λ -fold $K_{2,5}$ -designs

Dean G. Hoffman Auburn University Department of Discrete and Statistical Sciences Auburn, Alabama 36849-5307

> Kimberly S. Kirkpatrick University of Evansville Department of Mathematics Evansville, Indiana 47722-0001

Michael E. Raines
Western Michigan University
Department of Mathematics and Statistics
Kalamazoo, Michigan 49008-5152

Abstract

In this note, we present necessary conditions for decomposing λK_n into copies of $K_{2,5}$, and show that these conditions are sufficient except for $\lambda=5$ and n=8, and possibly for the following cases: $\lambda=1$ and n=40; and $\lambda=3$ and n=16 or 20.

1 Introduction

Let λK_n denote the complete multigraph of order n in which exactly λ edges join each pair of vertices. A G-decomposition of a (multi)graph H is a partition of the edge set of H into isomorphic copies of G. In particular, a G-design of order n and index λ (or λ -fold G-design of order n) is a partition of the edge set of λK_n into copies of a graph G. Many have studied the spectrum problem for G-designs, which can be stated as follows: "For which n and λ does a λ -fold G-design of order n exist?" For example, the spectrum problem for stars [9], complete simple graphs on less than six vertices [6], and other simple connected graphs on less than five vertices as well as $K_{2,3}$ [3, 7] has been solved for all λ while the spectrum problem for

paths [10], cycles of length at most 50 [1] and various other small graphs has been solved for $\lambda = 1$ [2, 3].

For a complete multigraph λK_n to be decomposed into isomorphic copies of a bipartite graph $K_{a,b}$ $(a \leq b)$ there are some obvious necessary conditions. First, the number of edges of λK_n must be divisible by the number of edges of $K_{a,b}$, so $2ab|\lambda n(n-1)$. Second, the degree of each vertex of λK_n must equal some non-negative, integer, linear combination of the degrees of the vertices of $K_{a,b}$, so $\lambda (n-1) = ax + by$ for some non-negative integers x and y. Therefore any common divisor of a and b must also be a divisor of $\lambda (n-1)$, so, in particular, $\gcd(a,b)|\lambda(n-1)$.

The case when a=1 (these bipartite graphs are also known as stars) was completely solved by M. Tarsi [9]. When $a,b \geq 2$, a theorem of Graham and Pollak asserts that the complete graph K_n can be edge-partitioned into no fewer than n-1 complete bipartite graphs [5]. However, DeCaen and Hoffman have shown the impossibility of decomposing K_n into exactly n-1 complete bipartite graphs [4]. Thus, $\frac{n(n-1)}{2ab} > n-1$ or n > 2ab.

A related problem is to decompose a bipartite graph $K_{c,d}$ into isomorphic copies of the bipartite graph $K_{a,b}$. The following theorem is due to Hoffman and Liatti [8].

Theorem 1.1 Let a, b, c, and d be positive integers. Let $g = \gcd(a, b)$; let e, f be integers satisfying ae - bf = g; and let h = ae + bf. For each integer x, let $\alpha(x) = \left\lceil \frac{xf}{a} \right\rceil$, $\beta(x) = \left\lfloor \frac{xe}{b} \right\rfloor$ and $\gamma(x) = \frac{x}{ab}$.

Then the edges of the complete bipartite graph $K_{c,d}$ can be partitioned into copies of the complete bipartite graph $K_{a,b}$ if and only if the following conditions are true:

- (i) ab|cd;
- (ii) g|c and $\alpha(c) \leq \beta(c)$;
- (iii) g|d and $\alpha(d) \leq \beta(d)$; and
- (iv) $c\alpha(d) + d\alpha(c) \le h\gamma(cd) \le c\beta(d) + d\beta(c)$.

2 Preliminary Results

We begin with a recursive construction for decomposing complete graphs into $K_{a,b}$, where $2 \le a \le b$. We denote the copy of $K_{a,b}$ in Figure 1 by (1,2,3,...,a) - (a+1,a+2,...,a+b).

Lemma 2.1 If K_n has a $K_{a,b}$ -decomposition then so does K_{n+2ab} .

Figure 1: Block of $K_{a,b}$

Proof: Let $G = K_{a,b}$, and let K_{n+2ab} be defined on the vertex set $X \cup \mathbb{Z}_{2ab+1}$, where X is an (n-1)-set. By assumption, there is a $K_{a,b}$ -decomposition of K_n defined on $X \cup \{0\}$. The following base block, when developed (mod 2ab+1), gives a $K_{a,b}$ -decomposition of K_{2ab+1} defined on \mathbb{Z}_{2ab+1} : (b, 2b, 3b, ..., ab) - (0, 1, 2, ..., b-1). Theorem 1.1 guarantees a $K_{a,b}$ -decomposition of $K_{n-1,2ab}$.

Since we do not have an analogous result to Theorem 1.1 for $\lambda > 1$, we now restrict our attention to the case when a = 2 and b = 5. We will make use of the following proposition.

Proposition 2.2 Suppose $n \ge 5$. If λn is divisible by 2 or by 5, then there exists a $K_{2,5}$ -decomposition of $\lambda K_{n,20}$.

Proof: Define $V(\lambda K_{n,20})$ with bipartition (X,Y), where $X = \mathbb{Z}_n$ and $Y = \{\infty_0, \infty_1, \ldots, \infty_{19}\}$. Then if $2 \mid \lambda n$, then $B = \{(2j, 2j + 1) - (\infty_{5i}, \infty_{5i+1}, \infty_{5i+2}, \infty_{5i+3}, \infty_{5i+4}) \mid 0 \le j \le (\lambda n - 2)/2, 0 \le i \le 3\}$, where all sums involving j are reduced modulo n, is the desired set of blocks for the decomposition.

If $5 \mid \lambda n$, then $B = \{(\infty_{2i}, \infty_{2i+1}) - (5j, 5j+1, 5j+2, 5j+3, 5j+4) \mid 0 \le i \le 9, 0 \le j \le (\lambda n - 5)/5\}$, where all sums involving j are reduced modulo n, is the desired set of blocks for the decomposition.

This proposition is useful in the proof of the following.

Proposition 2.3 Suppose $n \geq 5$, $\lambda \geq 2$, and $\lambda \neq 3$. If λn is divisible by 2 or 5, and if there exists a λ -fold $K_{2,5}$ -design of order n, then there exists a λ -fold $K_{2,5}$ -design of λK_{n+20} . Furthermore, if $\lambda = 3$, if $n \equiv 0, 1, 5$, or 16 (mod 20), and if there exists a $K_{2,5}$ -design of λK_n , then there is a λ -fold $K_{2,5}$ -design of λK_{n+20}

Proof: Let $G = K_{2,5}$, and let K_{n+20} be defined on the vertex set $Y \cup \mathbb{Z}_{20}$, where Y is an n-set. By assumption, there is a $K_{2,5}$ -decomposition of λK_n defined on Y. Furthermore, $K_{2,5}$ -decompositions of $2K_{20}$ and $5K_{20}$ can be found in the appendix. More generally, if $\lambda \geq 2$ and $\lambda \neq 3$, then one can obtain a $K_{2,5}$ -decomposition of λK_{20} by taking $\lambda/2$ copies of a $K_{2,5}$ -decomposition of $2K_{20}$ if λ is even and by taking one copy of a $K_{2,5}$ -decomposition of $5K_{20}$ and $(\lambda - 5)/2$ copies of a $K_{2,5}$ -decomposition of $2K_{20}$ if λ is odd. Proposition 2.2 guarantees a decomposition of $\lambda K_{n,20}$.

Now suppose $\lambda = 3$. Let K_{n+20} be defined on the vertex set $X \cup \mathbb{Z}_{21}$, where X is an (n-1)-set. By assumption, there is a $K_{2,5}$ -decomposition of $3K_n$ defined on $X \cup \{0\}$. The following base block gives a $K_{2,5}$ -decomposition of K_{21} defined on \mathbb{Z}_{21} when developed (mod 21): (5,10) - (0,1,2,3,4). Putting together three copies of this decomposition gives a $K_{2,5}$ -decomposition of $3K_{21}$. Theorem 1.1 guarantees a $K_{2,5}$ -decomposition of $K_{n-1,20}$ and, thus, a $K_{2,5}$ -decomposition of $3K_{n-1,20}$.

3 Constructing λ -fold $K_{2,5}$ -designs

In this section we construct λ -fold G-designs, where $G = K_{2,5}$.

The following lemma states necessary conditions for the existence of λ -fold $K_{2.5}$ -designs of order n.

Lemma 3.1 Let n and λ be positive integers. If there exists a λ -fold $K_{2,5}$ -design of order n, and:

- (i) if $\lambda \equiv 1, 3, 7$, or 9 (mod 10), then $n \equiv 0, 1, 5$, or 16 (mod 20), $n \ge 21$ if $\lambda = 1$, and $n \ge 16$ if $\lambda > 1$;
- (ii) if $\lambda \equiv 2, 4, 6$, or 8 (mod 10), then $n \equiv 0$ or 1 (mod 5), $n \ge 10$;
- (iii) if $\lambda \equiv 5 \pmod{10}$, then $n \equiv 0$ or $1 \pmod{4}$, $n \geq 8$; and
- (iv) if $\lambda \equiv 0 \pmod{10}$, then $n \geq 7$.

Proof: If there exists a $K_{2,5}$ -decomposition of λK_n , then the number of edges in λK_n must be divisible by 10, and certainly $n \geq 7$. This implies that $\frac{\lambda n(n-1)}{20}$ is an integer. We consider each case in turn.

Case 1: $\lambda \equiv 1, 3, 7, \text{ or } 9 \pmod{10}$.

In this case, 20 and λ are relatively prime, so we need only consider when 20 divides n(n-1). This is precisely when $n \equiv 0, 1, 5$, or 16 (mod 20). Certainly, since $n \geq 7$ and $n \equiv 0, 1, 5$, or 16 (mod 20), it follows that $n \geq 16$. However, by a theorem of DeCaen and Hoffman [4], $n \geq 21$ when $\lambda = 1$.

Case 2: $\lambda \equiv 2, 4, 6, \text{ or } 8 \pmod{10}$.

If $\lambda \equiv 2, 6, 14$, or 18 (mod 20), then $\gcd(20, \lambda) = 2$. Therefore, for these cases it suffices to consider when 10 divides n(n-1). If $\lambda \equiv 4, 8, 12$, or 16 (mod 20), then $\gcd(20, \lambda) = 4$, so we need only consider when 5 divides n(n-1). In all cases, this means that $n \equiv 0$ or 1 (mod 5). Since $n \geq 7$, and $n \equiv 0$ or 1 (mod 5), it follows that $n \geq 10$.

Case 3: $\lambda \equiv 5 \pmod{10}$.

If $\lambda \equiv 5 \pmod{10}$, then $\gcd(20, \lambda) = 5$. It follows that we need only consider when 4 divides n(n-1). This means that $n \equiv 0$ or 1 (mod 4), and since $n \geq 7$, it follows that $n \geq 8$.

Case 4: $\lambda \equiv 0 \pmod{10}$.

If $\lambda \equiv 0 \pmod{10}$, then $\gcd(20, \lambda) = 10$ or 20, so it suffices to consider when 2 divides n(n-1). Therefore, the only limitation is that $n \geq 7$. \square Interestingly enough, the obvious necessary conditions are not always sufficient, as we see from the following lemma.

Lemma 3.2 There exists no $K_{2,5}$ -design of order 8 and index 5.

Proof: We assume that such a design D = (S, B) exists, and work toward a contradiction. This design D has |S| = 8, and |B| = 14. Furthermore, since deg(v) = 35 for every vertex v in $5K_8$, it follows that each vertex must appear as a vertex of degree 5 in an odd number of blocks of B. Let $d_2(v)$ and $d_5(v)$ denote the number of blocks of B in which v is a vertex of degree 2 and of degree 5, respectively. Suppose for some vertex x that $d_5(x) = 1$. Then $d_2(x) = 15$, which is impossible since |B| = 14. Therefore, $d_5(v) \geq 3$ for each $v \in S$. Since |B| = 14, it follows that there is exactly one vertex x for which $d_5(x) = 7$ or there are exactly two vertices x_1, x_2 , for which $d_5(x_1) = 5 = d_5(x_2)$. For every other $v \in S$, $d_5(v) = 3$. In any event, there exist two vertices v_1, v_2 for which $d_5(v_1) = d_5(v_2) = 3$ which are contained as vertices of degree 5 in the same block. This leaves at most four other blocks of B which contain exactly one of v_1 or v_2 as a vertex of degree 5. Since the edge v_1v_2 occurs in a block $b \in B$ if and only if one of v_1 and v_2 has degree 5 in b and the other has degree 2 in b, it follows that v_1v_2 occurs in at most four blocks of B, thus giving a contradiction.

This brings us to our main result.

Theorem 3.3 Suppose λ and n are positive integers which satisfy the conditions of Lemma 3.1. Then there exists a λ -fold $K_{2,5}$ -design of order n except when $\lambda = 5$ and n = 8, and except possibly in the following cases: $\lambda = 1$ and n = 40; and $\lambda = 3$ and n = 16 or 20.

Proof: In light of Lemma 2.1, when decomposing K_n into $K_{a,b}$, we need only consider those special cases where n satisfies the obvious necessary conditions and $n < 2ab + m_{a,b}$, where $m_{a,b}$ denotes the smallest order m

for which there exists a $K_{a,b}$ -design of order m. More specifically, in light of Proposition 2.3, when decomposing λK_n into $K_{2,5}$, it suffices to consider those special cases where n satisfies the obvious necessary conditions and $n < 20 + m_{2,5}(\lambda)$, where $m_{2,5}(\lambda)$ denotes the smallest order m for which there exists a λ -fold $K_{2,5}$ -design of order m. Certainly, if there exist $K_{2,5}$ -decompositions of $\lambda_1 K_n$ and $\lambda_2 K_n$, then there exists a $K_{2,5}$ -decomposition of $(\lambda_1 + \lambda_2) K_n$. With these ideas in mind, we consider several cases based upon the value of λ .

Case 1: $\lambda = 1$.

By Lemma 3.1 and a theorem of DcCaen and Hoffman [4], we need only consider orders $n \equiv 0, 1, 5$, or 16 (mod 20), where $n \geq 21$. Therefore, it suffices to find $K_{2,5}$ -designs of K_{21} , K_{25} , K_{36} , and K_{40} . The first three designs are found in the appendix; however, it is unknown whether a $K_{2,5}$ -design of K_{40} exists. However, since a $K_{2,5}$ -design of K_{60} exists (as seen in the appendix), there exist $K_{2,5}$ -designs of K_n for all $n \equiv 0, 1, 5$, or 16 (mod 20), $n \geq 21$, except possibly for n = 40.

Case 2: $\lambda \equiv 2, 4, 6, \text{ or } 8 \pmod{10}$.

In this case, $n \equiv 0$ or 1 (mod 5), $n \geq 10$. Certainly, it suffices to find all possible 2-fold $K_{2,5}$ -designs for these values of n. It follows that we only need to find 2-fold $K_{2,5}$ -designs of orders n=10,11,15,16,20,21,25, and 26. However, when n=21 or 25, we can simply take 2 copies of a $K_{2,5}$ -design or order n and index 1. The remaining 2-fold $K_{2,5}$ -designs are found in the appendix.

Case 3: $\lambda \equiv 1, 3, 7$, or 9 (mod 10), $\lambda > 1$.

In this case, we need only consider orders $n \equiv 0, 1, 5$, or 16 (mod 20), $n \geq 16$. There exist $K_{2,5}$ -designs of order n and index 1 for all of these values of n except for n = 16 and 20, and possibly for n = 40. Since there exist 2-fold $K_{2.5}$ -designs of order n for all $n \equiv 0$ or 1 (mod 5), $n \geq 10$, it suffices to find 3-fold $K_{2,5}$ -designs of order n=16,20, and 40. Such a design of order 40 is found in the appendix, but it is unknown whether there exist 3-fold $K_{2,5}$ -designs of orders 16 and 20. However, 5-fold $K_{2,5}$ -designs of orders 16 and 20 exist and are found in the appendix. Therefore, for $\lambda = 3$, there exists a $K_{2.5}$ -design of order n for all $n \equiv 0, 1, 5$, or 16 (mod 20), where $n \ge 21$. For $\lambda \equiv 1, 3, 7$, or 9 (mod 10), where $\lambda \ge 7$, and for $n \equiv 0, 1, 5$, or 16 (mod 20), where $n \geq 21$, we can obtain a λ -fold $K_{2.5}$ design of order n by taking one copy of a 3-fold $K_{2.5}$ -design and $(\lambda - 3)/2$ copies of a 2-fold $K_{2,5}$ design of order n. For these same values of λ and for n = 16 or 20, we can construct a λ -fold $K_{2,5}$ -design of order n by taking one copy of a 5-fold $K_{2,5}$ -design of order n and a $(\lambda - 5)/2$ copies of a 2-fold $K_{2,5}$ -design of order n.

Case 4: $\lambda \equiv 5 \pmod{10}$.

Here we need only consider orders $n \equiv 0$ or 1 (mod 4), where $n \geq 8$ if $\lambda > 5$ and $n \geq 9$ if $\lambda = 5$. Therefore, it suffices to find 5-fold $K_{2,5}$ -designs

of order n=9,12,13,16,17,20,24, and 28, a 10-fold $K_{2,5}$ -design of order n=8, and a 15-fold $K_{2,5}$ -design of order n=8, all of which are found in the appendix. If $\lambda \equiv 5 \pmod{10}$ and $\lambda > 5$, then we can find λ -fold $K_{2,5}$ -designs of order $n\equiv 0$ or $1\pmod{4}$, where $n\geq 9$ by simply taking $\lambda/5$ copies of the appropriate 5-fold design of order n. When $\lambda\equiv 5\pmod{10}$, $\lambda\geq 15$, and n=8, we need only take a 15-fold $K_{2,5}$ -design of order 8 and $(\lambda-15)/10$ copies of a 10-fold $K_{2,5}$ -design of order 8 to obtain a λ -fold $K_{2,5}$ -design of order 8.

Case 5: $\lambda \equiv 0 \pmod{10}$.

Here we need to consider all orders $n \geq 7$. For $\lambda \geq 10$, where $\lambda \equiv 0 \pmod{10}$, we can construct λ -fold $K_{2,5}$ -designs of order n simply by taking $\lambda/10$ copies of a 10-fold $K_{2,5}$ -design of order n. It suffices to find 10-fold $K_{2,5}$ -designs for all orders n where $10 \leq n \leq 10$. There exist 1-fold $10 \leq n \leq 10$ designs of orders $10 \leq n \leq 10$. In addition, there exist 2-fold $10 \leq n \leq 10$ designs of orders $10 \leq n \leq 10$. Furthermore, there exist 5-fold $10 \leq n \leq 10$ designs of order $10 \leq n \leq 10$. Therefore, we need only construct 10-fold $10 \leq n \leq 10$ designs of order $10 \leq n \leq 10$. Each of these is found in the appendix.

References

- [1] E. Bell, Decomposition of K_n into cycles of length at most 50. Ars Combin. 40 (1995) 49-58.
- [2] J.-C. Bermond, and J. Schönheim, G-Decomposition of K_n Where G Has Four Vertices or Less. Discrete Math. 19 (1977) 113–120.
- [3] J.-C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of Complete Graphs into Isomorphic Subgraphs with Five Vertices. *Ars Combin.* 10 (1980) 211–254.
- [4] D. De Caen and D. G. Hoffman, Impossibility of Decomposing the Complete Graph on n points into n-1 Isomorphic Complete Bipartite Graphs, SIAM Journal of Discrete Mathematics Vol. 2, No. 1 (1989) 48-50.
- [5] R. L. Graham and H. O. Pollak, On embedding graphs in squashed cubes, Springer Lecture Notes 303, Springer-Berlag, New York (1973) 99-110.
- [6] H. Hanani, The existence and construction of Balanced Incomplete Block Designs. Annals of Mathematical Statistics 32 (1961) 361-386.

- [7] D. G. Hoffman and K. S. Kirkpatrick, G-designs of order n and index λ where G has 5 vertices or less. Australas. J. Combin. 18 (1998) 13–37.
- [8] D. G. Hoffman and M. Liatti, Bipartite Designs. J. Combin. Des. 3 (1995) 499-454.
- [9] M. Tarsi, Decomposition of Complete Multigraphs into Stars. Discrete Math. 26 (1979) 273-278.
- [10] M. Tarsi, Decomposition of a complete multigraph into simple paths. J. Combin. Th. A 34 (1983), no. 1, 60-70.

Appendix

- K_{21} on the vertex set \mathbb{Z}_{21} . Here is a base block to be developed cyclically (mod 21): (10,5) (0,1,2,3,4)
- K_{25} on the vertex set $\mathbb{Z}_5 \times \mathbb{Z}_5$. Here are the base blocks to be developed cyclically (mod (5,-)): ((0,0)(0,1)) ((1,0)(2,0)(1,1)(2,1)(0,2)) ((1,2)(2,2)) ((0,2)(0,0)(3,0)(0,1)(3,1)) ((0,0)(0,4)) ((0,1)(0,3)(1,3)(1,4)(2,4)) ((0,2)(0,3)) ((1,3)(2,3)(1,4)(2,4)(3,4)) ((0,2)(1,1)) ((0,3)(3,3)(4,3)(0,4)(4,4)) ((1,3)(2,4)) ((2,0)(3,0)(4,0)(0,1)(1,1))
- K_{36} on the vertex set $\mathbb{Z}_9 \times \mathbb{Z}_4$. Here are the base blocks to be developed cyclically (mod (9,-)): ((0,0)(0,2)) ((0,3)(1,2)(2,2)(3,2)(4,2)) ((0,1)(7,1)) ((1,1)(2,1)(0,0)(6,3)(5,3)) ((0,0)(7,0)) ((1,0)(2,0)(1,3)(2,3)(2,1)) ((7,3)(0,2)) ((3,3)(4,3)(5,3)(6,3)(5,1)) ((0,2)(7,1)) ((4,0)(1,3)(2,3)(7,3)(8,3)) ((0,0)(2,0)) ((8,1)(0,2)(8,2)(7,3)(8,3)) ((0,1)(4,1)) ((8,0)(0,2)(1,2)(2,2)(3,2))
- K_{60} on the vertex set $\mathbb{Z}_{24} \cup \{\infty_0, \infty_1, \ldots, \infty_{34}\} \cup \{\infty\}$: First place a decomposition of K_{25} on the vertex set $\mathbb{Z}_{24} \cup \{\infty\}$, and then place a decomposition of K_{36} on the vertex set $\{\infty_0, \infty_1, \ldots, \infty_{34}\} \cup \{\infty\}$. Finish the construction with the following set of blocks: $\{(2i, 2i + 1) - (\infty_{5j}, \infty_{5j+1}, \infty_{5j+2}, \infty_{5j+3}, \infty_{5j+4}) \mid 0 \le i \le 11, 0 \le j \le 6\}$.
- $2K_{5,5}$ on the vertex set $\mathbb{Z}_5 \times \mathbb{Z}_2$: Let $V_i = \{(0,i), (1,i), (2,i), (3,i), (4,i)\}$, for $0 \le i \le 1$. Define $2K_{5,5}$ with bipartition (V_0, V_1) . Then $(V_0 \cup V_1, C)$ is a $K_{2,5}$ -design of $2K_{5,5}$, where

$$C = \{\{((2i,0),(2i+1,0)) - ((0,1),(1,1),(2,1),(3,1),(4,1))\} \mid 0 \le i \le 4\},$$

where all sums are reduced modulo 5.

• $2K_{25} \setminus 2K_{20}$ on the vertex set $\mathbb{Z}_5 \cup \{\infty_0, \infty_1, \ldots, \infty_{19}\}$: Let $2K_{25} \setminus 2K_{20}$ denote the complete multigraph $2K_{25}$ with the edges of $2K_{20}$ removed (also called $2K_{25}$ with a hole of size 20). Furthermore, let $\{\infty_0, \infty_1, \ldots, \infty_{19}\}$ be the vertices in the hole of size 20. The following sets of blocks give a $K_{2,5}$ -decomposition of $2K_{25} \setminus 2K_{20}$:

- (i) $\{\{(i, i+3) (i+1, \infty_{4j}, \infty_{4j+1}, \infty_{4j+2}, \infty_{4j+3})\} \mid 0 \le i \le 4, 0 \le j \le 1\}$, where all sums including *i* are reduced modulo 5; and
- (ii) two copies of each block in the following set: $\{\{(\infty_{2i}, \infty_{2i+1}) (0, 1, 2, 3, 4)\} \mid 4 \leq i \leq 9\}$.
- $2K_{10}$ on the vertex set \mathbb{Z}_{10} :

$$\begin{array}{lll} (0,6)-(1,2,3,4,5) & (1,7)-(2,3,4,5,6) \\ (2,8)-(3,4,5,6,7) & (3,9)-(4,5,6,7,8) \\ (4,0)-(5,6,7,8,9) & (1,6)-(0,5,7,8,9) \\ (2,7)-(0,1,5,8,9) & (3,8)-(0,1,2,5,9) \\ (4,9)-(0,1,2,3,5). \end{array}$$

• $2K_{11}$ on the vertex set \mathbb{Z}_{11} :

Here is a base block to be developed cyclically (mod 11): (0,1) - (2,4,6,8,10)

- 2K₁₅ on the vertex set Z₁₀ ∪ {∞₀, ∞₁, ∞₂, ∞₃, ∞₄}:
 First place a decomposition of 2K₁₀ on the vertices in Z₁₀. Then form the following sets of blocks:
 - $\{(\infty_i, \infty_{i+3}) (7, 8, 9, \infty_{i+1}, \infty_{i+2}) \mid 0 \le i \le 4\}$, where all sums are reduced modulo 5;
 - $\{(2i, 2i+1) (\infty_0, \infty_1, \infty_2, \infty_3, \infty_4) \mid 0 \le i \le 6\}$, where all sums are reduced modulo 7.
- $2K_{16}$ on the vertex set $\mathbb{Z}_{11} \cup \{\infty_0, \infty_1, \infty_2, \infty_3, \infty_4\}$:

First place a decomposition of $2K_{11}$ on the vertices in \mathbb{Z}_{11} . Then form the following sets of blocks:

- $\{(\infty_i, \infty_{i+3}) (8, 9, 10, \infty_{i+1}, \infty_{i+2}) \mid 0 \le i \le 4\}$, where all sums are reduced modulo 5;
- $\{(2i, 2i+1) (\infty_0, \infty_1, \infty_2, \infty_3, \infty_4) \mid 0 \le i \le 7\}$, where all sums are reduced modulo 8.
- $2K_{20}$ on the vertex set $\mathbb{Z}_{10} \times \mathbb{Z}_2$:

Place a decomposition of $2K_{10}$ on each of the vertex sets $V_0 = \{(i,0) \mid 0 \le i \le 9\}$ and $V_1 = \{(i,1) \mid 0 \le i \le 9\}$. Then, by Theorem 1.1, there exists a $K_{2,5}$ decomposition of $K_{10,10}$ with bipartition (V_0, V_1) . Take two copies of this decomposition to complete the construction.

• $2K_{26}$ on the vertex set $\mathbb{Z}_{16} \cup \{\infty_0, \infty_1, \dots, \infty_9\}$: First place a decomposition of $2K_{16}$ on the vertices in \mathbb{Z}_{16} . Then place a decomposition of $2K_{10}$ on the vertices in $\{\infty_0, \infty_1, \dots, \infty_9\}$. By Theorem 1.1, there exists a $K_{2,5}$ decomposition of $K_{10,16}$ with bipartition ($\mathbb{Z}_{16}, \{\infty_0, \infty_1, \ldots, \infty_9\}$). Take two copies of this decomposition to complete the construction.

• $2K_{40}$ on the vertex set $\mathbb{Z}_{19} \cup \{\infty_0, \infty_1, \ldots, \infty_{19}\} \cup \{\infty\}$: First place a decomposition of $2K_{20}$ on the vertex set $\mathbb{Z}_{19} \cup \{\infty\}$, and then place a $2K_{21}$ design on the vertex set $\{\infty_0, \infty_1, \ldots, \infty_{19}\} \cup \{\infty\}$. Finish the construction with the following set of blocks:

$$\{(2i, 2i+1) - (\infty_{5j}, \infty_{5j+1}, \infty_{5j+2}, \infty_{5j+3}, \infty_{5j+4}) \mid 0 \le i \le 18, 0 \le j \le 3\},$$

where all sums involving i are reduced modulo 19.

- $3K_{25} \setminus 3K_{20}$ on the vertex set $\mathbb{Z}_5 \cup \{\infty_0, \infty_1, \ldots, \infty_{19}\}$: Let $3K_{25} \setminus 3K_{20}$ denote the complete multigraph $3K_{25}$ with the edges of $3K_{20}$ removed (also called $3K_{25}$ with a hole of size 20). Furthermore, let $\{\infty_0, \infty_1, \ldots, \infty_{19}\}$ be the vertices in the hole of size 20. The following sets of blocks give a $K_{2,5}$ -decomposition of $3K_{25} \setminus 3K_{20}$:
 - (i) $\{\{(i, i+3) (i+1, \infty_{4j}, \infty_{4j+1}, \infty_{4j+2}, \infty_{4j+3})\} \mid 0 \le i \le 4, 0 \le j \le 2\}$, where all sums including i are reduced modulo 5;
 - (ii) $\{(\infty_{2i}, \infty_{2i+1}) (0, 1, 2, 3, 4)\} \mid 0 \le i \le 5\}$; and
 - (iii) three copies of each block in the following set: $\{\{(\infty_{2i}, \infty_{2i+1}) (0, 1, 2, 3, 4)\} \mid 6 \le i \le 9\}$.
- $3K_{40}$ on the vertex set $(\mathbb{Z}_5 \times \mathbb{Z}_4) \cup \{\infty_0, \infty_1, \ldots, \infty_{19}\}$: For $0 \le i \le 3$, let $V_i = \{(0, i), (1, i), (2, i), (3, i), (4, i)\}$, and let $V_4 = \{\infty_0, \infty_1, \ldots, \infty_{19}\}$. We form the blocks in the following manner.
 - (i) Place a $K_{2,5}$ -design of K_{25} on each set $V_i \cup V_4$, for $0 \le i \le 2$.
 - (ii) Place a $K_{2,5}$ -design of $2K_{5,5}$ with bipartition (V_i, V_j) , for $0 \le i < j \le 3$.
 - (iii) Place a $K_{2,5}$ -design of $K_{5,10}$ with bipartition $(V_1, V_2 \cup V_3)$, $(V_2, V_0 \cup V_3)$, and $(V_0, V_1 \cup V_3)$.
 - (iv) Place a $K_{2,5}$ -design of $2K_{25} \setminus 2K_{20}$ on each set from $V_i \cup V_4$, for $1 \le i \le 3$, where V_4 contains all vertices in the hole of size 20.
 - (v) Place a $K_{2,5}$ -design of $3K_{25} \setminus 3K_{20}$ on the set $V_0 \cup V_4$, where V_4 contains all vertices in the hole of size 20.
- $5K_9$ on the vertex set \mathbb{Z}_9 :

Here are the base blocks to be generated cyclically modulo 9: (0,4) – (1,2,3,5,6) and (0,1) – (2,4,5,6,8).

- $5K_{12}$ on the vertex set $\mathbb{Z}_{11} \cup \{\infty\}$: Here are the base blocks to be generated cyclically modulo 11: $(\infty, 0)$ – (1, 2, 3, 4, 5), (0, 5) - (6, 7, 8, 9, 10), and (0, 5) - (6, 7, 8, 9, 10).
- $5K_{13}$ on the vertex set \mathbb{Z}_{13} : Here are the base blocks to be generated cyclically modulo 13: (0,1) – (2,3,4,5,6), (0,3) – (1,4,5,6,9), and (0,4)-(1,5,6,9,10).
- $5K_{16}$ on the vertex set $\mathbb{Z}_{15} \cup \{\infty\}$: Here are the base blocks to be generated cyclically (mod 15): $(\infty, 0) - (1, 2, 3, 4, 5), (0, 4) - (1, 6, 8, 9, 11), (0, 6) - (3, 7, 8, 10, 11), and <math>(0, 12) - (6, 7, 9, 13, 14)$.
- 5K₁₇ on the vertex set Z₈ ∪ {∞₀, ∞₁,...,∞₇} ∪ {∞}:
 On each set of vertices Z₈ ∪ {∞} and {∞₀,∞₁,...,∞₇} ∪ {∞}, place a decomposition of 5K₉. Then form the following set of blocks:

$$\{(2i, 2i+1) - (\infty_{5j}, \infty_{5j+1}, \infty_{5j+2}, \infty_{5j+3}, \infty_{5j+4}) \mid 0 \le i \le 3, 0 \le j \le 7\},$$

where all sums are reduced modulo 8.

• $5K_{20}$ on the vertex set $\mathbb{Z}_{19} \cup \{\infty\}$:

Here are the base blocks to be generated cyclically (mod 19): $(\infty, 0) - (1, 2, 3, 4, 5)$, (0, 1) - (6, 7, 8, 9, 10) (0, 2) - (1, 4, 5, 8, 9), (0, 4) - (6, 7, 8, 12, 13), and (0, 6) - (1, 2, 3, 4, 5).

• $5K_{24}$ on the vertex set $\mathbb{Z}_{12} \times \mathbb{Z}_2$:

Place a decomposition of $5K_{12}$ on each of the vertex sets $V_0 = \{(i,0) \mid 0 \le i \le 11\}$ and $V_1 = \{(i,1) \mid 0 \le i \le 11\}$. Then form the following set of blocks: $\{((2i,0),(2i+1,0))-((5j,1),(5j+1,1),(5j+2,1),(5j+3,1),(5j+4,1)) \mid 0 \le i \le 5, 0 \le j \le 11\}$, where all sums are reduced modulo 12.

5K₂₈ on the vertex set Z₁₂ ∪ {∞₀,∞₁,...,∞₁₄} ∪{∞}.
First place a decomposition of 5K₁₃ on the vertex set Z₁₂ ∪ {∞}, and then place a 5K₁₆ decomposition on the vertex set {∞₀,∞₁,...,∞₁₄} ∪{∞}. Finish the construction by taking five copies of each block in the following set:

$$\{(2i, 2i+1) - (\infty_{5j}, \infty_{5j+1}, \infty_{5j+2}, \infty_{5j+3}, \infty_{5j+4}) \mid 0 \le i \le 5, 0 \le j \le 2\}.$$

• $5K_{40}$ on the vertex set $\mathbb{Z}_{39} \cup \{\infty\}$:

Here are the base blocks to be generated cyclically modulo 39:

$$\begin{array}{lll} (\infty,0)-(1,2,3,4,5) & (0,1)-(2,4,6,8,20) \\ (0,9)-(15,16,17,18,19) & (0,15)-(1,2,3,4,5) \\ (0,16)-(1,2,3,4,5) & (0,19)-(5,6,7,8,9) \\ (0,25)-(6,7,8,9,10) & (0,25)-(6,7,8,9,11) \\ (0,25)-(1,2,3,4,12) & (0,27)-(9,10,11,12,13) \end{array}$$

• $10K_7$ on the vertex set \mathbb{Z}_7 :

For each pair $i, j \in \mathbb{Z}_7$, i < j, produce exactly one copy of $K_{2,5}$ which contains both i and j as vertices of degree 5.

- $10K_8$ on the vertex set $\mathbb{Z}_7 \cup \{\infty\}$:
 - Here are the base blocks to be generated cyclically modulo 7: $(\infty,0) (1,2,3,4,6)$, $(\infty,0) (1,3,4,5,6)$, (0,1) (2,3,4,5,6), and (0,3) (1,2,4,5,6).
- $10K_{14}$ on the vertex set $\mathbb{Z}_7 \times \mathbb{Z}_2$:

Place a decomposition of $10K_7$ on each of the vertex sets $\{(i,0) \mid 0 \le i \le 6\}$ and $\{(i,1) \mid 0 \le i \le 6\}$. Then form the following set of blocks:

$$\{((2i,0),(2i+1,0)) - ((5j,1),(5j+1,1),(5j+2,1),(5j+3,1),(5j+4,1)) \mid 0 \le i \le 6, 0 \le j \le 6\},$$

where all sums are reduced modulo 7.

• $10K_{18}$ on the vertex set $\mathbb{Z}_9 \times \mathbb{Z}_2$:

Place a decomposition of $10K_9$ on each of the vertex sets $\{(i,0) \mid 0 \le i \le 8\}$ and $\{(i,1) \mid 0 \le i \le 8\}$. Then form the following set of blocks:

$$\{((2i,0),(2i+1,0)) - ((5j,1),(5j+1,1),(5j+2,1),(5j+3,1),(5j+4,1)) \mid 0 \le i,j \le 8\},$$

where all sums are reduced modulo 9.

• $10K_{19}$ on the vertex set $(\mathbb{Z}_6 \times \mathbb{Z}_3) \cup \{\infty\}$:

Place a decomposition of $10K_7$ on each of the vertex sets $V_0 = \{(i,0) \mid 0 \le i \le 5\} \cup \{\infty\}$, $V_1 = \{(i,1) \mid 0 \le i \le 5\} \cup \{\infty\}$, and $V_2 = \{(i,2) \mid 0 \le i \le 5\} \cup \{\infty\}$. Furthermore, for $0 \le i \le 2$, where all sums are reduced modulo 6, and for $0 \le j \le 2$, where all sums are reduced modulo 3, form two copies of each of the following blocks: $\begin{cases} ((2i, j), (2i+1, j)), & ((0, i+1), (1, i+1), (2, i+1), (2, i+1), (4, i+1)) \\ ((2i, j), (2i+1, j)), & ((0, i+1), (1, i+1), (2, i+1), (2, i+1), (4, i+1)) \\ ((2i, j), (2i+1, j)), & ((0, i+1), (1, i+1), (2, i+1), (2, i+1), (4, i+1)) \\ ((2i, j), (2i+1, j)), & ((0, i+1), (1, i+1), (2, i+1), (2, i+1), (4, i+1)) \\ ((2i, j), (2i+1, j)), & ((0, i+1), (1, i+1), (2, i+1), (2, i+1), (4, i+1)) \\ ((2i, j), (2i+1, i+1), (2, i+1), (4, i+1), (4, i+1)) \\ ((2i, j), (2i+1, i+1), (2, i+1), (4, i+1), (4, i+1), (4, i+1)) \\ ((2i, j), (2i+1, i+1), (4, i+1), ($

$$\{((2i,j),(2i+1,j))-((0,j+1),(1,j+1),(2,j+1),(3,j+1),(4,j+1))\}$$

 $\{((2i,j),(2i+1,j))-((0,j+1),(1,j+1),(2,j+1),(3,j+1),(5,j+1))\}$

```
 \{((2i,j),(2i+1,j)) - ((0,j+1),(1,j+1),(2,j+1),(4,j+1),(5,j+1))\}   \{((2i,j),(2i+1,j)) - ((0,j+1),(1,j+1),(3,j+1),(4,j+1),(5,j+1))\}   \{((2i,j),(2i+1,j)) - ((0,j+1),(2,j+1),(3,j+1),(4,j+1),(5,j+1))\}   \{((2i,j),(2i+1,j)) - ((1,j+1),(2,j+1),(3,j+1),(4,j+1),(5,j+1))\}.
```

• $10K_{22}$ on the vertex set $\mathbb{Z}_{11} \times \mathbb{Z}_2$:

Place a decomposition of $10K_{11}$ on each of the vertex sets $\{(i,0) \mid 0 \le i \le 10\}$ and $\{(i,1) \mid 0 \le i \le 10\}$. Then form the following set of blocks:

$$\{((2i,0),(2i+1,0)) - ((5j,1),(5j+1,1),(5j+2,1),(5j+3,1),(5j+4,1)) \mid 0 \le i,j \le 10\},$$

where all sums are reduced modulo 11.

• $10K_{23}$ on the vertex set $\mathbb{Z}_{16} \cup \{\infty_0, \infty_1, \ldots, \infty_5\} \cup \{\infty\}$:

First place a decomposition of $10K_{17}$ on the vertex set $\mathbb{Z}_{16} \cup \{\infty\}$. Then place a decomposition of $10K_7$ on the vertex set $\{\infty_0, \infty_1, \ldots, \infty_5\} \cup \{\infty\}$. Finally, for $0 \le i \le 7$, where all sums are reduced modulo 8, form two copies of each of the following blocks:

$$\begin{aligned} &\{(2i,2i+1)-(\infty_0,\infty_1,\infty_2,\infty_3,\infty_4)\} \\ &\{(2i,2i+1)-(\infty_0,\infty_1,\infty_2,\infty_3,\infty_5)\} \\ &\{(2i,2i+1)-(\infty_0,\infty_1,\infty_2,\infty_4,\infty_5)\} \\ &\{(2i,2i+1)-(\infty_0,\infty_1,\infty_3,\infty_4,\infty_5)\} \\ &\{(2i,2i+1)-(\infty_0,\infty_2,\infty_3,\infty_4,\infty_5)\} \\ &\{(2i,2i+1)-(\infty_1,\infty_2,\infty_3,\infty_4,\infty_5)\}. \end{aligned}$$

• $15K_8$ on the vertex set $\mathbb{Z}_7 \cup \{\infty\}$:

Here are the base blocks to be generated cyclically modulo 7:

$$(\infty,0) - (1,2,3,4,5)$$
 $(\infty,0) - (1,2,3,4,6)$ $(\infty,0) - (1,2,3,4,6)$ $(0,1) - (2,3,4,5,6)$ $(0,2) - (1,3,4,5,6)$ $(0,3) - (1,2,4,5,6)$