these tasks. Depending upon the behavior of the on-line
algorithm, the adversary adds to the set of tasks such that, after a certain
period of time, the on-line algorithm is once again in a state very similar
to the initial state. It will, however, have executed no task to completion
thus far, while an optimal scheduler would have completed one task by
having made a choice different from that made by the on-line algorithm,
and would be in the same state as the on-line algorithm. By repeating
this argument 7 times, the adversary can ensure that an optimal scheduler
would complete n tasks to the OL alg’s one, for arbitrary . The theorem
follows by having n — cc.

More formally, let A be any on-line scheduling algorithm. The exact
procedure for task generation employed by the adversary is detailed in

68

Adversary(n)
/* A call to function gen(e,d) generates a task T with T.a = t.,
Te =e-t,, and T.d = d - ;. Variables t. and t, represent the
“current time” and the “time scale factor” respectively. */
tc :=0.0; ¢, := 1.0;
e :=2n;
gen(2,2); gen(e, e + 1);
fori:=1to(n—1)do
if A executes a zero-slack task over [tc,tc +2e-t,/(1 +¢€))
then
te =t + (2¢-1,)/(1 +€);
ts:=t/(1+e);
gen(e,e +1)
else
te :=1. + 2ts;
e:=¢€e—2;
gen(2,2); gen(e,e + 1)
fi
od
end

Figure 1: The task-generation strategy of the adversary

Figure 1 (a “zero-slack” task T is one in which the execution requirement
T.e is equal to the relative deadline T.d). Initially, at some time ¢, A is
offered a choice of 2 tasks: (i) task T, which requires 2 units of processor
time by a deadline of t. + 2, and (ii) Task Tj, which requires e units of
processor time by a deadline of t; = tc+(e+1), where e >> 2 (Figure 2 (a)).
Any scheduling of T; or T; must be done within the interval [t 1); we refer
to this as the interval of interest.

o If A executes T} at all over [tc,tc+2), then it cannot hope to complete
T; on time. Two new tasks 7] and T are then generated at time
t. =t. +2, with T} requiring 2 units of processor time by a deadline
of t;+2, and T requiring (e—2) units of processor time by a deadline
of t; (Figure 2 b). Clearly, A can hope to complete at most one of the
two tasks T or T} on time; without loss of generality, assume A gives
task T} priority over T;. The situation at time t. is then virtually
identical to the situation at time ., with the tasks T} and T} playing
the roles of tasks T; and Tj, and [t;,t;) the new interval of interest.
Furthermore, (i) A has as yet executed no tasks to completion, and
(ii) an off-line schedule can execute task T; over [tc,tc + 2) and thus

69

+1 +2 43 +4 l +e+1)

te s

T: (a)

b=t +1

remaining T; ()

Figure 2: The adversary’s strategy. (a) Tasks initially generated. (b) If the
on-line algorithm chooses Tj. (c) If the on-line algorithm chooses T;.

have completed one task — T; — and be in the same situation as A at
time t.

o If A executes T; exclusively over [t.,t. + 2¢/(1 + ¢)), then A can-
not hope to complete T; on time. A new task ’1}’ is generated at
time t, = t. + 2¢/(1 + ¢), requiring e/(1 + €) units of processor
time by a deadline of ¢, + 1. Task T;, meanwhile, requires 2/(1 + ¢)
(i.e., 2 — (2¢/(1 + €))) more units of processor time by a deadline
of t, +2/(1 + e) (Figure 2 (c)). The situation at time ¢, is then
again virtually identical to the situation at time t., except that all
execution-requirements and relative deadlines as well as the size of
the interval of interest are scaled by a factor of 1/(1 + €), with the
tasks T; and T} playing the roles of tasks T; and Tj, and [t;,t; + 1)

70

the new interval of interest. Furthermore, (i) A has as yet executed
no tasks to completion, and (ii) an off-line schedule can execute task
Tj over [tc,t;) and [t, + 1,tc + (1 + ¢)) and be in the same situation
as A at time t;. Since t; — .+ (tc + (1 +¢€)) — (t, + 1) = ¢, task T}
would have completed in the off-line schedule.

Notice that in both the above cases, neither A nor the off-line algorithm has
allocated the processor at all over the new interval of interest. The above
argument can therefore be repeated over this new interval of interest. By
doing so (7—1) times, with one of the above cases being made to occur each
time, we see that an off-line schedule executes (n — 1) tasks to completion,
and A, none. After n — 1 iterations, A can then be allowed to execute
either of the two currently active tasks to completion; the off-line schedule
does the same, thus ensuring that A has completed 1 task to the off-line
schedule’s 7 tasks, for a competitive ratio of 7. B

While the conclusion that may be drawn from Theorem 1 — that an on-
line algorithm may, in general, perform arbitrarily poorly when compared
to an off-line one — is certainly severe, observe that the task set generated
by the adversary is rather atypical of those found in most actual application
systems. Specifically, to force a competitive ratio of 7, it is necessary that
the adversary choose e > 25. For an on-line algorithm that causes this
adversary to execute the “then” branch of the “if-then-else” statement on
every iteration of the “for” loop (Figure 2), the task with the smallest
relative deadline has relative deadline 2/(1 4 €)("=1), The deadline spread
ratio (dsr) of the set of tasks — the ratio of the longest relative deadline
to the shortest — is thus > (1 + 21)7/2. (This means that, for example,
the adversary must generate a task set with a dsr at least 13 to force a
competitive ratio of 2, and a dsr of at least 172 to force a competitive ratio
of 3.) Differently stated, if restricted to generating task sets with a dsr of

at most k, the adversary of Figure 2 proves a lower bound of Q (ﬁ%)
on the competitive ratio.

2 Special Cases

Theorem 1 means that on-line algorithms may in general perform arbitrar-
ily poorly vis-a-vis off-line algorithms, when the completion count metric
is the measure of performance. This is certainly disappointing from the
perspective of developing good on-line overload schedulers; however, as we
observed above, the proof of Theorem 1 required a particular kind of work-
load — one with an extremely large deadline spread ratio. In practice,
most real-time applications generate task workloads that are rather more
constrained in their attributes. For a variety of such restricted workloads,

71

we have been able to design on-line schedulers that do provide a guaranteed
level of performance. We describe our results below.

2.1 Monotonic Absolute Deadlines (MAD)

Task system T is said to be monotonic absolute deadline iff it is guar-
anteed that a newly-arrived task will not have a absolute deadline before
that of any task that has previously arrived, i.e.,

VI, Tj T, Tj€r:Tia< T.a=> T,.D < T;.D

The MAD property corresponds, in a certain sense, to our intuitive notion
of first-come first-served fairness, in that a task is not allowed to demand
service by a deadline earlier than any of the tasks that preceded it.

The Smallest Remaining Processing Time First(SRPTF) on-line
scheduling algorithm allocates the processor at every instant to the non-
degenerate task with smallest remaining execution requirement. We prove
below (Theorem 2) that SRPTF is a reasonably good on-line scheduling
algorithm for monotonic-deadline systems, in that it always performs at
least half as well as an optimal algorithm. Furthermore, we show (Theo-
rem 3) that we cannot hope to do better, that is, 2 is a lower bound on
the competitive ratio of any on-line scheduling algorithm for MAD task
systems.

Theorem 2 The SRPTF algorithm is 2-competitive on monotonic-absolute-
deadline task systems.

Proof: Let 7 be a set of tasks, and suppose that an optimal (off-line)
scheduling algorithm can schedule n tasks in 7, n < |r|- Let Ty, To,...,Th
be the deadline-ordered sequence of these tasks. The set {T1,...,T,} con-
stitutes a complete schedulable set of tasks; from the optimality of the
Earliest Deadline First scheduling algorithm (EDF) for non-overload sys-
tems [3], it follows that there is a preemption-free schedule which executes
each task T1,7T%,..., T, in deadline order. We can view this schedule as
consisting of n disjoint intervals, Iy, I, ..., I, where I; is the interval over
which T; was scheduled; I; = [T;.t,, Ti .1y).

By definition, SRPTF schedules at every time instant the task with
the shortest remaining execution time. For it to not execute T; over
[Tits, T; ts), therefore, it must be the case that either (1) SRPTF has al-
ready completed 7; by time T;.t,, or (2) at time T;.i;, SRPTF finds some
task with a smaller remaining execution requirement than T;; in this case
either this smaller task, or some new task arriving during the interval with
an even smaller execution requirement, will execute to completion by time
T}.t;.

72

The interval I; is defined to be “good” if SRPTF either completes some
other task T} not in {T},...,T,} during this interval, or it completes T}
(at some time, although not necessarily during I;). Conversely, the interval
I; is “bad” if it completes some task Ty # T;, Tx € {T\,...,Tn}, during
I;, and fails to complete T; at any other time. (Observe that any intcrval
I; during which SRPTF completes no task is - paradoxically - good, since
this means that I; has already been completed by SRPTF.)

For every good interval, both SRPTF and the optimal schedule add to
their completion counts (by completing either the same or different tasks);
for every bad interval f;, SRPTF loses exactly one task that the optimal
schedule completes (the task 7;). The crucial observation is that each bad
interval [; “matches” with at least one good interval (interval I, corre-
sponding to the task 7T that was completed during the bad interval [;).
Thus, at most [n/2] of the intervals may be bad. The theorem follows. @

Theorem 3 2 is a lower bound on the competitive ratio of any on-line
scheduling algorithm for scheduling monotonic-absolute-deadline task sets.

Proof Sketch: The proof is very similar to the proof of Theorem 1; hence
we only provide a sketch here. The interested reader may fill in the details
by essentially mimicking the proof of Theorem 1.

For any on-line scheduling algorithm A, we describe below a set of tasks
7 such that either (i) A completes m tasks in 7 while an off-line schedule
for 7 completes at least 2m tasks, or (ii) A completes k+1 tasks in 7, while
an off-line schedule for 7 completes at least 2k tasks. In the former case,
the competitive ratio of A is clearly 2. In the latter case, the competitive
ratio of A is 2k/(k + 1); it follows that as & — oo, the competitive ratio of
A becomes arbitrarily close to 2.

The task generation process is such that initially, at some time t., A is
offered a choice of 2 tasks: (i) task T;, which requires 2 units of processor
time by a deadline of t. + 2, and (ii) Task Tj, which requires 1 unit of
processor time by a deadline of ¢, + 3.

Case (1) If A executes Tj at all over [tc,i. + 1), then it cannot hope to
complete T; on time. Task set T in this case consists of T; and Tj.
An off-line schedule would schedule T; over [t.,t. + 2), and T over
[te +2,t. + 3), thus completing two tasks.

Case (2) If A executes T; exclusively over [t, . + 1), then two tasks T}
and T» are added to 7 at time ¢, + 1, each requiring 1 unit of procesor
time by a deadline of . + 3. Task T; now needs to be scheduled for
the next unit of time by A in order to complete, and T}, T}, and Ts
each need to be scheduled for one of the next 2 units of processor
time by A in order to complete. We consider 2 cases:

73

Case (2.1) If A schedules T; exclusively over [te+1,tc+2),orif it
schedules at most 2 of the three tasks T;, Ty, or T> over [tc +
1,t.+2), then a new task T3 is added to 7 at time {.+2, requiring
0.5 units of processor time by a deadline of ¢, + 3.5.

If A schedules T}, or exactly one of the tasks Tj,T1, or Ta, over
[te + 1,2. + 2), then that task completes in A at time {c + 2. If
A schedules 2 of the 3 tasks Tj, Ty, or Ty over [t. + 1,1 + 2),
then neither of the two tasks will have completed by ¢. -+ 2;
however, both may complete by {.+3. Without loss of generality,
therefore, we may assume that one task has completed at time
tc + 2, and (at least) another one needs to be scheduled for the
time unit [t; + 2,¢. + 3) in order to complete. Let ¢, e +2,
T! = one of the tasks that need to be scheduled for the next
time unit (i.e., one of Tj,T1,T> that has not been scheduled

over [tc,tc +2)), and T} =T
Case (2.2) Otherwise, at most one of the tasks T}, Ty, or T> will be

completed by A, while an off-line algorithm could schedule T;
over [te,t.+1), Ty over [t.+1,t.+2), and T, over [t.+2,t.+3).

In Cases (1) and (2.2) above, A has executed exactly one task to comple-
tion, while an off-line algorithm will have executed at least two tasks to
completion.

In Case (2.1) above, A executes one task over [tc,t. + 2) (and may
complete another by ¢. + 3). However, an off-line schedule completes two
tasks over [tc,t.+2) by executing Tj over [tc,t.+1), and Ty over [t.+1,tc+
2). Furthermore, the situation at time ¢, = t.+2 is virtually identical to the
situation at time t., with all task parameters — execution requirements and
relative deadlines — halved, with tasks 7} and T} playing the roles of tasks
T; and Tj respectively. The above argument may therefore be recursively
applied whenever Case (2.1) occurs. Doing this k — 1 times would result
in A having completed k — 1 tasks, while an off-line algorithm completes
2(k — 1) tasks. The kth time, tasks T1, T3, T3 are not generated: both A
and an off-line algorithm therefore complete 2 tasks. On this sequence of
task requests, therefore, the number of tasks completed by A is k + 1, and
the number completed by an optimal algorithm is 2k.

2.2 Equal Request Times (ERT)

We next consider task sets 7 in which all tasks in the overloaded interval
have the same request times, that is, requests are made in bulk. (Since
all the necessary information — the request times, execution requirements,
and deadlines of all tasks in 7 — is known a priori, scheduling such a task
set is not really an “on-line” problem.)

74

Theorem 4 There are optimal (1-competitive) algorithms for scheduling
equal-request-time task systems.

Proof: Moore [7], presented an optimal algorithm for non-preemptive
scheduling to maximize task completions in equal-request-time task sys-
tems. However, when all tasks have the same request times, the problems
of preemptive scheduling and non-preemptive scheduling on a uniprocessor
are equivalent, in the sense that every set of tasks that can be scheduled
preemptively can also be scheduled without preemption. (To see why, let
7 be any set of tasks, and suppose that an optimal scheduling algorithm
schedules a subset 7’ of the tasks. The schedule generated by the Ear-
liest Deadline First scheduling algorithm (EDF) [3] on 7/ would meet all
deadlines in 7/; further, since EDF schedules tasks in deadline order, this
schedule would involve no preemption.) The algorithm of Moore is there-
fore an optimal algorithm for scheduling such systems. B

2.3 Equal Execution Times (EET)

We now consider the case where all tasks have equal execution times.

A scheduling algorithm is said to use no inserted idle time if the pro-
cessor is never idle while there are active non-degenerate tasks that need
to be scheduled.

Lemma 1 Given a set 7 of EET tasks such that an optimal off-line sched-
ule can complete n of the tasks, any non-preemptive on-line algorithm that

uses no inserted idle time will complete at least -121 tasks.
Proof: Let NPT denote a generic non-preemptive scheduling algorithm
that uses no inserted idle time. Our proof is by induction on »n, the number
of tasks completed by the optimal off-line scheduler on the overloaded set
T.

Without loss of generality, assume that all tasks T' € 7 have T.e = 1,
and that minge, {T.a} = 0.

Basis: The lemma is observed to be true forn =1 and n = 2.

Induction Step: Suppose the lemma is true for all n < (k — 1). We now
show that it is true for n = k. Consider the optimal schedule S
which completes k tasks in the interval [0, z). Let T denote the first
task that completes in S, and let t* denote its completion time. Now
replace all the time intervals in & where T* is scheduled with idle
periods — obviously, the total time of these “holes” adds up to unit
time. The next step is to compact the modified schedule S until £* by

75

“sliding” all task executions in the interval [0,2") to the right until
all the holes left by the removal of T* have been covered up. The
compaction, upon completion, will result in a free slot of unit size
in the interval [0,1). Note also that the sliding does not affect the
completion status of any of the remaining tasks, since all these tasks
have deadlines greater than ¢*.

Now identify the task T; which was executed in the interval [0, 1) in
NPT. Create a new schedule R wherein 7; is non-preemptively sched-
uled in the interval [0,1), with the remainder of R being identical to
that of the compacted S schedule, except that the execution intervals
of task T; are replaced by idle periods, if T; was executed in S .

By inspection, it is clear that the new schedule R is feasible for the
interval [1,) and in this interval completes the task set - {T™, Ti},
which is of size (k — 2).

Applying the induction hypothesis to schedule R, we note that NPT

o

will complete tasks in the interval [1, z). Therefore, over the

2
entire interval [0,), NPT will complete at least 1 + [l_c;_fl tasks,

that is, at least [g] tasks.

The lemma follows. B

We therefore conclude that any non-preemptive algorithm that uses no
inserted idle time completes at least half of the number of tasks completed
by an optimal off-line scheduler:

Theorem 5 There are 2-competitive on-line scheduling algorithms for schedul-
ing equal-execution-time task systems.

This bound on competitive ratio is tight for the subset of on-line schedul-
ing algorithms that are restricted to being non-preemptive. (Consider for
example the set of tasks T) and T3, with Ty.a = 0,Ty.e = 1,T1.d = 2,
To.a =0.5,Te.e=1,To.d = 1.0, and T3.¢ = 0.9,T3.e = 1,T3.d = 1.9. On
this set of tasks, any non-preemptive algorithm can only complete one task,
while an optimal preemptive scheduler would complete both.)

2.4 Equal Relative Deadlines (ERD)

For systems where all tasks are a priori known to have the same relative
deadline, the following result holds:

Theorem 6 No on-line algorithm can be better than 3/2-competitive for
equal-relative-deadline task systems.

76

Proof: Without loss of generality, assume that the relative deadline of all
tasks is 1 (i.e., T.d = 1 for all T'). Let ONL denote any on-line algorithm.
Consider the following task sequence: At t =0, a task Ty, with Ty.e = 1
arrives. Later at ¢ = 0.25, another task T arrives, with Ty.e = 0.25.

Case 1 : If ONL executes T at all over [0.25,0.5), then it cannot hope
to complete T;. Hence, it completes only T5, whereas an off-line
scheduler would be able to execute T7 until t=1 and then execute 75.

Case 2 : If ONL schedules only T} over [0.25,0.5), the adversary generates
two more tasks T3 and Ty at { = 0.5, with 73.e = Ty.e = 0.5. ONL can
now complete at most two of the four active tasks before t = 1.5, since
T1, T3, Ty all have requirement of 0.5 units. The off-line scheduler, on
the other hand, would execute T3 over [0.25, 0.5), and then complete
T3 and Tq.

At best, therefore, ONL completes 2 tasks whereas the off-line algorithm
can complete 3. The theorem follows. B

The above theorem establishes a lower bound on the competitive ratio.
We are currently working on determining whether this bound is tight. Since
equal-relative-deadline task systems also satisfy the monotonic-absolute-
deadline property (Section 2.1), it follows by Theorem 2 that the SRPTF
algorithm is 2-competitive for ERD task systems.

2.5 Equal Absolute Deadlines (EAD)
A task system 7 has equal absolute deadlines if it is guaranteed that
VI, T €7 Tia+Tid=T;a+T;d.

Theorem 7 The SRPTF Algorithm is optimal for equal absolute deadline
task systems.

Proof: It has been shown [8] that a SRPTF schedule will always have
completed at least as many tasks as any other schedule at any observation
time. Given this result, it is straightforward to see that if a common dead-
line was drawn for all tasks, SRPTF would have completed at least the
same number of tasks as any other schedule by this deadline. I

3 Conclusions

Effective processor utilization (EPU) and completion count (CC) are two
very different metrics for measuring the performance of scheduling algo-
rithms under conditions of overload. The EPU metric has been well stud-
ied: it is known that the off-line problem is NP-hard, and 4-competitive

77

algorithms have been designed for the on-line problem. Not quite as much
attention has been paid to the CC metric: a relatively recent result of
Lawler [5] yields a polynomial-time off-line scheduling algorithm as a corol-
lary. In this paper, we have studied the on-line scheduling problem with
respect to this metric. Our major result is negative — in contrast to EPU,
for which 4-competitive on-line schedulers exist, it turns out that there can
be no competitive on-line algorithms that maximize CC. However, when
task systems are restricted in some manner, competitive scheduling often
becomes possible: we have been able to obtain efficient on-line scheduling
algorithms with low competitive ratios for a wide variety of restricted task
systems.

References

[1] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier,
D. Shasha, and F. Wang. On the competitiveness of on-line real-time
task scheduling. Real-Time Systems, 4:125-144, 1992. Also in Proceed-
ings of the 12th Real-Time Systems Symposium, San Antonio, Tezas,
December 1991.

[2] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and
D. Shasha. On-line scheduling in the presence of overload. In Proceed-
ings of the 32nd Annual IEEE Symposium on Foundations of Computer
Science, pages 100-110, San Juan, Puerto Rico, October 1991. IEEE
Computer Society Press.

[3] M. Dertouzos. Control robotics : the procedural control of physical
processors. In Proceedings of the IFIP Congress, pages 807-813, 1974.

[4] J. Haritsa, M. Carey, and M. Livny. Earliest-deadline scheduling for
real-time database systems. In Proceedings of the Real-Time Systems
Symposium, 1991.

[6] E. L. Lawler. A dynamic programming algorithm for preemptive
scheduling on a single machine to minimize the number of late jobs.
Annals of Operations Research, 26:125-133, 1990.

[6] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46-61, 1973.

[7] J. M. Moore. An n job, one machine sequencing algorithm for minimiz-
ing the number of late jobs. Management Science, 15:102-109, 1968.

[8] L Schrage. A proof of the optimality of the shortest remaining process-
ing time discipline. Operations Research, 66:687-690, 1968.

78

