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Abstract

The integrity of a graph G, denoted I{G), is defined by I(G) :=
mingcy (g){|S| + m(G — S)} where m(G — S) denotes the maximum
order of a component of G — S. In this paper we explore the integrity
of various combinations of graphs in terms of the integrity and other
graphical parameters of the constituent graphs. Specifically, explicit
formulae and/or bounds are derived for the integrity of the join, union,
cartesian and lexicographic products of two graphs. Also some results

on the integrity of powers of graphs are given.

1 Introduction

Integrity was introduced by Barefoot, Entringer & Swart [1] as an alter-
native measure of the vulnerability of graphs to disruption caused by the
removal of vertices. The motivation was that, in some respects, connectivity
is oversensitive to local weaknesses and does not reflect overall vulnerability.
For example, the stars K (1,n + 1) and the graphs K + (K1 U Ky) are all
of connectivity one but differ vastly in how much damage is done to the
corresponding communications network by the removal of a cut vertex: in
the former case all communications are destroyed, whereas in the latter all
but two stations remain in mutual contact.

It is our aim to explore the integrity of various combinations of graphs
in terms of the integrity and other graphical parameters of the constituent
graphs. Specifically we give explicit formulae and/or bounds for the integrity
of the join, union, cartesian and lexicographic products of two graphs. We
also take a brief look at unary operations on graphs including powers of

graphs. First though, we give the requisite definitions.
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2 Definitions

In this section, we define integrity and related concepts, and introduce the
necessary terminology and notation. All undefined terminology and notation
is taken from [3]. We use further a cut-set as any set of vertices in a graph
whose removal leaves a disconnected graph. Also we use C to denote strict

inclusion.

> b For any graph G, the maximum order of a component of G is denoted
by m(G).

The notation m(G) is from [1] as is the following definition:
b b For any graph G the integrity of G, denoted I (G), is defined by

16) = min_ {15+ m(G - 5)). (2.1)

b b An I-set of G is any (strict) subset S of V(G) for which I(G) =
IS| + m(G - §).

Further concepts that are useful computationally are now defined (see

[4]):

b b For any graph G,
Di(G) :==min{|S|: SCcV(G)&m(G-S) <k} k=1,2,...
Ey(G) := min{m(G-S): S c V(G)&|S| =1} I= 0,1,...,p(G)-1.

It is easily seen that the definition of Ei(G) is unaffected by the replace-
ment of the condition ‘|S| = I’ by the inequality ‘|S| < I. It is also obvious

that, for any graph G,
Di(G) =a(G) and  Eo(G) = m(G).
Further, the following definition is useful:

b b 4(G) :=p(G) - m(G).



These definitions yield the following alternative formulations for inte-
grity:

I(G) = mgn(D;,(G)+k),
Ie) = min (E(G)+1)

I(G) = p(G)—?%O(H).

3 Past Results

We list the following known results for reference:

Proposition 3.1 [4] Let G be a graph of order n.
e) I(G)=niff G= K,
) (G)=1ifG =R,

Proposition 3.2 [1] I(K(ay,as,...,8r)) = X; 6; + 1 — max; a;.

Proposition 3.3 [2]
o) I(P) = [2vn+1|-2 n=12,...
b) I(Ca) = [2v/R] n=3,4,...

Proposition 3.4 [4]

a) if G C H then Dy(G) < Di(H), Ei(G) < Ey(H) and I(G) < I(H).
b) If G is non-trivial then for all v € V(G), I(G - v) 2 I(G) - 1.

¢) For alle € E(G), I(G —¢) 2 I(G) — 1.

Proposition 3.5 [4] For all graphs G,

a) if G is not complete then every I-set of G is a cut-set of G and hence has
cardinality at least x(G);

b) if S is & minimal I-set of G, then for allv € S, v is a cut-vertez of
G- (S-v).

Proposition 3.8 [4] For every graph G, §(G)+ 1< I(G) < a(G) + 1.

Proposition 3.7 [4] For any graph G, I(G) = p— 1 iff G is nonempty and
has girth at least 5.



4 Powers of Graphs

In this section we consider some of the simple unary operations on graphs
and investigate how the integrity of the resultant graph compares with that
of the original graph.

Vertex- deleted and edge-deleted subgraphs are examined in some detail
in [4]—proposition 3.4 summarises some of the results obtained; further
theorems about the integrity of a graph and its complement are to be found
in [5]. Focussing on the powers of graphs, we note first of all that from
proposition 3.4 the following holds for all graphs G,

I(G) < I(GH < I(GY)...

Equality is possible at every step, for example, if I(G) = m(G) (i.e. if the
empty set is an I-set of G). Such graphs include those in which every
component is complete. Further, there exist noncomplete connected graphs
for which I(G) = I(G?); for example any graph which is the complement
of a tree of diameter three (this follows from Proposition 3.7) or the graph
formed by taking two disjoint copies of K,, n > 2, and inserting one edge
between them. But for higher powers we have the following theorem:

Theorem 4.1 For all graphs G,
I(GY)=I1(G) if I(G) = m(G).
Proof

The ‘if’ part follows easily; we prove the ‘only if’ part and assume therefore
that I(G®) = I(G). Let S be a minimal I-set of G?; then S is an I-set of G.
Suppose S is nonempty and let v € S. Let H),..., H, be the components
of G% - ; then k(G® - (S ~ v)) < kK(G3 - S) (by proposition 3.5b) so
that r > 2 and there exist integers ¢ and j, { # j such that the vertices of
H; and H; are contained in the same component of G3 and hence in the
same component of G. Let P = v;v; .+ -v, be a shortest path in G between
vertices of two distinct components of G3 — S ;8ay v € H; and v, € H;.
Then n > 5 and vs, vs, ... yVn-1 € S. It follows from our choice of P that



vs is an isolated vertex (and hence not a cut-vertex) of G — (S — vs), which
contradicts proposition 3.5b. Therefore S = ¢ is an I-set of G and thus
I(G) = m(G). ®

From this one may derive the obvious corollary:
Corollary 4.1 For all graphs G, if I(G) = I(G®) then I(G) = I(G?) =
...=m(G).

5 The Join of Graphs
In this section we consider the integrity of the join of two graphs, inter alia.
Theorem 5.1 For all graphs G and H,
I(G + H) = min{I(G) + p(H) , I(H) + p(G)}-
Proof

We see immediately that the statement is true if G + H is complete. There-
fore we may assume that G + H is noncomplete. Then every I-set f G+ H
is a cut-set of G + H and hence a superset of either V(G) or V(H). Thus
I(G + H) = min{f(G, H), {(H,G)} where

/(G, H) {m(G+ H - S)+|S|}

= min
V(H)CSCV(G)UV(H)

and f(H,G) mutatis mutandis. Then

_ . _ o '
1G,H) =  min {m(G -5+ +p(H)}
= I(G) +p(H)
and similarly f(H,G) = I(H) + p(G) so that the result follows. ®
Corollary 5.1 For all graphs G, I(G + K,) = I(G) + s. ®

We have also the following extension of the corollary:



Theorem 5.2 Let G be a graph and Jorm G' from G by tntroducing a new
vertez v and making v adjacent to r of the vertices in G. If r > I(G) then
I(G") = I(G) +1.

Proof

Certainly, I(G') < 1+ I(G' - v) = 1+ I (G). To prove the reverse inequality,
consider any § C V(G') and the two possibilities: If v € S then

m(G'~8)+|S| = m(G-(S- {vD)+15 - {v}|+1
> I(G)+1
while if v € S then
m(G' -S)+|S| > A(G'-8)+1+ |S|
2 (r=|S)+1+]|s]
> IG)+1.
Hence I(G') > 1+ I(G' - v) and the theorem is proved. ®

Of course the converse does not hold; consider, for example, forming
G' = Pg from G = P;. Then r = 1 while I(G) = 3 and I(G') = 4. Further
this result is best possible in that, for example, if we form G' = Ps from
G = P; then I(G) =2 and I(G') =2 while r = 1 = I(G) - 1.

6 The Union of Graphs

We consider now the integrity of the union of two or more graphs. We
commence with an obvious lemma:

Lemma 6.1 Let G = Uj=1Gj. Then
r
a) Dn(G) = Z Dn(GJ');
i=1

b) I(G) = min { n + iDn(G,-)},
¢) m(G) = max m(G‘,'J).—l ®

Further, from the above (or ab initio) we have the following:
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Theorem 6.2 For all graphs G, if r > m(G) — 1 then I(rG) = m(G). ®

There are obvious lower bounds for I(G U H) viz. I(G) and I(H). For

an upper bound, we: have: the following:
Theorem 6.3 For all graphs G and H,
I(GUH) L I(G)+ I(H) - 1.
Proof
Let S and T be I-sets of G and H respectively. Then

I(GUH) € |SUT|+m(GUH-SUT)

|S| + 7| + max{m(G — 8),m(H - 1)}
{151+ m(c - $)}+{ITl+1} -1, say
< I(G)+I(H) -1

proving the result.
Corollary 8.3 If G = U}=; G;j then
r
Q)<Y I(Gy) +1-r. ®
=1

For equality in the above theorem and corollary, consider the graphs G(")

given, for positive integers r, by

¢ = |J K@, 27Y).
i=1

Then using lemma 6.1 and noting that

a ifk<eae
Di(K(a,a))={ 2a-k ifa<k<2a
0 if k> 2a

one can easily show that Dk(G(")) =2 —k for k = 1,2,...,2". Thus



I(G) = 27 while

r r
DAE@LI N +1-r=Y (@ 41 +1-r =2
j=1 j=1

7 The Lexicographic Product

In this section we determine the integrity of the lexicographic product of
two graphs in terms of the integrity and other graphical parameters of the
original graphs.

Let us consider G[H] where the vertex sets of graphs G and H are given
by {v1,v2,...,vm} and {w1,ws,...,wp} respectively. Let X be an I-set of
G[H]; then for i = 1,2,...,m set T; := {w; € V(H) : (v,w;) € X} and
further let S := {v; e V(G): T: =V (H) }.

If F is any component of G — S, let F' denote the subgraph of G [H]-X
induced by { (v, w;) € V(G[H]) — X : v; € V(F)}. We have the following

two cases:

1. S is not a vertex cover of G: let F be a non-trivial component of
G — S so that F' is connected. Consequently, by the optimality of X ,
without loss of generality we may assume that T; = ¢ for all v; € V(F)
and indeed we may assume that 7} = ¢ for all v; ¢ S. Therefore
m(G[H]| — X) = m(G - S) - p(H) and thus for this case,

min{|X| + m(G[H] - X)} = I(G) - p(H).

2. S is a vertex cover of G: let Fy, Fy, ..., F, be the trivial components
of G — S, containing vertices vy, vs,... » Ur Tespectively (say). We may
assume, without loss of generality, that X is such that =T =

+++ = Ty = T (say) while obviously |S| is as small as possible viz.
a(G). Therefore m(G[H] — X) = m(H - T) and thus for this case,

min{|X| + m(G[H] - X)} = «(G) - p(H) + I(B(G) - H).

Thus we have proved the following theorem:
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Theorem 7.1 For all graphs G and H,
I(G[H)) = min { I(G) - p(H), &(G) - p(H) + I(B(G) - H) } - ®

Corollary 7.1 For all graphs G and H,
a) I(Km[H]) = (m — 1)p(H) + I(H)
b) I(G[Ka]) = n- I(G) ®

As a specific example consider the determination of the integrity of the
lexicographic product of two stars. Letting G = K (1,m-1) and H =
K(1,n — 1) we have that

I(G[H]) min { I(G) - p(H), a(G) - p(H) + I(8(G) - H) }
= min{2.n,1.n+ I((m-1)H)}

= min{2n,n + min{m,n}}

so that
I(K(1,m - 1)[K(1,n — 1)]) = min {m + n,2n} .

8 Cartesian Product

In this section, we give some results and bounds on the cartesian products
and discuss the integrity of the graphs formed by the cartesian product of
two complete graphs.

Unlike their lexicographic counterparts, the cartesian products seem to
be much more difficult to evaluate. Indeed, as we shall show, the calculation
of I(Km x Ky,) requires considerable manipulation before we get the final
answer which is still an integer optimisation problem.

In general, the best we can do is to give bounds on the values. Lower
bounds seem sparse; indeed we have the lower bound formed by noting that
G x H contains p(G)- H and p(H) -G as subgraphs. For the upper bounds,
one may use the above results on lexicographic products noting that G x H
has G[H|] and H|[G] as supergraphs. These bounds appear to allow a lot of
leeway.

However a way of combining subsets of the vertex sets of the original

graphs to get a suitable (i.e. near optimal) subset of the vertex set of the
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product, appears more promising:
Let G and H have orders m and n respectively. Let S C V(G) and
T C V(H) of cardinality s and t respectively. Then set

X:=SxV(H)UTxV(G) - SxT. (8.1)
Here | X| = sn + tm — 2st and
m(Gx H-X) = m((G-S)x (H-T) u (S xT))
= max{m(G - S)-m(H - T),m((S)) - m((T))}
where the null graph Kj is assumed to have m(Ko) = 0 and where the last
line follows from noting the general result that m(F1x F3) = m(Fy) xm(Fy).
We consider a few specific examples. Consider firstly, the case where G

and H are complete. Then, as it is shown in the following section, suitably
chosen sets X are (among the) I-sets of the product.

Figure 1: The I-set of P x Py

As a second example, consider the case where G and H are paths. Specif-
icdlly, say G = P; and H = P; then the smallest value of |X|+m(Gx H-X),
where X is constructed by the above method, is 16 while I (Ps x P;) =15
with the unique I-set given in figure 1. It seems feasible that this is indica-
tive of the determination of I(Pn x P,) for m and n of the same order of
magnitude. On the other hand, for small values of m and n one does get
I-sets of the form given in equation 8.1 above. For example, I (Pox Pg)=8
and the unique I-set is given by X above where S is empty and T is the
I-set of P;.

For our third example we need to determine the integrity of the cartesian
product of two stars:
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Theorem 8.1 For allm > n > 2, it holds that I(K(1,m-1)xK(1,n-1)) =
min {m + n — 1,2n}.

Proof

Let P be an I-set of the product G = K(1,m—1)x K(1,n—1). Then a(G) =
m+ n — 2 so that I(G) < m + n — 1. Now suppose that I(G) <m+n—1.
Let the vertices of both stars be labelled such that the central vertices of

each receive the labelling 0; then we note the following observations:
e (0,0) € P (else m(G — P) +|P| > |N[(0,0)]| = n+m — 1)

o If (i,0) ¢ P and (0,5) ¢ P then (i,5) € P; (else m(G - P)+|P| 2
|N[V(F))| = n+ m where F is the (connected) subgraph induced by
the vertices (i,0), (0,7) and (1, 7))

Now let ¢ = | {(§,0) : (,0) ¢ P}| and r = |{(0,5) : (0,7) ¢ P}|. Then by
the above observations, at least B = 1+(m~1—g)+(n—1—r) +qr vertices
are contained in P; further depending on the degrees of the vertices not in
P we have the following lower bounds for |P| + m(G — P):

B+1 ifr=¢=0,
B+n ifr=0and ¢#0,
B+m ifg=0and r#0,

B+max{m-gn—r} ifg#0andr#0.

Minimising these bounds over ¢ and r one obtains an overall minimum of
precisely the RHS of the equation in the statement of the theorem. This
result together with the initial comments proves the theorem. ®

Thereafter it may be shown that all I-sets are of the form described by
equation 8.1 above where S consists.of a single central vertex.of K(1,m — 1)
and T is empty or consists of a single central vertex of X (1,n —1).

We conclude this section with a conjecture on cubes:

Conjecture 8.2 Forallr>1, I(Q,)=2""1+1.
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Certainly the value given is an upper bound by proposition 3.6. The
conjecture is easily verified for r = 1, 2 and 3. Furthermore, the results for

r =2 and r = 3 suggest that the following stronger conjecture may be true:

Conjecture 8.3 For all r > 2, the I-sets of Q, are the two minimum vertez

covers.

9 The Integrity of K,, x K,

In this section we investigate the integrity of the cartesian product of two
complete graphs.

9.1 Formulation

Let G = K., and H = K, with m 2 n > 2, and let the vertex sets
V(G) and V(H) be given by {v;, v, .. - vm}, V(H) = {wy,wy,...,w,} and
F =G x H. Then necessarily F is noncomplete. Let S be a cut-set of F and
let Fy, F3,..., Fi be the components of F — S. Denote for § 1=12,...,k,

V; {v; €V(G) : 3w, : (vj,w) € F;}
Wi = {weV(H):3v;:(v;,w)eF).

Then, by the definition of cartesian products, V1,V;,...,V; are disjoint as
are W,,W,,...,W;. Now form

k
X1 = v(@e)-Uv;
=2
X; = Vi =23,k

and form sets Y; from the W; similarly. Further.define
k
T=V(F)-|JX: xY.
=1
Then every component of F — T is a supergraph of exactly one component

of F — S so that 0(F - T) > 4(F — S). Therefore, in our search for I-sets,
we need only consider sets of the form given by T'.
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Now
o(F - T) = 3 IXill¥i] — max | XIYil
i

Let us denote for integral r > k > 2:

b b TI(k,r) is the set of all vectors z = (21,22, .. ,z¢) such that 1F; z; =

r, and 2y, 22, . ..,2; are positive integers.

Hence we may write

I(F)=mn - 22X 0x(m,n) (9.1)
where N
fx(m,n) =  max {Z Tiy; — max a:,-y.-} . (9.2)
z € I(k,m) ‘i=1 !
y € I(k, n)

9.2 The case when k>3

We now show that the maximum on the RHS of equation 9.2 is attained
when k = 2 (but not necessarily only for k = 2). Elementary optimisation

techniques yield the following lemma:

Lemma 9.1 For all m > n > 2, 62(m,n) < mn/4 with equality iff m and

n are both even. ®

This lemma is used in the proof of the following:
Lemma 9.2 Forallm>n>k2>3,
8x(m,n) < max {1+ (m — 1)(n — 1)/4, 2mn/9} .
Proof

Let k = 3 and let the component of F — T of smallest order be of the form
K. x K,. Then the order of the ‘middle’ component of F — T is bounded
above by 8z(m — z,n — y). Consequently, by lemma 9.1

83(m, n) < maz;yzy+ (m—z)(n —y)/4
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2y < (m - z)(n - y)/4

subject to
z21l,y>21,z,yeR.

Using elementary calculus, we obtain the stated result and by similar tech-

niques all the required bounds may be derived. ®

This lemma is then used in the proof of:
Lemma 9.3 Foralin >k > 3, 02(m,n) > 6;.
Proof
We prove the following result in three cases:
62(m, n) > max {1+ |(m — 1)(n — 1)/4], [2mn/9]}. ()
so that by lemma 9.2 the lemma follows.

1. m, n even: This case follows directly from lemma 9.1.

2. m odd, n even: Here m — ((m —1)/2,(m + 1)/2) and n — (n/2,n/2)
represent a valid partition where § = (m — 1)n/4. Then it may easily
be shown that (m—1)n/4 s at least as large as the RHS of equation (i).

3. n odd: In this case n — ((n—1)/2,(n+ 1)/2), m — (a,m — a), where
@ = |m(n+1)/(2n)], represents a valid partition. Then it can be
shown that for this partition

g=2"_

n-—1 n+12J
2 2 n)’

Using some manipulation it may be shown that this value too is at
least as large as the RHS of equation (i) so that the third and final
case is verified. ®

9.3 The case when k =2

We have thus shown that we must determine the value of 8; in order to
determine the integrity. For even m and n this has been done. Using
lemmas 9.1 and 9.3 we may therefore state:
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Theorem 9.4 If m and n are even then
I(Km X Kn) = %mn. (02

We consider now general m and n. We may write

b = =e{§.lla..’.(-.m} Flz)
where
F(z) := .,e{'é,‘ﬁ?.‘..n}f(””)
and
f(z,y) = min{zy, (m-z)(n-y)}.

If we allow f(z,y) for a fixed z to range over the reals as a function in y,

then it is maximised at y* = n(m — z)/m. Thus

F(z) = max{z|y’],(m-2z)(n-[v']}

and

0, = max{E,E;}
where

E, = mzaxz-[(m-a:)n/mj
and

Er = mpx(m - 2)(n - [n(m-2)/m])
= max z' (n - [nz'/m])
= maxz |n- nz'/m|
zl
e El.
Hence we have proved the following theorem:

Theorem 9.5 If m > n > 2 then

I(Km x Kp) =mn j:l,rzl:i‘.’,(m—lj [ m . ®

Now one cannot explicitly evaluate the RHS except for m and n even. It

is possible though to determine its behaviour for m >> n. Basically, the task
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i8 to optimise the real function defined by h(j) := j - [n(m — 5)/m] over
integral values. For sufficiently large values of m, one can guarantee that a
certain value of j is the maximum, thus solving the problem. For h even,
this value is |m/2], while for h odd this value is one of [m(n+1)/(2n)]
depending on the parity of the remainder when n is divided into m. The
arithmetical details are omitted and thus we reach our final theorem, where
we note that the conditions that are given are not necessarily best possible.

Theorem 9.8 For all positive integers m and n,

a) if n is even and m > n?/4 then I(Kp, x K,) = mn — [m/2]-n/2;

b) if n 45 odd, m > (n — 1)*/4 and m = rn + q where r and q are integral
and 0 < g < r then V

mn—%lln%l-—:lj tf ¢ 18 odd
I(Kn X K,) =
(B x £ mn_"_—lln_ﬂ 2J i ¢ is cven
2 ) n q even.
®
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