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ABSTRACT. Let G be a bipartite graph with bipartite sets V3
and V2. If f is a bijective function from the vertices and edges of
G into the first p + g positive intergers, where p and q denotes
the order and size of G, respectively, meeting the properties
that f is a super edge magic labeling and if the cardinal of V;
is p; for i = 1,2, then the image of the set V; is the set of the
first p; positive intergers and the image of the set V2 is the set
of intergers from p; + 1 up to p. If a bipartite graph G admits
an special super edge magic labeling, we say that G is special
super edge magic. Some properties of special super edge magic
graphs are presented. However, this work is mainly devoted to
the study of the relations existing between super edge magic
and special super edge magic labelings.

1 Introduction

For most of the graph theory terminology used here, we follow [1]. In
1996, Enomoto, Lladé, Nakamigawa, and Ringel [2] defined a super edge
magic labeling of a graph G to be a bijective function f: V(G)U E(G) —
{1,2,...,|V(G)| + |E(G)|} such that f(V(G)) = {1,2,...,|V(G)]} and
f(u) + f(wv) + f(v) = K for every edge uv of E(G).

If a graph G admits a super edge magic labeling, then it is said that G is
a super edge magic graph For short, we will abbreviate Super Edge Magic
to SEM, and the abbreviation will be used through the rest of the paper.

It is not hard to transform SEM labelings into equivalent vertex labelings.
This fact was observed first by Figueroa et al. in [3] and it is presented
next as Lemma 1.

Lemma 1. A graph G is SEM if and only if there exists a bijective function
9: V(G) = {1,2,...,|V(G)|} such that the set {f(u) + f(v): wv € E(G)}
is & set of |E(G)| consecutive intergers.
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In our study of SEM labelings the concept of special super edge magic
labelings of bipartite graphs has emerged naturally. We define a special
super edge magic labeling of a bipartive graph G with bipartite sets V; and
V2 to be a bijective function f: V(G)UE(G) — {1,2,...,|V(G)|+|E(G)|}
such that f is a super edge magic labeling of G, with the extra property
that f(V1) = {1,2,...,|VAl} and f(V2) = {i| +1,IVi| +2,...,|V(G)|}.

If a graph G admits a special super edge magic labeling, then we say that
G is special super edge magic. For short, we will abbreviate special super
edge magic as SSEM through the rest of this paper.

Notice that it is possible to redefine SSEM labelings of bipartite graphs
in such a way that only the vertices of the graph are labeled, and we do
this in Lemma 2.

Lemma 2. A bipartite graph G with bipartite sets V; and V, is SSEM
if and only if there exits a bijective function g: V(G) — {1,2,...,|V(G)|}
with the properties that (V1) = {1,2,...,|W1]}, g(Va) = {IVil + 1, V1| +
2,...,[V(G)|} and the set {g(u) + g(v): wv € E(G)} is a set of |E(G)|
consecutive intergers.

Proof: For the necessity, assume that a bipaffite graph G with bipartite
sets Vi and V2 is SSEM. Let f be an SSEM labeling of G. Then, the
function f |y(g) defined to be the restriction of the function f to the set
V(G), meets the properties of the function g as described in the statement
of the Lemma. Therefore, take g = f |y(g). For the sufficiency, assume
that g is a bijective function defined on the vertex set of a bipartite graph
G, meeting the requirements of the statements of the Lemma. Define the
function f: V(G)UE(G) — {1,2,...,|[V(G)|+|E(G)|} as g(z) if z € V(G)
and min{g(u) + g(v): w € E(G)} + [V(G)| + |E(G)| — g(a) — g(b) if =z =
ab € E(G). Then, f is, in fact, a SSEM labeling of G. Therefore G is an
SSEM graph. ]

Enomoto et al. (see [2]), also observed the following interesting result.
Theorem 1. If G is a SEM graph, then |E(G)| < 2|V(G)| - 3.

With the aid of Lemma 2 and motivated by the previous theorem, we
have been able to prove the next result concerning SSEM bipartite graphs.

Theorem 2. If G is an SSEM bipartite graph with bipartite sets V; and
Va, then |E(G)| < [V(G)| - 1.

Proof: Let G be an SSEM bipartite graph with bipartite sets V; and
V2. Then, by Lemma 2, there exists a bijective function g: V(G) —
{1)21 LR V(G)} such that g(vl) = {1) 2,... ’ |V1|}s g(VZ) = {erl + 1’ I%l +
2,...,|V(G)|} and {g(u)+g(v): wv € E(G)|} is a set of | E(G)| consecutive
integers.
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Now, min{g(u)+g(v): uv € E(G)} > 2+|V1| and max{g(u)+g(v): wv €
E(G)} < 2|Vi] + [Va| hence, |{g(u) + 9(v): wv € B(G)} < 2Vi| +|V2| -
[Vi|-24+1 = |V(G)| -1, but |{g(uw)+g(v): uv € E(G)}| = |E(G)| therefore,
[E(G) £ IV(G)|-1. 0

2 Relations among SSEM labelings, SEM labelings, chessboards
1-regular, and 2-regular graphs

In the abstract of this paper, it has been mentioned that the main goal of
this work is to establish relations between SEM graphs and SSEM bipartite
graphs. However, in order to do this, we need to define what in the near
future will prove to be the “link” between the two concepts. This “link”
is what we call an n x n chessboard. An n x n chessboard is defined to
be a square that contains inside of it n rows and columns shaping n? new
little squares inside of the original one. Figure 1 showsa 3 x 3 and 5 x 5
chessboard.

Figure 1

Now, notice that assigning different numbers to the columns and different
numbers to the rows of an n x n chessboard, then every square of the
chessboard is uniquely determined by an ordered pair (z,5) where i denotes
the column to which the square belongs and j denotes the row to which
the square belongs. Any function that assigns different numbers to the
rows and different numbers to the columns of a chessboard will be called a
numbering of the chessboard.

We are ready to state and prove our next result, that establishes a relation
between SEM labelings of 2-regular graphs and SSEM labelings of 1-regular
graphs.

Theorem 3. Every SEM labeling of a 2-regular graph of size p can be
transformed into an SSEM labeling of the 1-regular graph of size p.

Proof: Let G = Uf=1 C; be a 2-regular SEM graph with k& components,
and assume that the number of vertices in the jth component is denoted
by I;. Define the vertex and edge sets of G in the following manner

v(e)=UL, {v,?': 1<i< 1,-},
B(G) = (U, {oiv}) u Uk ool 12 <ty - 1}). Consider the
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vertex labeling g: V(G) — {1,2,...,|V(G)|} with the properti&s of the
function g defined in Lemma 1. Next construct an E;~1 Lx T, L chess
board with the associated numbering N;, which assngns to the columns and
rows of the chessboard the numbers 1 through E 1 i consecutively, from
left to right and from top to bottom respectively. That is to say, the column
that is most to the left receives number 1, the column that is next to this
one receives number 2, and so on until we get to the column that is most to
the right which receives the number E . Also, the row that is located
most to the bottom receives number 1. The row immediately on top of this
one recewes number 2, and so on, until we reach the top row, that receives
number Z,_l l;. See Flgure 2 for geometrical clarification.

=N Wk A

123456 78
Figure 2

We now explain how we can represent the function g on the Z L x
Ei_l I; chessboard. In order to do this, we will define the set S; in whlch
each ordered pair belongm%cto S represents a square of the representation
of the function g on the Y, l; x Z,_l l; chessboard with numbering N;

5 = 0 {(Q(Vg)ag(”gﬂ)) tlgisl; - 1}
i=1

UJ__Lle { (stet), g@z)} .

It is easy to see that the set Ay = {i +j: (3,7) € S1} is a set of |Sy|
consecutive interges, since the function g has the property that the set
{g(u) + g(v): uwv € E(G)} is a set of | E(G)| consecutive intergers.

Next, define a new numbering N of the 2:;1 l; x Ef=1 l; chessboard as
follows. For any column C of the chessboard, let N2(C) = N;(C) and for
any row r of the chessboard, let Nao(r) = Nj(r) +2f=1 l;. Then, the set S5,
which contains all ordered pairs that represent the squares of S;, but with
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the numbedng Ny, is the set Sy = {(:c,y+ Zf=l lg) :(z,y) € Sl}. Ob-
serve that the set Az = {z + y: (z,y) € S»} is also a set of |S;| consecutive
intergers since Ay, is a set |S;| consecutive intergers.

The next step is to define the graph H = (2;‘:1 li) — K in the following
way, V(H) = {v: 1<i S TE kpu{m:1<i< T8, 1) and B(H) =
{v.-u,-: 1<i< zﬁ;lz,-}.

Let h be any bijective function from the set C of connected compo-
nents of H to the set S; and define the bijective function f': V(H) —
{1,2,...,|V(H)|} as described below.

If h(wv;) = (z,), then f’ = (w;) = z and f’ = (v;) = y. The function
f' is extendible to a SSEM labeling of the graph H, since f’ meets the
conditions of the function g described in Lemma 2. O

The next example illustrates the algorithm described above in a partic-
ular case.

Example 1. Consider the cycle Cs with the bijective vertex labeling ¢
shown in Figure 3.

Figure 3

It is easy to see that g: V(Cs) — {1,2, 3,4, 5} is a bijective function with
the property that {g(u) + g(v): uv € E(G)} = {4,5,6,7,8}. Now, we con-
struct a 5x5 chessboard, with numbering N;, and we represent the function
g on the chessboard after obtaining the set S; = {(1,4)(4,2), (2,5), (5,3),
(3,1)} (See Figure 4).
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Figure 4

Next, we define the numbering N; on the 5 x 5 chessboard keeping the
representation of g as shown in Figure 5.

10 ®
@

A NN e O

[
1 2 3 4 5

Figure 5

Now, S; = {(1,9),(2,10),(3,6), (4,7),(5,8)}. Consider the graph 5K,
represented next in Figure 6.

5K2:

OO0 00
O 0000

Figure 6
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Let h be the bijective function from the components of nKs to the set
Sy defined by the rule, A((u1v;)) = (1,9), h((uov2)) = (2, 10), h((usvz)) =
(3: 6): h(('u.4'v4)) = (41 7)1 h((U5115)) = (53 8)'

Hence, we get the labeling f’ of the vertices of 5K, defined next: f'(u;) =
iand f'(v1) =9, f'(v2) =10, f'(v3) =6, f'(va) =7, f'(v5) =8.

Since the set {f'(u) + f(v): wv € 5K»} is the set {9,10,11,12,13}, we
can extend the function f’ to an SSEM labeling of 5K as shown in Figure

7.

" O—E—@® "
12

“ @& ) 7,
13

g (O @ v
11

IO ® s

Figure 7

3 A relation between SEM labelings of graphs, pseudographs
and SSEM labelings of bipartite graphs

It has become a tradition to define labelings of graphs only for simple
graphs. That is to say, graphs with no loops nor multiple edges. The goal
in this section is to show that it may be useful to study SEM labelings of
some types of pseudographs, that is to say, graphs with loops. However,
before doing this, it is necessary to extend the definition of SEM labelings
of graphs to pseudographs. We do this in the obvious way.

Let P be a pseudograph. A bijective function f from V(P) U E(P) to
{1,2,...,|E(P)|} is called a super edge magic labeling, for short, SEM
labeling of P if f(u) + f(uv) + f(v) = k for every uv in the set E(P) and
fV(P) ={1,2,...,.[v(P)]}.

We observe that if a pseudograph has “attached” more than a single loop
to any of its vertices or if the pseudo graph contains multiple edges, then
the pseudograph is not SEM. Thus, the pseudographs that we will consider
are basically graphs with at most one loop “attached” to as many vertices of
the graph as we want. Some examples of SEM pseudographs (pseudographs
that admit SEM labelings) are showed in Figure 8, with their corresponding
SEM labelings.
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Figure 8

After looking at the previous examples, it is obvious that Lemma 1 gener-
alizes immediately to pseudographs. Also Theorem 1, generalizes to pseu-
dographs as shown in Corollary 1. The proof will be omitted since it is
similar to the proof of Theorem 1.

Corollary 1. If a pseudograph P is SEM, then |E(P)| < 2|V(P)| — 1.

At this point, we are ready to establish the connection between SEM
labelings of pseudographs and SSEM labelings of bipartite graphs.

Theorem 4. Let P be either a pseudograph or a graph of order p and size
q, and assume that L: V(P) — S (where S is a set of positive integers)
is a bijective vertex labeling of G. Then, there exists a bipartite graph
H of order 2p and size q, and a bijective vertex labeling L*: V(H) —
SU {z 4+ p: z € S} such that there exists a natural number ~ with the
property that {L(z)+L(y)+v: zy € E(P)} = {L*(z)+L*(y): zy € E(H)}.

Proof: Let P be either a graph or a pseudograph of order p and size g, and
let L: V(P) — S be a bijective function. Assume that P = (@%_,Pi ) @

i=1

(<1 103__) is any edge disjoint composition of P into k paths and r cycles
(each loop will be considered as a cycle), and orient each path in such a
way that we can “travel” from one “end” of the path to the other “end”

of the path following the sense of the arrows. Also orient each cycle either
clockwise or counterdodcwise randomly.

Built k+ 7, P x P chessboards and assign to each chessboard the num-
bering N; defined next. The numbers 1,2,..., P will be assigned to the
columns of the chessboard in such a way that the columns placed most to
the left receives number 1. The column next to this one, receives number
2, and so on until. we reach the column most to the right, which receives
number p. Also N;, assigns the numbers 1 through p to the rows of the
chessboard with number 1 being assigned to the row that is placed most
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to the bottom. Number 2, being assigned to the row immediately on top
of this one, and so on, until we reach the most top row that will receive
number P.

For each path p, (1 < j < k) and for each cycle Cg’_ (1<3<r) we will
represent the functions L|V(cf,,_) and L, ( Pi) on different chessboards as de-

scribed next. The square (L|yz)(u), Llv(z)(v)) will be chosen if and only if
uv is an arc of z (where z is any path or cycle that shapes the decomposition
of P). Thus, the set S; of all ordered pairs that represent the squares chosen
on the chessboards with numbering Ni is ) = {(|v(z)(w), Llv(z)(v)) : wv

is an arc of z where ¢ € {P;izlsisk}U{C;‘,‘:ISigr}}.

Define the set A; to be Ay = {a + b: (a,b) € S1}. It is clear that
A1 = {L(u) + L(v): uv € E(P)}. Next, define a new numbering N, on the
chessboards depending on the numbering N, as follows. For any column C
of the chessboard, let Na(C) = N;(C) and for any row r of the chessboard,
let Na(r) = Ni(r) +p. Thus, if we call S the set of the ordered pairs that
represent the squares on the chessboard, but now, with respect to Ny we
have that S> = {(a,b+ p): (a,b) € S1}. Therefore, we have that the set As
defined as Ay = {z +y: (z,y) € Sz}, is basically a shift of the set A; by p
units. That is to say, A2 = {z+ p: £ € A;}. With all this information in
mind, we are now ready to define the bipartite graph H as V(H) = {X; }?: 1
and E(H) = {z;z;: (i,5) € Sa}. Let L*: V(H) — {1,2,...,2P} be the
biiective function defined by the rule L*(z;) = i for every z; € V(H).
Then, L* has the properties of the function described in the conclusion of
Theorem 4. ]

In order to clarify the previous proof, we will provide a particular exam-
ple.

Example 2. Consider the graph G with the vertex labeling L (shown in
Figure 9).
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Figure 9

and let G = C4,1 (43] 04,2 ® P3.1 @ P1,2, where C4,1, C4,2, P3.1, and Pl,z are
shown in the figure 10.

(7 ()
Ci1- C ), ) 2
vy vy Vs Us
7}3 '05 vz 06
() A\
P - O—O—O—=C
v v, v, v,
Py - O—©
Ul U6
Figure 10

Next, give arbitrary orientations to the edges of G in such a way that the
cycles are orientated either clockwise or counterclockwise, and the paths
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are oriented in such a way that we can travel from one end to the other

following the sense of the arrows. We do this in Figure 11.

C4,1

Figure 11

Next, construct 4, 7 x 7 chessboard with numbering N; and represent the
functions Llv(c,,), Llv(c,a) Llv(ps,), and Lly(p, ;) as shown in Figure

12.

an 7 7 7

6 ¥ s[ 9 6 6[¥

5 ’ 5 ) 5 5

4 4 4 ) 4

3. 3 [ ] 3 [) 3

2 2 [] 2 [) 2

1 ' 1 1 1

1234567 12346567 123456 7 1 34567
L
V(C4,1) V(Cs,2) V (P4, 1) V(Pz,2)
Figure 12

Now, rebuilt 4 more 7x 7 chessboards and label the rows and the columns
with numbering N», keeping the same squares choosen. See Figure 13.
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14 0 14 14 14
13 o] 13] | 13 13(0
12 ( 2 0 12 12
1 11 1 [] 11
10 10 U 10 3 10
9 9 [] 9 [] 9
-8 3 8 8 8
12345067 1234567 1234567 T234567
L L L
V(Ca.1) V(Cs,2) V (P4, 1) V(Pz,2)
Figure 13

The following step is to construct the graph H with the desired function
g as we do in Figure 14.

H:

v, Ug
v, Uy
v, Y10
v, 1
v, V12
v, V13
v, U1

Figure 14

As an immediate consequence to Theorem 4, we get Corollary 2.

Corollary 2. Let G be a SEM graph or pseudograph of order p and size

q. Then there exists a bipartite graph H of order 2p and size q which is
SSEM. '

From now on, we will refer to the graph H obtained in Corollary 2,
as the bipartite graph H induced by G, and we will write it as Hg. A
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natural question to ask is whether we can say anything about the bipartite
graph Hg, from the properties of G. Although the study of the structure
of Hg has not been done very carefully yet, the following observations are
immediate from Theorems 3 and 4.

Theorem 5. If a digraph G contains an eulerian cycle which is oriented
either clockwise or counterclockwise, then Hg contains a perfect matching.

Theorem 6. If the digraph G contains two edge disjoint eulerian cycles
which are oriented both clockwise, counterclockwise, or one clockwise and
the other counterclockwise, then Hg contains a 2-regular spanning sub-
graph.

Theorem 7. Let G be a graph with vertex set V(@) ={vi:1<i< P}
with an orientation, and denote by out(v) and in(v) the outdegree and the
indegree of any vertex v of V(G) respectively. Then if V; and V; are the
bipartite sets of the graph Hg, the degree sequence of the vertices of W is
out(vy), out(vz), . .., out(v,) and the degree sequence of the vertices of Vs
is in(v1), in(va), .. ., in(vy).

The next theorem provides an interesting corollary to Theorem 7.

Theorem 8. If G is a graph with degree sequence 2ky,2ks, ..., 2kp, then
there exists an orientation of the edges of G such that the graph Hg is
a bipartite graph with bipartite set Vi and V, and the degree sequence of
vertices of V1 is equal to the degree sequence of the vertices of V and equal
to kl,kg,. ..,kp.

Proof: Since all the degrees of the vertices of G are even, then G is decom-
posable into cycles (see [8]). Orient each cycle either clockwise or counter-
clockwise and apply theorem 7. ]

4 Conclusions

This work has been focused to generate SSEM labelings of bipartite graphs
from preexisting labelings of graphs and some specific types of pseudo-
graphs. This is interesting, since Figueroa et al. [4] have shown that if
a graph G is a bipartite SEM graph, then the graph shaped by an odd
number of copies of G is also SEM.

Also, Kotzig and Rosa [7] proposed the problem of characterizing the set
of 2-regular edge magic graphs. Motivated by this problem, we propose
the problem of characterizing 2-regular super edge magic graphs. We have
done some work in this direction by proving that every SEM labeling of a
2-regular graph “come from” an SSEM labeling of a 1-regular graph Some
other work on this problem has been done by Figueroa et al. and can be
found in [5] and [6].
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