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Abstract
In this note, we present necessary conditions for decomposing
AK, into copies of K2 s, and show that these conditions are sufficient
except for A = 5 and n = 8, and possibly for the following cases:
A=1and n=40; and A =3 and n = 16 or 20.

1 Introduction

Let AK, denotc the complete multigraph of order n in which exactly A
edges join each pair of vertices. A G-decomposition of a (multi)graph H is
a partition of the edge set of H into isomorphic copies of G. In particular,
a G-design of order n and index A (or A-fold G-design of order n) is a
partition of the edge set of MK, into copies of a graph G. Many have
studied the spectrum problem for G-designs, which can be stated as follows:
“For which n and X does a A-fold G-design of order n exist?” For example,
the spectrum problem for stars [9], complete simple graphs on less than six
vertices [6], and other simple connected graphs on less than five vertices as
well as K 3 [3, 7] has been solved for all A while the spectrum problem for
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paths [10], cycles of length at most 50 [1] and various other small graphs
has been solved for A =1 [2, 3].

For a complete multigraph AK, to be decomposed into isomorphic
copies of a bipartite graph K, (a < b) there are some obvious ncces-
sary conditions. First, the number of edges of AK, must be divisible by
the number of edges of K, 4, so 2ab|An (n — 1). Second, the degree of each
vertex of AK, must equal some non-negative, integer, linear combination
of the degrees of the vertices of K, 4, 50 A (n — 1) = az + by for some non-
negative integers = and y. Therefore any common divisor of a and b must
also be a divisor of A (n — 1), so, in particular, ged (e, b) |A (n —1).

The case when a = 1 (these bipartite graphs are also known as stars)
was completely solved by M. Tarsi [9]. When a, b > 2, a theorem of Graham
and Pollak asserts that the complete graph K, can be edge-partitioned into
no fewer than n — 1 complete bipartite graphs [5]. However, DeCacn and

Hoffman have shown the impossibility of decomposing K, into exactly n—1

complete bipartite graphs [4]. Thus, n_('g;-;)i)_ >n—1orn>2abh.

A related problem is to decompose a bipartite graph K4 into isomor-
phic copies of the bipartite graph K, 3. The following theorem is due to
Hoffman and Liatti [8].

Theorem 1.1 Let a,b, ¢, and d be positive integers. Let g = ged (a, b); let
e, f be integers satisfying ae—bf = g; and let h = ae+bf. For each integer
zf ze z

z, let a(z) = [7], B(x)= I.—b—J and v(z) = —

Then the edges of the complete bipartite graph K.q4 can be partitioned
into copies of the complete bipartite graph Ko if and only if the following
conditions are itrue:

(i) ablcd;
(i) gl and a(c) < B(c);
(i) g|d and a(d) < B(d); and
(iv) ca(d) + da(c) < hy(cd) < cB(d) + dB (c).

2 Preliminary Results
We begin with a recursive construction for decomposing complete graphs
into Kgp, where 2 < a < b. We denote the copy of K, in Figure 1 by
(1,2,3,...,a) — (a+1,a+2,...,a+b).

Lemma 2.1 If K,, has e K, -decomposition then so does Kn42qp.
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1 a+l
2 a+2
3 a+3
a a.+b

Figure 1: Block of K,

Proof: Let G = K,p, and let Kyi2.5 be defined on the vertex set
X U Zsgp+1, where X is an (n — 1)-set. By assumption, there is a K, 5-
decomposition of K, defined on X U {0}. The following base block, when
developed (mod 2ab + 1), gives a K, 5-decompostion of K244, defined on
Zsap+1: (b,2b,3b,...,ab)—(0,1,2,...,b — 1). Theorem 1.1 guarantees a K p-
decomposition of K,_1 24b- a

Since we do not have an analogous result to Theorem 1.1 for A > 1, we
now restrict our attention to the case when ¢ = 2 and b = 5. We will make
use of the following proposition.

Proposition 2.2 Suppose n > 5. If An is divisible by 2 or by 5, then there
exists a K3 5-decomposition of AK, 2.

Proof:  Define V(AK,, 20) with bipartition (X,Y), where X = Z,
and Y = {o0g,001,...,0019}. Then if 2 | An, then B = {(25,27 + 1) —
(00351, 005i+1, 00542, 095143, W3i+4) | 0 < j < (An —2)/2,0 < i < 3}, where
all sums involving j are reduced modulo n, is the desired set of blocks for
the decomposition.

If5 | An, then B = {(002;, 002i41) — (54,55 + 1,55 +2,55+3,55+4) | 0 <
1<9,0 < j < (An —-5)/5}, where all sums involving j are reduced modulo
n, is the desired set of blocks for the decomposition. )

This proposition is useful in the proof of the following.

Proposition 2.3 Suppose n > 5, A > 2, and X # 3. If An is divisible by 2
or B, and if there exists a A-fold K, 5-design of order n, then there exists a
A-fold Ks 5-design of AKp400. Furthermore, if A\ =3, if n =0,1,5, or 16
(mmod 20), and if there exzists a Kj 5-design of AK,, then there is a A-fold
Ka 5-design of AK . 20
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Proof: Let G = Kaj5, and let K, 90 be defined on the vertex set
Y UZgg, where Y is an n-set. By assumption, there is a K3 s-decomposition
of AK,, defined on Y. Furthermore, K s-decompositions of 2K2¢ and 5K
can be found in the appendix. More generally, if A > 2 and A # 3, then
one can obtain a Kjs-decomposition of AKgo by taking A/2 copies of a
K 5-decomposition of 2Ky if A is even and by taking one copy of a Ko -
decomposition of 5K20 and (A — 5)/2 copies of a K s-decomposition of
2Ky if X is odd. Proposition 2.2 guarantees a decomposition of AKp 20.

Now suppose A = 3. Let K490 be defined on the vertex set X U Zo;,
where X is an (n — 1)-set. By assumption, there is a K3 s-decomposition of
3K, defined on XU{0}. The following base block gives a K3 5-decompostion
of Kg; defined on Zy; when developed (mod 21): (5,10) — (0,1,2,3,4).
Putting together three copies of this decomposition gives a K3 s-decompo-
sition of 3K5;. Theorem 1.1 guarantees a K3 s-decomposition of K,_1 20
and, thus, a K s-decomposition of 3Kn—1,20. O

3 Constructing M-fold Kjs-designs

In this section we construct A-fold G-designs, where G = K 5.
The following lemma states necessary conditions for the existence of
AM-fold K 5-designs of order n.

Lemma 3.1 Letn and A be positive integers. If there exists a A-fold Ko 5-
design of order n, and:

(i) if A\=1,3,7, or 9 (mod 10), thenn =0, 1,5, or 16 (mod 20), n > 21
ifrA=1,andn>16i A>1;

(ii) if A =2,4,6, or 8 (mod 10), thenn=0 or 1 (mod §), n > 10;
(iii) if A\=5 (mod 10), thenn =0 or 1 (mod 4), n > 8; and
(iv) if A\=0 (mod 10), thenn > 7.

Proof: If there exists a K5 s-decomposition of AKj,, then the number
of edges in AKX, must be divisible by 10, and certainly n > 7. This implies
that '\—"(2’:);11 is an integer. We consider each case in turn.

Case 1: A =1,3,7, or 9 (mod 10).

In this case, 20 and A are relatively prime, so we need only consider
when 20 divides n(n — 1). This is precisely when n = 0,1,5, or 16 (mod
20). Certainly, since n > 7 and n =0, 1,5, or 16 (mod 20), it follows that
n > 16. However, by a theorem of DeCaen and Hoffman [4], n > 21 when
A=1.

Case 2: A = 2,4,6, or 8 (mod 10).
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If A=2,6,14, or 18 (mod 20), then gcd(20, A) = 2. Therefore, for these
cases it suffices to consider when 10 divides n(n — 1). If A = 4,8,12, or
16 (mod 20), then gcd(20, ) = 4, so we need only consider when 5 divides
n(n —1). In all cases, this means that n = 0 or 1 (mod 5). Since n > 7,
and n =0 or 1 (mod 5), it follows that n > 10.

Case 3: A = 5 (mod 10).

If A =5 (mod 10), then ged(20,A) = 5. It follows that we need only
consider when 4 divides n(n —1). This means that n =0 or 1 (mod 4), and
since n > 7, it follows that n > 8.

Case 4: A = 0 (mod 10).

If A =0 (mod 10), then ged(20, A) = 10 or 20, so it suffices to consider
when 2 divides n{n — 1). Therefore, the only limitation is that n > 7. O

Interestingly enough, the obvious necessary conditions are not always
sufficient, as we see from the following lemma.

Lemma 3.2 There exists no Ko 5-design of order 8 and index 5.

Proof: We assume that such a design D = (S, B) exists, and work
toward a contradiction. This design D has |S| = 8, and |B| = 14. Fur-
thermore, since deg(v) = 35 for every vertex v in 5K, it follows that each
vertex must appear as a vertex of degree 5 in an odd number of blocks of
B. Let da(v) and ds(v) denote the number of blocks of B in which v is a
vertex of degree 2 and of degree 5, respectively. Suppose for some vertex
z that ds(x) = 1. Then dz(z) = 15, which is impossible since |B| = 14.
Therefore, ds(v) > 3 for each v € S. Since |B| = 14, it follows that there is
exactly one vertex z for which ds(z) = 7 or there are exactly two vertices
x1,%9, for which ds(x;) = 5 = ds(x2). For every other v € S, ds(v) = 3.
In any event, there exist two vertices vy, ve for which ds(vq) = ds(v2) = 3
which are contained as vertices of degree 5 in the same block. This leaves
at most four other blocks of B which contain exactly one of v; or v2 as a
vertex of degree 5. Since the edge v;v; occurs in a block b € B if and only if
one of v, and vy has degree 5 in b and the other has degree 2 in b, it follows
that vyvs occurs in at most four blocks of B, thus giving a contradiction.
O

This brings us to our main result.

Theorem 3.3 Suppose A and n are positive integers which satisfy the con-
ditions of Lemma 3.1. Then there ezists a A-fold K 5-design of order n
except when A = 5 and n = 8, and except possibly in the following cases:
A=1andn =40; and A =3 and n = 16 or 20.

Proof: In light of Lemma 2.1, when decomposing K, into Ky 5, we need
only consider those special cases where n satisfies the obvious necessary
conditions and n < 2ab + m,, where mq, denotes the smallest order m
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for which there exists a K, -design of order m. More specifically, in light
of Proposition 2.3, when decomposing AK,, into K3 s, it suffices to consider
those special cases where n satisfies the obvious necessary conditions and
n < 20 + ma 5(A), where ms 5()) denotes the smallest order m for which
there exists a A-fold K3 s-design of order m. Certainly, if there exist Ko 5-
decompositions of Ay K, and A\p Ky, then there exists a K3 s-decomposition
of (A1 + A2)K,. With these ideas in mind, we consider several cases based
upon the value of .

Case 1: A =1.

By Lemma 3.1 and a theorem of DeCaen and Hoffman (4], we need
only consider orders n =0, 1,5, or 16 (mod 20), where n > 21. Therefore,
it suffices to find Ky s-designs of Ko, Kas, K36, and Kyo. The first three
designs are found in the appendix; however, it is unknown whether a Kj 5-
design of K49 exists. However, since a K 5-design of Kgo exists (as seen in
the appendix), there exist K5 s-designs of K, for alln =0, 1,5, or 16 (inod
20), n > 21, except possibly for n = 40.

Case 2: A = 2,4,6, or 8 (mod 10).

In this case, n = 0 or 1 (mod 5), n > 10. Certainly, it suffices to find
all possible 2-fold K3 s-designs for these values of n. It follows that we
only need to find 2-fold K s-designs of orders n = 10,11, 15, 16, 20, 21, 25,
and 26. However, when n = 21 or 25, we can simply take 2 copies of a
K3 5-design or order n and index 1. The remaining 2-fold K 5-designs are
found in the appendix.

Case 3: A=1,3,7,0r 9 (mmod 10), A > 1.

In this case, we need only consider orders n = 0,1,5, or 16 (mod 20),
n 2> 16. There exist K3 s-designs of order n and index 1 for all of these
values of n cxcept for n = 16 and 20, and possibly for n = 40. Since there
exist 2-fold K s-designs of order n for all n = 0 or 1 (mod 5), n > 10,
it suffices to find 3-fold K5 s-designs of order n = 16,20, and 40. Such a
design of order 40 is found in the appendix, but it is unknown whether there
exist 3-fold K> 5-designs of orders 16 and 20. However, 5-fold K> s-designs
of orders 16 and 20 cxist and are found in the appendix. Therefore, for
A = 3, there exists a K3 s-design of order n for all n = 0,1, 5, or 16 (mod
20), where n > 21. For A = 1,3,7, or 9 (mod 10), wherc A > 7, and for
n = 0,1,5, or 16 (mod 20), where n > 21, we can obtain a A-fold Ko 35-
design of order n by taking one copy of a 3-fold K 5-design and (A — 3)/2
copies of a 2-fold K3 5 design of order n. For these same values of A and for
n = 16 or 20, we can construct a A-fold Kj s-design of order n by taking
one copy of a 5-fold K 5-design of order n and a (A —5)/2 copies of a 2-fold
K, 5-design of order n.

Case 4: A =5 (mod 10).

Here we need only consider orders » = 0 or 1 (mod 4), where n > 8 if
A>5and n > 9if A =5. Therefore, it suffices to find 5-fold K> 5-designs
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of order n = 9,12,13,16,17, 20, 24, and 28, a 10-fold K 5-design of order
n = 8, and a 15-fold K> 5-design of order n = 8, all of which are found
in the appendix. If A = 5 (mod 10) and A > 5, then we can find A-fold
K3 5-designs of order n = 0 or 1 (mod 4), where n > 9 by simply taking
A/5 copies of the appropriate 5-fold design of order n. When A = 5§ (mod
10), A > 15, and n = 8, we need only take a 15-fold K, 5-design of order 8
and (A ~15)/10 copies of a 10-fold K s-design of order 8 to obtain a A-fold
K3 5-design of order 8.

Case 5: A = 0 (mod 10).

Here we need to consider all orders n > 7. For A > 10, where A = 0
(mod 10), we can construct A-fold K3 5-designs of order n simply by taking
A/10 copies of a 10-fold K> s-design of order n. It suffices to find 10-fold
K 5-designs for all orders n where 7 < n < 26. Therc exist 1-fold Ko 5-
designs of orders n = 21 and 25. In addition, there exist 2-fold K. 2,5-designs
of orders n = 10,11,15, 16, 20, and 26. Furthermore, therc exist 5-fold Ky 5-
designs of order n = 9,12,13,17, and 24. Therefore, we nced only construct
10-fold K7 s-designs of order n = 7,8,14,18, 19,22, and 23. Each of these
is found in the appendix.
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Appendix

e K5, on the vertex set Zg,. Here is a base block to be developed
cyclically (mod 21): (10,5) —(0,1,2,3,4)

e Kjs on the vertex set Zs xZs. Here are the base blocks to be developed
cyclically (mod (5,-)): ((0,0)(0,1)) —((1,0)(2,0)(1,1)(2,1)(0,2))

((1’2) (21 2)) - ((0:2) (0, O) (31 0) (01 1) (3a 1))
((0,0)(0,4)) - ((0,1)(0,3) (1,3) (1,4) (2,4))
((0’2) (0’ 3)) - ((1?3) (2! 3) (1$4) (2:4) (31 4))

((0,2)(1,1)) - ((0,3) (3,3) (4,3) (0,4) (4,4))
((1:3) (2i4)) - ((2’0) (3’0) (41 0) (0, 1) (1) 1))

e Kag on the vertex set Zg x Z4. Here are the base blocks to be developed
cyclically (mod (9,-)): ((0,0)(0,2)) — ((0,3) (1,2) (2,2) (3,2) (4,2))
((Os 1) (7) 1)) - ((19 1) (2) 1) (01 O) (6’ 3) (5, 3))

((7! 3) (0’ 2)) - ((3’3) (4’3) (51 3) 6) 3) (5: 1))
((0,2)(7,1)) = ((4,0)(1,3)(2,3)(7,3) (8,3))
((0) 0) (2: 0)) - ((87 1) (01 2) (Ss 2) 7a 3) (8v 3))
((01 1) (4a 1)) - ((8’ 0) (Ox 2) (11 2) 2 2) (3a 2))

e Kgo on the vertex set Zogq U {000,001,...,0034} U {o0}:

First place a decomposition of K5 on the vertex set Zy4 U {00}, and
then place a decomposition of K3s on the vertex set {oog,001,...,
0034} U{co}. Finish the construction with the following set of blocks:
{(21',2}2' + 1) — (005, 005541, 095542, 05543, 0554+4) | 0 <2 < 11,0 £
j <6}

AN AN N N

e 2K 5 on the vertex set Zs x Zs:

Let V; = {(0,1), (1,4),(2,%),(3,%),(4,9)}, for 0 < 4 < 1. Define 2K55
with bipartition (Vp, V7). Then (Vo UV, C) is a K3 s-design of 2K5 5,
where

C = {{((2,0), (2 + 1,0)) - ((.0,<121,}(1, 1),(2,1),3,1),(4,1))} |0 <
4 -— )

where all sums are reduced modulo 5.

e 2Ko5 \ 2K on the vertex set Zs U {00, 001,...,0019}:

Let 2K55 \ 2K2 denote the complete multigraph 2K,s with the edges
of 2K2p removed (also called 2K35 with a hole of size 20). Further-
more, let {o0p, 001, .. .,0019} be the vertices in the hole of size 20. The
following sets of blocks give a K5 s-decomposition of 2Kas \ 2K20:
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() {{(5,5+3)— (14 1,0045,004j11,0045+2,0045+3)} | 0 <1 < 4,0 <
j £ 1}, where all sums including # are reduced modulo 5; and

(it) two copies of each block in the following set: {{(c02i,002i+1) —
(0,1,2,3,4)} |4 <i < 9}

e 2K on the vertex set Zjp:

(0’6) - (1s2’3a4$5) (117) - (23 3a4a5’6)
(2,8) - (3,4,5,6,7) (3,9) - (4,5,6,7,8)
(4:0) - (5, 6a7:819) (1’6) - (015)7a 8’9)
(2’7) - (0)1) 53&9) (3:8) - (O’ 1’21'5’9)

(4,9) - (0,1,2,3,5).

e 2K, on the vertex set Zyy:
Here is a base block to be developed cyclically (mod 11): (0,1) —
(2,4,6,8,10)
e 2K;5 on the vertex set Z;o U {00g, 001, 002,003,004}
First place a decomposition of 2K;g on the vertices in Z9. Then form
the following sets of blocks:
— {(00i,0i43) — (7,8,9,00i41,0i42) | 0 < i < 4}, where all sums
are reduced modulo 5;
— {(24,2i4+1)— (o0p, 001,002, 003,004) | 0 < i < 6}, where all sums
arc reduced modulo 7.
e 2K on the vertex set Z1; U {00g, 007, 007, 003,004}:
First place a decomposition of 2K, on the vertices in Z;,. Then form
the following sets of blocks:
= {(o0i,0i+3) —(8,9,10,00;4+1,00i42) | 0 < i < 4}, where all sums
are reduced modulo 5;
— {(2¢,2i+1) — (000, 001, 002, 003,004) | 0 < ¢ < 7}, where all sums
are reduced modulo 8.
e 2Ky on the vertex set Zyg x Zg:

Place a decomposition of 2K on each of the vertex sets Vo = {(3,0) |
0<i<9and Vy = {(i,1) | 0 < i < 9}. Then, by Theorem 1.1,
there exists a K35 decomposition of Kjg,10 with bipartition (Vp, V4).
Take two copies of this decomposition to complete the construction.

e 2K on the vertex set Z; U {009,001,...,009}:

First place a decomposition of 2K,¢ on the vertices in Z;g. Then
place a decomposition of 2K on the vertices in {oog,001,...,009}.
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By Theorem 1.1, there exists a K35 decomposition of Kig,16 with
bipartition (Z;6, {o0g, 001, ...,009}). Take two copies of this decom-
position to complete the construction.

2K40 on the vertex set Zig U {009, 091, ...,0019} U {o0}:

First place a decomposition of 2K’ on the vertex set Z;o U {o0}, and
then place a 2K, design on the vertex set {cog, 00y, . .. , 0019} U{o00}.
Finish the construction with the following set of blocks:

{(24,2i + 1) — (0055, 005541, 005542, 005;+3, 00554+4) | 0 < 5 < 18,0 <
Jj <3},

where all sums involving i are reduced modulo 19.

3Ka5 \ K30 on the vertex set Zz U {00g, 001, .. .,0019}:

Let 3K25 \ 3K30 denote the complete multigraph 3Ks5 with the edges
of 3K removed (also called 3K25 with a hole of size 20). Further-
more, let {009, 00y, ...,0019} be the vertices in the hole of size 20. The
following sets of blocks give a K3 5-decomposition of 3Kss \ 3K20:

() {{(5,2+3) = (i +1,0045,004541,004542,04543)} | 0 < < 4,0 <
J <2}, where all sums including i are reduced modulo 5;
(ii) {(°°2i7°°2i+1) - (Oa 17 2) 3)4)} l 0<4 < 5}: and
(iii) three copics of each block in the following set: {{(oc02i,02i+1) —
(0,1,2,3,4)} [6 <7< 9}
3K 40 on the vertex set (Zs x Zg) U {009,001, ...,0019}:
For 0 <4 <3, let Vi = {(0,1),(1,1),(2,%),(3,4), (4,4)}, and let. V; =
{000,001, ...,0019}. We form the blocks in the following manner.
(i) Place a K 5-design of K5 on each set V; UV, for 0 <4 < 2.
(ii) Place a Ky s-design of 2Kj 5 with bipartition (V;,V;), for 0 <
i<j<3.
(iii) Place a Kj s-design of Ks 10 with bipartition (Vi, V3 U V3), (Vz,
Vo U V3), and (Vo, V1 U V3).

(iv) Place a Ky s-design of 2Koas \ 2K40 on each set from V; U Vj, for
1 £i < 3, where V; contaius all vertices in the hole of size 20.

(v) Place a K s-design of 3K'; | 3K20 on the set Vy U Va, where V;
contains all vertices in the hole of size 20.
5Ky on the vertex set Zg:

Here are the base blocks to be generated cyclically modulo 9: (0,4) —
(1,2,3,5,6) and (0,1) — (2,4,5,6,8).
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5K, on the vertex set Z;; U {oo}:

Here are the base blocks to be generated cyclically modulo 11: {00, 0)—
(1,2,3,4,5), (0,5) — (6,7,8,9, 10), and (0,5) — (6,7,8,9,10).

5K;3 on the vertex set Z;3:

Here are the base blocks to be generated cyclically modulo 13: (0,1)—
(2,3,4,5,6), (0,3) — (1,4,5,6,9), and (0,4)-(1,5,6,9, 10).

5K on the vertex set Z;5 U {oo}:

Here are the base blocks to be generated cyclically (mod 15): (00, 0)—
(1,2,3,4,5), (0,4)—(1,6,8,9,11), (0,6)—(3,7,8,10,11), and (0,12)—
(6,7,9,13,14).

5K+ on the vertex set Zg U {009, 00y, . ..,007} U {o0}:

On each set of vertices Zg U {oo} and {c0g, 001, ...,007}U{0o}, place
a decomposition of 5Kg. Then form the following set of blocks:

{(24,2i + 1) — (0055, 005j+1, 005j+2, 55+3, 55+4) | 0 <1 < 3,0 <
i<},

where all sums are reduced modulo 8.

5Ko0 on the vertex set Z;g U {o0}:

Here are the base blocks to be generated cyclically (mod 19): (00, 0)—
(1,2,3,4,5), (0,1) — (6,7,8,9,10)

(0,2) - (1,4,5,8,9), (0,4) — (6,7,8,12,13), and

(0,6) - (1,2,3,4,5).

5Ka4 on the vertex set Zjo X Zg:

Place a decomposition of 5Kz on each of the vertex sets Vo = {(¢,0)
|0 <i< 11} and Vi = {(3,1) | 0 <4 < 11}. Then form the following
set of blocks: {((24,0),(2i+1,0))—((54,1),(55+1,1),(55+2,1),(55+
3,1),(55 +4,1)) | 0 £ i < 5,0 < j < 11}, where all sums are reduced
modulo 12.

5Kog on the vertex set Za U {00g,001,...,0014} U{oo}.

First place a decomposition of 5K13 on the vertex set Z;2U {oo}, and
then place a 5K16 decomposition on the vertex set {00g, 001,...,0014}
U{oo}. Finish the construction by taking five copics of each block in
the following set:

{(2i,2i + 1) — (005, 0055+1, 005;+2, 005543, 055+4) | 0 <1 < 5,0 <
j<2h
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5K 40 on the vertex set Zzg U {00}:

Here are the base blocks to be generated cyclically modulo 39:

(00,0) — (1,2,3,4,5) (0,1) — (2,4,6,8,20)
(0,9) — (15, 16,17,18, 19) (0,15) — (1,2,3,4,5)
(0,16) — (1,2,3,4,5) (0,19) — (5,6,7,8,9)
(0,25) — (6,7,8,9, 10) (0,25) — (6,7,8,9,11)
(0,25) — (1,2,3,4,12) (0,27) — (9, 10,11, 12,13)

10K on the vertex set Z7:

For each pair 4, j € Z7, i < j, produce exactly one copy of Ky 5 which
contains both i and j as vertices of degree 5.

10K3 on the vertex set Z; U {oo}:

Here arc the base blocks to be generated cyclically modulo 7:

(00,0) —(1,2,3,4,6), (o0,0) — (1,3,4,5,6), (0,1) —(2,3,4,5,6), and
(0) 3) - (13 2a 4: 3, 6)

10K,4 on the vertex set Zy x Zs:

Place a decomposition of 10K~ on each of the vertex sets {(z,0) | 0 <
1 < 6} and {(7,1) | 0 < i < 6}. Then form the following set of blocks:

{((24,0), (26 +1,0)) — (54, 1), (55 + 1, 1), (55 +2,1), (55 + 3,1), (55 +
4,1))|0<4<6,0<j <6},

where all sums are reduced modulo 7.

10K,5 on the vertex set Zg X Zo:

Place a decomposition of 10Ky on each of the vertex sets {(,0) | 0 <
i < 8} and {(,1) | 0 < ¢ < 8}. Then form the following set of blocks:

{((2,0), (2 +1,0)) — ((55,1), (55 +1,1), (55 + 2,1), (55 +3,1), (55 +
4,1))[0<4,5 <8},

where all sums are reduced modulo 9.

10K9 on the vertex set (Zg x Z3) U {o0}:

Place a decomposition of 10K7 on each of the vertex scts Vo =
{(3,0) | 0 < i < 5} U {oo}, Vi = {(5,1) | 0 £ 4 < 5} U {00}, and
Va = {(4,2) | 0 £ i < 5} U {oo}. Furthermore, for 0 < i < 2, where
all sums are reduced modulo 6, and for 0 < j < 2, where all sums are
reduced modulo 3, form two copies of each of the following blocks:

{((23,4), (2i41,3)) - ((0,5+1), (1,5 +1),(2,5+1),(3,5+1),(4,5+1))}
{((26,7), (2i+1, 7))~ ((0, 5+1), (1,5+1), (2, j+1), (3, 5+1), (5, 5+1))}
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{((24,7), (28+1,5)) = ((0,5+1),(1,5+1),(2,5+1), (4,5 +1), (5,5 +1))}
{((24,7), (26+1,5))—((0,5+1),(1,5+1),(3,5+1),(4,5+1), (5,7 +1))}
{((24,5), (2i+1,5))—((0,5+1),(2,5+1), (3,5 +1), (4,5 +1), (5,5 +1))}
{((23, ), (2i+1,7)) = ((1,5+1),(2,5+1),(3,541), (4, 5+1), (5,5 +1))}.

10K, on the vertex set Zyq, X Zs:

Place a decomposition of 10K, on each of the vertex sets {(4,0) | 0 <
i < 10} and {(3,1) | 0 < i < 10}. Then form the following set of
blocks:

{((24,0), (2i +1,0)) = ((54,1), (55 + 1,1), (55 + 2,1), (55 + 3,1), (55 +
4,1))]0< 4,5 <10},

where all sums are reduced modulo 11.

10K53 on the vertex set Zys U {00g, 001, . ..,005} U {oo}:

First place a decomposition of 10K;7 on the vertex set Z;s U {o0}.
Then place a decomposition of 10K7 on the vertex set {009, 001,...,
005 }U{o0}. Finally, for 0 < i < 7, where all sums are reduced modulo
8, form two copies of each of the following blocks:

{(2’i, 2i + 1) - (000, 091, 002, 003, 004)}

(27'? 2+ 1) - (0005 001, 002, 003, 005)}

(217 2i+ 1) - (000,001, 002, 004, 005)}

(27‘1 2i+ 1) - (°°0a 00, 003, 004, w5)}

(24,2i + 1) — (000, 002, 003,004, 005) }

(2'i, 21 + 1) - (001, 002, 003, 004, 005)}

{
{
{
{
{

15K3 on the vertex set Zz U {oo}:
Here are the base blocks to be generated cyclically modulo 7:

(00,0) — (1,2,3,4,5) (00,0) — (1,2,3,4,6)
(O0,0) - (1’2’3s 5,6) (Oa 1) - (2, 3’ 4: 5: 6)
0,2) - (1,3,4,5,6) 0,3) - (1,2,4,5,6)
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